
Rule Based Systems and the Intersection of Formal Methods and Testing
Rick Kuhn, Vincent Hu, David Ferraiolo, Raghu Kacker, Dylan Yaga, and Yu Lei*

 *University of Texas at Arlington
 ylei@uta.edu

National Institute of Standards and Technology
{kuhn,vhu,david.ferraiolo,raghu.kacker,dylan.yaga}@nist.gov

Problem: how to test implementation
correctness against access control rules
•  Large number of rules
•  Large number of attributes/variables
•  2-value result – grant/deny

conventional solution:
•  “use cases” verifying important or common situations
•  ad hoc
•  often not very thorough

model-based testing solution:
•  rules à formal model à model checker or other à

test cases
•  usually based on fault model; mutation testing
•  may use some notion of policy coverage
•  ACPT
•  Margrave
•  others

Pseudo-exhaustive testing solution using
covering arrays:
•  determine dependencies
•  partition according to these dependencies
•  exhaustively test the inputs on which an

output is dependent
•  for access control:

•  convert rule antecedents to k-DNF form,
producing sets of k or fewer attributes
that will produce a “grant” decision

•  generate separate k-way covering arrays
for combinations that should produce
“grant” and “deny”

COMPARISON

0 1 0 0 1 1 1 0	 1	 0	 0	 1	 1	 1	 grant	
model
checker

model-based:

generate input data
(covering array,
random, ad hoc)

for each set of inputs
determine expected decision

our approach:

rules

rules

test
array –
grant

covering
array –
deny

generate covering arrays
with constraint from rules

Positive Testing
(The Easy Part)

Negative Testing
(The Hard Part)

•  want to ensure that any set of appropriate
attributes produces grant decision

•  test set Gtest: every test should produce a
response of grant.

•  for any input where some combination of k
input values matches a grant condition, a
decision of grant is returned.

•  Construct test set Gtest with one test for each
term of R as follows:

•  Gtesti =
•  one test for each term in access control rule

antecedents, with constraint removing any
combination that would mask a fault

•  example: testing that ab results in grant, for ab
+ cd →grant, enforce constraint ~(cd)

•  test set Dtest = covering array of strength k,
for the set of attributes included in R

•  constraints specified by ~R

•  ensures that all deny-producing
conjunctions of attributes tested

•  masking is not a consideration – because
of problem structure

–  deny is issued only after all grant conditions
have been evaluated

–  masking of one combination by another
can only occur for Dtest when a test
produces a response of grant

–  if so, an error has been discovered; repair
and run test set again

Example: Why It Works Number of Tests

•  rule structure:
R1 → grant
R2 → grant
…
Rm → grant
else → deny

 	 a	 b	 c	 d	 e	
1	 0	 0	 0	 0	 0	
2	 0	 0	 1	 1	 1	
3	 0	 1	 1	 0	 0	
4	 1	 0	 0	 1	 0	
5	 1	 0	 1	 1	 0	
6	 1	 1	 0	 0	 1	
7	 1	 1	 1	 1	 1	
8	 0	 0	 1	 0	 1	
9	 1	 1	 0	 1	 0	

10	 0	 0	 0	 1	 1	
11	 1	 0	 0	 0	 0	
12	 0	 1	 1	 1	 0	
13	 1	 0	 0	 0	 1	
14	 0	 1	 1	 0	 1	

covering
array
containing
all t-way
tuples
except for
those in a
grant
condition

•  for positive tests, Gtest: one test for
each term in the rule set, for for m
rules with p terms each , mp

•  for negative tests, Dtest: one
covering array per rule, where each
attribute in the rule is a factor

k v n m N tests #GTEST #DTEST
3 2 50 20 36 80 720

50 200 1800
100 20 45 80 900

50 200 2250
4 50 20 306 80 6120

50 200 15300
100 20 378 80 7560

50 200 18900
6 50 20 1041 80 20820

50 200 52050
100 20 1298 80 25960

50 200 64900
4 2 50 20 98 80 1960

50 200 4900
100 20 125 80 2500

50 200 6250
4 50 20 1821 80 36420

50 200 91050
100 20 2337 80 46740

50 200 116850
6 50 20 9393 80 187860

50 200 469650
100 20 12085 80 241700

50 200 604250

