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Vision

¢ A tool-chain for developing robust, reliable, and
secure systems software that spans the full range
of concerns:

- From high-level analysis and verification

- To low-level, performance-sensitive
implementation




Focus: Systems Software
Examples: Operating system kernels, Hypervisors,
VMMs, Device Drivers, etc...

* Essential: key components in any computer
system

e Critical: failures can compromise higher-level,
“secure” application layers

Current Practices

Industry practices for developing systems software
typically rely on fairly low-level languages and tools

(e.g., C)
+ Enables programmers to address low-level issues
& performance concerns

- Harder to reason formally about the code
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Using a Functional Language ...

e Functional languages can provide:
— Improved productivity
- Memory safety
- Type safety
- Formal semantics
— Connections to proof assistants, etc...

e But can you build systems software in a
functional language?
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A Credibility Gap

 House relies on services provided by the "GHC
run-time system”:
* a general purpose software component
» currently around 35-50KLOC of C code

* Any assurance argument that we might make
about House requires a corresponding argument
about the run-time system

How to Bridge the Gap

 Reduce code size:
» Eliminate functionality that we don’t need
» Eliminate accidental/historical complexity

« Implement in a framework that supports formal
verification
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Feasibility

Example: Garbage Collection (GC)

« A simple, verifiable GC can be written in 100-300
lines

* There are fielded, production-quality GC
implementations with good performance and
support for a rich set of language features in
2KLOC
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High-Assurance RTS for Haskell, Java, ...

e Design Philosophy:
e "As simple as possible”
e Modular
e Formal verification

e Services:
e Garbage collection First priority
e Concurrency

e Interfacing to untrusted languages




Memory Allocation

e Languages like C provide run-time libraries for
allocating and freeing memory

e It is notoriously difficult to use these functions
correctly:
e Freeing memory too early can result in
corruption and crashes

e Freeing memory too late can result in space
leaks and denial of service

e Memory allocation bugs are very hard to find

Garbage Collection

¢ A mechanism for reclaiming and reusing unused
memory automatically

e Many different approaches:

e Reference Counting, Mark-sweep, Stop-and-
copy, Generational, Incremental, Real-time, ...

e Programmer doesn’t free memory by hand:
e Less code to write
e Fewer memory allocation bugs
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Stop-and-copy Garbage Collection

Allocate memory from a “heap”

- g » Portland State

Stop-and-copy Garbage Collection

Allocate memory from a “heap”
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Stop-and-copy Garbage Collection

Allocate memory from a “heap”
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Stop-and-copy Garbage Collection

Allocate memory from a “heap”
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Stop-and-copy Garbage Collection

Eventually, the heap is full!
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Stop-and-copy Garbage Collection
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But we may only be using
a part of this ...
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Stop-and-copy Garbage Collection
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Stop-and-copy Garbage Collection
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Assume that we have a second block of memory
that we can use as a new heap

(Algorithm due to Cheney, 1970)
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Stop-and-copy Garbage Collection
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Copy A into the new heap
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Stop-and-copy Garbage Collection
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Scavenge A (copy B into the new heap)
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Stop-and-copy Garbage Collection
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Scavenge B (copy C and D into the new heap)
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Stop-and-copy Garbage Collection
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Scavenge C (no objects copied)
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Stop-and-copy Garbage Collection
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Scavenge D (copy E into the new heap)
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Stop-and-copy Garbage Collection
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Scavenge E (B is already in the new heap)
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Stop-and-copy Garbage Collection

C A B E D
e[| v v v
A B C D E
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« All live data has been copied to the new heap;
 The original data structure has been preserved;
 Unused memory reorganized in a single block.

Stop-and-copy Garbage Collection

The beginnings of a
formulation of
correctness for this GC
algorithm

110 v V| v

A B C D E

ﬂk
« All live data has been copied to the new heap;

 The original data structure has been preserved;
e Unused memory reorganized in a single block.




Garbage Collectors have Bugs Too!

 GC bugs show up regularly in public bug and
vulnerability databases

« Example: Widely used browsers (IE, Firefox,
Safari), have all suffered from JavaScript engine
GC bugs that can lead to:

e browser crashes
e denial of service attacks
» execution of arbitrary code

Where Do GC Bugs Come From?

e Errors in algorithms
— Especially for highly-concurrent algorithms

e Errors in GC implementation écus for Today|

e Errors in mutator
— Mutator must identify all roots
— Mutator must respect GC data structures

%rmalizing the contract is a critical first step




Principles for Verified GC

¢ Insist on machine-checked proofs
e Verify the actual implementation
e Amortize the cost of verification over all uses

e Engineer a re-usable framework for future
verifications of similar style

e Amortize the cost of building the framework over
multiple GCs

e Leverage existing work
— INRIA (Leroy et al)
- Yale (Shao, McCreight, et al)

Typed Garbage Collection?

e Long-standing goal: define a type system rich
enough to express a GC

— Proposals to date are complex and only
guarantee safety

e We propose a different path using general-
purpose provers (e.g. Coq, Isabelle, etc.)

e Type-based approach may still be good choice
for mutator
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The Compcert Framework

Formal semantics i
Cllght Code ----------------------------------------------- > Mathematlcal
model

- A certified compiler developed by T
Xavier Leroy et al. using the Coq proof

assistant
| =
| Mechanized proof that compilation
. preserves semantics |
v v
POWerPC lllllllllllllllllllllllllllllllllllllllllllllll Mathematical
assembly Formal semantics model

The Compcert Framework

Clight code

| Implemented as a pipeline with
multiple stages

PowerPC
assembly




The Compcert Framework

Formal semantics i
Cllght Code ............................................... > Mathematlcal
model
\ 4 . )
............ormal semantics »| Mathematical
model
v . —
...........ormal semantics Mathematical
model
| t —
v —
POWerPC lllllllllllllllllllllllllllllllllllllllllllllll Mathematical
assembly Formal semantics model

The Compcert Framework

Clight code Java bytecode GHC
L L .. S
v
Cminor One of the intermediate languages is called
| “Cminor”
v

- Simple, structured, weakly typed

PowerPC

assembly A good target for compiling other languages
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The Compcert Framework

Clight code Java bytecode GHC

[ ¢ o e e e e e m— e E—  —

v
Cminor {: '''''' » GC (Memory Management Library)

. These languages require GC services!
h 4
== Our Strategy:
| e Write GC in Cminor
v e Use Cminor semantics to prove correctness
PowerPC

e Compcert backend preserves correctness

assembly
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Stop-and-copy GC code (1)

"scanPtrField" (xp,free) : int -> int -> int

{

var x, len, hdr;

#define NULL_PTR 0

var "freep"[4]
var "toStartp"[4]
var "toEndp"[4]
var "frStartp"[4]
var "frEndp"[4]

X = int32[xp];
if (x == NULL_PTR)
return free;
hdr = int32[x - 4];
if (hdr != NULL_PTR) {
len = "numFields"(hdr) : int -> int;
"memCopy"(x - 4, free, len + 1) : int -> int -> int -> void;
int32[x] = free + 4;
int32[x - 4] = NULL_PTR;
free = free + 4 *len + 4;

"numFields" (x) : int -> int
{ return int32[x]; }

"fieldIsPointer" (x,k) : int -> int -> int
{ return int32[x+4] <= k; }

"memCopy" (src,dst,len) : int -> int -> int -> void
{vari;
i=0;
while (I <len) {
int32[dst + 4 *i] = int32[src + 4 * i];
i=i+1;
}

} frStart = int32["toStartp"];
toStart = int32["frStartp"];

}
int32[xp] = int32[x];
return free;

}

"cheneyCollect" (rootp) : int -> int {
var hdr,len,toStart,toEnd,root,free,frStart,frEnd,scan,i,isPtr;




Portland State

UNIVERSITY

Stop-and-copy GC code (2)

int32["toStartp"] = toStart;
int32["frStartp"] = frStart;
toEnd = int32["frEndp"];
frEnd = int32["toEndp"];
int32["toEndp"] = toEnd;
int32["frEndp"] = frEnd;

free = "scanPtrField"(root, toStart) : int -> int -> int;
scan = toStart;
while (scan != free) {
hdr = int32[scan];
scan = scan + 4;
len = "numFields"(hdr) : int -> int;
i=0;
while (I <len) {
isPtr = "fieldIsPointer"(hdr,i) : int -> int -> int;
if (isPtr)

free = "scanPtrField"(scan,free) : int -> int -> int;

scan = scan + 4;
i=i+1;
}
}

"cheneyAlloc"(hdr,root) : int -> int -> int

{

var free,len;

free = int32["freep"];

len = "numFields"(hdr) : int -> int;

len =len * 4;

if (len == 0)
return 0;

if (free + len + 4 >=int32["toEndp"]) {
free = "cheneyCollect"(root) : int -> int;
if (free + len + 4 >=int32["toEndp"])

return 0;

int32["freep"] = free + len + 4;
int32[free] = hdr;
return (free + 4);
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Example: in-place list reversal

"reverse" (v) : int -> int {

var w,t;

w = 0; v

{{ loop { \
if (v == 0) w—> a | 0 b » C | —»

exit O;

t = int32[v + 4];
int32[v + 4] = w;
w = v; CaO b /~c——>
v = t; /f //

o} w v

return w;




Proving Cminor Programs

e Proving correctness of imperative pointer-based
programs is a hot research topic

o (Different from Compcert’s goal, which is about
proving compiler correctness)

e Our current direction:

e Construct proofs on a deep embedding of
the Cminor semantics in Coq

e Use separation logic to describe the heap

Shallow vs. Deep Embeddings

e In a shallow embedding, the program is
represented by a term in the prover’s logic

+ Can reason directly using full power of prover
— Hard to formalize connection with actual code

e In a deep embedding, the program is
represented as a syntactic object (AST):

+ Compcert gives operational semantics for this
already

- But reasoning requires lots of tactic support




Framework Overview

Utility libraries: Abstract machine:
32 bit integers; Cminor syntax and
modular arithmetic; semantics
etc...
Program logic: .| Separation logic:
verified verification "| reasoning about heap &
condition generator stack

Everything is implemented in the Coq proof assistant

Separation Logic

e Logic for reasoning about heaps [Reynolds,
O'Hearn, ...]
e Key predicates:
P* Q Heap is split into two disjoint parts
P holds on one part, Q on the other
X — Vv Holds on a heap containing only
address x that contains value v

¢ Neatly encapsulates complexities of reasoning
about pointer-based programming (aliasing, etc.)
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Example: Linked Lists

e Relating list values to in-memory representation:

Fixpoint plist (x:val) (xs:list val) :=
match xs with
| nil => I(x = null_ptr)
| (X'::ys) =>
I(x = x') * lexists v, lexists vy,
(X v) * ((x+4) > vy) * plisty ys
end.

e Separating conjunction enforces that elements are
disjoint (and hence lists are acyclic)

; # Portland State
- , _ -

Separation Logic Implementation

¢ Definitions and properties of predicates
- Commutativity, associativity, etc.

e Tactics are critical:
— Simplification
— Rearranging
— Matching




Program Logic

e Hoare-style reasoning using pre- and
post-conditions

e Similar to prog logic of [Appel Blazy 07]

e Verified verification condition generation

— Generator calculates a verification
condition (VC) for each statement

— Resulting semantics consistent with
original Cminor semantics

Verification Conditions ,.condition of

next statement

e Example: vc (x :=e) Qs initial state
=3Jv.skFe—vV
A Q(s{x:=Vv})

e Extra predicate arguments are added for
return, call, and jump

e Infrastructure provides tools for helping
to prove VCs automatically




Portland State

UNIVERSITY

Proof Example: List Reverse

Lemma reverseOk : fdefOk reversePre reversePost reverseDef.

Pre-condition: Post-condition:

Definition Definition
reversePre is args: = reversePost is result : =
lexists i, !(args=i::nil) * plist result (rev is).

plist i is.

Loop Invariant:
Definition inv is (s:cstate) :=
exists w, exists v,
(VFEQV (xv :: xw :: xt :: nil) ((xw,w) :: (xv, v) :: nil) (cvfOf s) /\
(lexists vl, lexists wl,
plist v vl * plist w wl * I(rev vl ++ wl = rev is)) (cmemOf s)).
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Proof Details:

o Maln proof: n 45 Ilnes lflg:?g?ggi:;rersgf’r_:e. intros is args m sp Hp. sle Hp. subst args.

split. reflexivity.
intros vf VFE. simpl in VFE.
vcSteps.

Lemma reverseOk : fdefOk PO reverseTy reversePre reversePost
reverseDef.

exists (inv is). split.

(* establish loop invariant *)

L4 Comparable Iength to l;{lg:ég ;)E‘l’l_ptr exists x. split; auto.

exists is. exists (@nil val).
simpl. s

our proof of the same

(* loop entry *)
clear VFE Hp

result using a ShaIIOW_ éggizg.s. destruct s'. destruct H as [w [v0 [VFE Hpl]ll.

branchStep.

embedding of Cminor 0 s s

subst v0. sle Hp.

semantics R O e i o

apply Hp.

(* false case: do loop body *)

sle Hp.

srewrite plist_non_null in Hp; [sle Hp | auto].
vecSteps.

D
(* bottom of loop body: re-establish invariant *)
rewrite HO in H; simpl in H; rewrite app_ass in H; simpl in H.

o Prog ram Ioglc and :;lf:tg xi,;xﬂ“.’-axists x3. split.
vfEqvSolver.

Separation logic tactics =i ar’ = =

searchMatch.

k th bl (* undefined case : impossible *)
Make this possibIe. R s e
ed.
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Infrastructure Line Counts

Utility libraries:

[ ~3,300 }

Abstract machine:

~5,750

AN

Separation logic

Program logic:

{ ~1,550 }

~4,100

GarbageCoIIector:{ 5,000 J
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Stop-and-copy GC Proof

Lemma cheneyCollectorOk :

fdefOk cheneyCollectorPre cheneyCo

Pre-condition

e

Post-condition

Definition ?

llectorPost cheneyCollectorDef.
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Key Points

e We've proved correctness of a realistic GC
implementation written in Cminor

¢ One remaining technical lemma to prove

e Advances on our previous work:
— Uses true machine arithmetic
— Supports arbitrary record sizes
— Supports precise pointer information

e Next steps: Proof of generational collector

e Next steps: Must ensure that mutator keeps to
its part of the GC contract ...

R

Conclusions

e Assurance of programs written in high-level
languages requires assurance of underlying run-
time systems

e Results described today:
¢ A verified implementation of realistic GC

¢ A general verification infrastructure for GCs
and other code that manipulates the heap

e Essential use of tactics to automate reasoning

¢ An enabling step towards the use of high-level
languages for high-assurance applications.




