Rule Based Systems and the Intersection of Formal Methods and Testing Rick Kuhn, Vincent Hu, David Ferraiolo, Raghu Kacker, Dylan Yaga, and Yu Lei*

National Institute of Standards and Technology {kuhn,vhu,david.ferraiolo,raghu.kacker,dylan.yaga}@nist.gov

Pseudo-exhaustive testing solution using covering arrays:

- determine dependencies
- partition according to these dependencies
- exhaustively test the inputs on which an output is dependent
- for access control:
 - convert rule antecedents to k-DNF form, producing sets of k or fewer attributes that will produce a "grant" decision
 - generate separate k-way covering arrays for combinations that should produce "grant" and "deny"

COMPARISON

0 1 0 0 1 1 1 grant for each set of inputs

determine expected decision

generate covering arrays with constraint from rules

array -

covering array deny

Positive Testing (The Easy Part)

- want to ensure that any set of appropriate attributes produces grant decision
- test set Gtest: every test should produce a response of grant.
- for any input where some combination of k input values matches a grant condition, a decision of grant is returned.
- Construct test set Gtest with one test for each term of *R* as follows:
- Gtest_i = $T_i \bigwedge -T_j$
- one test for each term in access control rule antecedents, with constraint removing any combination that would mask a fault
- example: testing that ab results in grant, for ab + cd \rightarrow grant, enforce constraint \sim (cd)

Example: Why It Works

- rule structure:
 - $R_1 \rightarrow \text{grant}$ \rightarrow grant R_2
 - • •
 - \rightarrow grant else \rightarrow deny

	a	b	С	d	е
1	0	0	0	0	0
2	0	0	1	1	1
3	0	1	1	0	0
4	1	0	0	1	0
5	1	0	1	1	0
6	1	1	0	0	1
7	1	1	1	1	1
8	0	0	1	0	1
9	1	1	0	1	0
10	0	0	0	1	1
11	1	0	0	0	0
12	0	1	1	1	0
13	1	0	0	0	1
14_	0	1	1	0	1

covering array containing all t-way tuples except for those in a grant condition

Number of Tests

- \bullet
- \bullet

*University of Texas at Arlington ylei@uta.edu

Negative Testing (The Hard Part)

• test set Dtest = covering array of strength k, for the set of attributes included in R

• constraints specified by $\sim R$

 ensures that all deny-producing conjunctions of attributes tested

• masking is not a consideration – because of problem structure

- deny is issued only after all grant conditions have been evaluated

 masking of one combination by another can only occur for Dtest when a test produces a response of grant

- if so, an error has been discovered; repair and run test set again

for positive tests, Gtest: one test for each term in the rule set, for for m rules with p terms each , mp for negative tests, Dtest: one covering array per rule, where each attribute in the rule is a factor

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	720 1800 900 2250 6120 15300 7540
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1800 900 2250 6120 15300 7540
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	900 2250 6120 15300 7540
4 50 50 200 4 50 20 306 80 50 20 200 100 20 378 80	2250 6120 15300 7540
4 50 20 306 80 50 200 100 20 378 80	6120 15300 7540
50 200 100 20 378 80	15300
100 20 378 80	7540
	/ 500
50 200	18900
6 50 20 1041 80	20820
50 200	52050
100 20 1298 80	25960
50 200	64900
2 50 20 98 80	1960
50 200	4900
100 20 125 80	2500
50 200	6250
4 50 20 1821 80	36420
50 200	91050
100 20 2337 80	46740
50 200 1	16850
6 50 20 9393 80 1	87860
50 200 4	69650
100 20 12085 80 2	41700
50 200 6	04250