Run-time Systems for
High-Assurance Systems
Programming

Mark P. Jones, Andrew McCreight,

and Andrew Tolmach Port]anﬁjN §£§£‘?
- | Portlanﬂ I§;[R£SlltTey
Vision

¢ A tool-chain for developing robust, reliable, and
secure systems software that spans the full range
of concerns:

- From high-level analysis and verification

- To low-level, performance-sensitive
implementation




Focus: Systems Software
Examples: Operating system kernels, Hypervisors,
VMMs, Device Drivers, etc...

* Essential: key components in any computer
system

e Critical: failures can compromise higher-level,
“secure” application layers

Current Practices

Industry practices for developing systems software
typically rely on fairly low-level languages and tools

(e.g., C)
+ Enables programmers to address low-level issues
& performance concerns

- Harder to reason formally about the code




Portland State

UNIVERSITY

Using a Functional Language ...

e Functional languages can provide:
— Improved productivity
- Memory safety
- Type safety
- Formal semantics
— Connections to proof assistants, etc...

e But can you build systems software in a
functional language?

Portland State

UNIVERSITY

Welcome to our House

= House is a proof- . T
of-concept OS, i
written in Haskell: e TR =
* Kernel + basic e A sl
drivers (~5KLOC) 3 AR oo, it K
= Network driver Terutral 1
(~2KLOC) e T
= GUI (~6KLOC)
= Apps e et

= User programs

A starting point for

the Galois HaLVM

ce:
—~Osker terminated

rom 3, total is 10
rom 3, total is 15
rom 3, total is 21
rom 3, total is 28
rom 3, total is 36
ust sent.

ust received 8 from

3, total is 45




L]

A Credibility Gap

 House relies on services provided by the "GHC
run-time system”:
* a general purpose software component
» currently around 35-50KLOC of C code

* Any assurance argument that we might make
about House requires a corresponding argument
about the run-time system

How to Bridge the Gap

 Reduce code size:
» Eliminate functionality that we don’t need
» Eliminate accidental/historical complexity

« Implement in a framework that supports formal
verification




Portland State

UNIVERSITY

Feasibility

Example: Garbage Collection (GC)

« A simple, verifiable GC can be written in 100-300
lines

* There are fielded, production-quality GC
implementations with good performance and
support for a rich set of language features in
2KLOC

Portland State

UNIVERSITY

HARTS

High-Assurance RTS for Haskell, Java, ...

e Design Philosophy:
e "As simple as possible”
e Modular
e Formal verification

e Services:
e Garbage collection First priority
e Concurrency

e Interfacing to untrusted languages




Memory Allocation

e Languages like C provide run-time libraries for
allocating and freeing memory

e It is notoriously difficult to use these functions
correctly:
e Freeing memory too early can result in
corruption and crashes

e Freeing memory too late can result in space
leaks and denial of service

e Memory allocation bugs are very hard to find

Garbage Collection

¢ A mechanism for reclaiming and reusing unused
memory automatically

e Many different approaches:

e Reference Counting, Mark-sweep, Stop-and-
copy, Generational, Incremental, Real-time, ...

e Programmer doesn’t free memory by hand:
e Less code to write
e Fewer memory allocation bugs




- g » Portland State

Stop-and-copy Garbage Collection

Allocate memory from a “heap”

- g » Portland State

Stop-and-copy Garbage Collection

Allocate memory from a “heap”




- g » Portland State

Stop-and-copy Garbage Collection

Allocate memory from a “heap”

- g » Portland State

Stop-and-copy Garbage Collection

Allocate memory from a “heap”




kil

Portland State

Stop-and-copy Garbage Collection

Eventually, the heap is full!

Portland State

kil

Stop-and-copy Garbage Collection

A 4

v

C

B

But we may only be using
a part of this ...

\ 4
m
I




Portland State

IIIIIIIIII

Stop-and-copy Garbage Collection

v | vilv | v | ¥
C A B E D
T
A
v
B
Everything else is v Y
“garbage” C D

\ 4
m
I

Stop-and-copy Garbage Collection

v | vlly | v |
C A B E D

Assume that we have a second block of memory
that we can use as a new heap

(Algorithm due to Cheney, 1970)




kil

Portland State

Stop-and-copy Garbage Collection

v

v

| v

| Y

C

B

E

D

A

Copy A into the new heap

Portland State

kil

Stop-and-copy Garbage Collection

v

| v

B

E

D

A

Scavenge A (copy B into the new heap)




- Portland State

Stop-and-copy Garbage Collection

v |
C A B E D
A
— [ v v
A B C D

Scavenge B (copy C and D into the new heap)

- Portland State

Stop-and-copy Garbage Collection

v |
C A B E D
A
— [ v v
A B C D

Scavenge C (no objects copied)




- Portland State

Stop-and-copy Garbage Collection

C A B E D
A
— [ v v v
A B C D E

Scavenge D (copy E into the new heap)

- Portland State

Stop-and-copy Garbage Collection

C A B E D
e[| v v v
A B C D E

Scavenge E (B is already in the new heap)




Portland State

IIIIIIIIII

!w

Stop-and-copy Garbage Collection

C A B E D
e[| v v v
A B C D E
ﬂk

« All live data has been copied to the new heap;
 The original data structure has been preserved;
 Unused memory reorganized in a single block.

Stop-and-copy Garbage Collection

The beginnings of a
formulation of
correctness for this GC
algorithm

110 v V| v

A B C D E

ﬂk
« All live data has been copied to the new heap;

 The original data structure has been preserved;
e Unused memory reorganized in a single block.




Garbage Collectors have Bugs Too!

 GC bugs show up regularly in public bug and
vulnerability databases

« Example: Widely used browsers (IE, Firefox,
Safari), have all suffered from JavaScript engine
GC bugs that can lead to:

e browser crashes
e denial of service attacks
» execution of arbitrary code

Where Do GC Bugs Come From?

e Errors in algorithms
— Especially for highly-concurrent algorithms

e Errors in GC implementation écus for Today|

e Errors in mutator
— Mutator must identify all roots
— Mutator must respect GC data structures

%rmalizing the contract is a critical first step




Principles for Verified GC

¢ Insist on machine-checked proofs
e Verify the actual implementation
e Amortize the cost of verification over all uses

e Engineer a re-usable framework for future
verifications of similar style

e Amortize the cost of building the framework over
multiple GCs

e Leverage existing work
— INRIA (Leroy et al)
- Yale (Shao, McCreight, et al)

Typed Garbage Collection?

e Long-standing goal: define a type system rich
enough to express a GC

— Proposals to date are complex and only
guarantee safety

e We propose a different path using general-
purpose provers (e.g. Coq, Isabelle, etc.)

e Type-based approach may still be good choice
for mutator




L]

The Compcert Framework

Formal semantics i
Cllght Code ----------------------------------------------- > Mathematlcal
model

- A certified compiler developed by T
Xavier Leroy et al. using the Coq proof

assistant
| =
| Mechanized proof that compilation
. preserves semantics |
v v
POWerPC lllllllllllllllllllllllllllllllllllllllllllllll Mathematical
assembly Formal semantics model

The Compcert Framework

Clight code

| Implemented as a pipeline with
multiple stages

PowerPC
assembly




The Compcert Framework

Formal semantics i
Cllght Code ............................................... > Mathematlcal
model
\ 4 . )
............ormal semantics »| Mathematical
model
v . —
...........ormal semantics Mathematical
model
| t —
v —
POWerPC lllllllllllllllllllllllllllllllllllllllllllllll Mathematical
assembly Formal semantics model

The Compcert Framework

Clight code Java bytecode GHC
L L .. S
v
Cminor One of the intermediate languages is called
| “Cminor”
v

- Simple, structured, weakly typed

PowerPC

assembly A good target for compiling other languages




Portland State

UNIVERSITY

The Compcert Framework

Clight code Java bytecode GHC

[ ¢ o e e e e e m— e E—  —

v
Cminor {: '''''' » GC (Memory Management Library)

. These languages require GC services!
h 4
== Our Strategy:
| e Write GC in Cminor
v e Use Cminor semantics to prove correctness
PowerPC

e Compcert backend preserves correctness

assembly

Portland State

UNIVERSITY

Stop-and-copy GC code (1)

"scanPtrField" (xp,free) : int -> int -> int

{

var x, len, hdr;

#define NULL_PTR 0

var "freep"[4]
var "toStartp"[4]
var "toEndp"[4]
var "frStartp"[4]
var "frEndp"[4]

X = int32[xp];
if (x == NULL_PTR)
return free;
hdr = int32[x - 4];
if (hdr != NULL_PTR) {
len = "numFields"(hdr) : int -> int;
"memCopy"(x - 4, free, len + 1) : int -> int -> int -> void;
int32[x] = free + 4;
int32[x - 4] = NULL_PTR;
free = free + 4 *len + 4;

"numFields" (x) : int -> int
{ return int32[x]; }

"fieldIsPointer" (x,k) : int -> int -> int
{ return int32[x+4] <= k; }

"memCopy" (src,dst,len) : int -> int -> int -> void
{vari;
i=0;
while (I <len) {
int32[dst + 4 *i] = int32[src + 4 * i];
i=i+1;
}

} frStart = int32["toStartp"];
toStart = int32["frStartp"];

}
int32[xp] = int32[x];
return free;

}

"cheneyCollect" (rootp) : int -> int {
var hdr,len,toStart,toEnd,root,free,frStart,frEnd,scan,i,isPtr;




Portland State

UNIVERSITY

Stop-and-copy GC code (2)

int32["toStartp"] = toStart;
int32["frStartp"] = frStart;
toEnd = int32["frEndp"];
frEnd = int32["toEndp"];
int32["toEndp"] = toEnd;
int32["frEndp"] = frEnd;

free = "scanPtrField"(root, toStart) : int -> int -> int;
scan = toStart;
while (scan != free) {
hdr = int32[scan];
scan = scan + 4;
len = "numFields"(hdr) : int -> int;
i=0;
while (I <len) {
isPtr = "fieldIsPointer"(hdr,i) : int -> int -> int;
if (isPtr)

free = "scanPtrField"(scan,free) : int -> int -> int;

scan = scan + 4;
i=i+1;
}
}

"cheneyAlloc"(hdr,root) : int -> int -> int

{

var free,len;

free = int32["freep"];

len = "numFields"(hdr) : int -> int;

len =len * 4;

if (len == 0)
return 0;

if (free + len + 4 >=int32["toEndp"]) {
free = "cheneyCollect"(root) : int -> int;
if (free + len + 4 >=int32["toEndp"])

return 0;

int32["freep"] = free + len + 4;
int32[free] = hdr;
return (free + 4);

Portland State

UNIVERSITY

Example: in-place list reversal

"reverse" (v) : int -> int {

var w,t;

w = 0; v

{{ loop { \
if (v == 0) w—> a | 0 b » C | —»

exit O;

t = int32[v + 4];
int32[v + 4] = w;
w = v; CaO b /~c——>
v = t; /f //

o} w v

return w;




Proving Cminor Programs

e Proving correctness of imperative pointer-based
programs is a hot research topic

o (Different from Compcert’s goal, which is about
proving compiler correctness)

e Our current direction:

e Construct proofs on a deep embedding of
the Cminor semantics in Coq

e Use separation logic to describe the heap

Shallow vs. Deep Embeddings

e In a shallow embedding, the program is
represented by a term in the prover’s logic

+ Can reason directly using full power of prover
— Hard to formalize connection with actual code

e In a deep embedding, the program is
represented as a syntactic object (AST):

+ Compcert gives operational semantics for this
already

- But reasoning requires lots of tactic support




Framework Overview

Utility libraries: Abstract machine:
32 bit integers; Cminor syntax and
modular arithmetic; semantics
etc...
Program logic: .| Separation logic:
verified verification "| reasoning about heap &
condition generator stack

Everything is implemented in the Coq proof assistant

Separation Logic

e Logic for reasoning about heaps [Reynolds,
O'Hearn, ...]
e Key predicates:
P* Q Heap is split into two disjoint parts
P holds on one part, Q on the other
X — Vv Holds on a heap containing only
address x that contains value v

¢ Neatly encapsulates complexities of reasoning
about pointer-based programming (aliasing, etc.)




Portland State

IIIIIIIIII

Example: Linked Lists

e Relating list values to in-memory representation:

Fixpoint plist (x:val) (xs:list val) :=
match xs with
| nil => I(x = null_ptr)
| (X'::ys) =>
I(x = x') * lexists v, lexists vy,
(X v) * ((x+4) > vy) * plisty ys
end.

e Separating conjunction enforces that elements are
disjoint (and hence lists are acyclic)

; # Portland State
- , _ -

Separation Logic Implementation

¢ Definitions and properties of predicates
- Commutativity, associativity, etc.

e Tactics are critical:
— Simplification
— Rearranging
— Matching




Program Logic

e Hoare-style reasoning using pre- and
post-conditions

e Similar to prog logic of [Appel Blazy 07]

e Verified verification condition generation

— Generator calculates a verification
condition (VC) for each statement

— Resulting semantics consistent with
original Cminor semantics

Verification Conditions ,.condition of

next statement

e Example: vc (x :=e) Qs initial state
=3Jv.skFe—vV
A Q(s{x:=Vv})

e Extra predicate arguments are added for
return, call, and jump

e Infrastructure provides tools for helping
to prove VCs automatically




Portland State

UNIVERSITY

Proof Example: List Reverse

Lemma reverseOk : fdefOk reversePre reversePost reverseDef.

Pre-condition: Post-condition:

Definition Definition
reversePre is args: = reversePost is result : =
lexists i, !(args=i::nil) * plist result (rev is).

plist i is.

Loop Invariant:
Definition inv is (s:cstate) :=
exists w, exists v,
(VFEQV (xv :: xw :: xt :: nil) ((xw,w) :: (xv, v) :: nil) (cvfOf s) /\
(lexists vl, lexists wl,
plist v vl * plist w wl * I(rev vl ++ wl = rev is)) (cmemOf s)).

Portland State

UNIVERSITY

Proof Details:

o Maln proof: n 45 Ilnes lflg:?g?ggi:;rersgf’r_:e. intros is args m sp Hp. sle Hp. subst args.

split. reflexivity.
intros vf VFE. simpl in VFE.
vcSteps.

Lemma reverseOk : fdefOk PO reverseTy reversePre reversePost
reverseDef.

exists (inv is). split.

(* establish loop invariant *)

L4 Comparable Iength to l;{lg:ég ;)E‘l’l_ptr exists x. split; auto.

exists is. exists (@nil val).
simpl. s

our proof of the same

(* loop entry *)
clear VFE Hp

result using a ShaIIOW_ éggizg.s. destruct s'. destruct H as [w [v0 [VFE Hpl]ll.

branchStep.

embedding of Cminor 0 s s

subst v0. sle Hp.

semantics R O e i o

apply Hp.

(* false case: do loop body *)

sle Hp.

srewrite plist_non_null in Hp; [sle Hp | auto].
vecSteps.

D
(* bottom of loop body: re-establish invariant *)
rewrite HO in H; simpl in H; rewrite app_ass in H; simpl in H.

o Prog ram Ioglc and :;lf:tg xi,;xﬂ“.’-axists x3. split.
vfEqvSolver.

Separation logic tactics =i ar’ = =

searchMatch.

k th bl (* undefined case : impossible *)
Make this possibIe. R s e
ed.




Portland State

UNIVERSITY

Infrastructure Line Counts

Utility libraries:

[ ~3,300 }

Abstract machine:

~5,750

AN

Separation logic

Program logic:

{ ~1,550 }

~4,100

GarbageCoIIector:{ 5,000 J

Portland State

UNIVERSITY

Stop-and-copy GC Proof

Lemma cheneyCollectorOk :

fdefOk cheneyCollectorPre cheneyCo

Pre-condition

e

Post-condition

Definition ?

llectorPost cheneyCollectorDef.




R

Key Points

e We've proved correctness of a realistic GC
implementation written in Cminor

¢ One remaining technical lemma to prove

e Advances on our previous work:
— Uses true machine arithmetic
— Supports arbitrary record sizes
— Supports precise pointer information

e Next steps: Proof of generational collector

e Next steps: Must ensure that mutator keeps to
its part of the GC contract ...

R

Conclusions

e Assurance of programs written in high-level
languages requires assurance of underlying run-
time systems

e Results described today:
¢ A verified implementation of realistic GC

¢ A general verification infrastructure for GCs
and other code that manipulates the heap

e Essential use of tactics to automate reasoning

¢ An enabling step towards the use of high-level
languages for high-assurance applications.




