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Vision

• A tool-chain for developing robust, reliable, and
secure systems software that spans the full range
of concerns:

– From high-level analysis and verification

– To low-level, performance-sensitive
implementation



Focus: Systems Software

Examples: Operating system kernels, Hypervisors,
VMMs, Device Drivers, etc…

• Essential: key components in any computer
system

• Critical: failures can compromise higher-level,
“secure” application layers

Current Practices

Industry practices for developing systems software
typically rely on fairly low-level languages and tools
(e.g., C)

+ Enables programmers to address low-level issues
& performance concerns

- Harder to reason formally about the code



Using a Functional Language …

• Functional languages can provide:

– Improved productivity

– Memory safety

– Type safety

– Formal semantics

– Connections to proof assistants, etc…

• But can you build systems software in a
functional language?

Welcome to our House
! House is a proof-

of-concept OS,
written in Haskell:

! Kernel + basic
drivers (~5KLOC)

! Network driver
(~2KLOC)

! GUI (~6KLOC)

! Apps

! User programs

! A starting point for
the Galois HaLVM



• House relies on services provided by the “GHC

run-time system”:

• a general purpose software component

• currently around 35-50KLOC of C code

• Any assurance argument that we might make

about House requires a corresponding argument

about the run-time system

A Credibility Gap

• Reduce code size:

• Eliminate functionality that we don’t need

• Eliminate accidental/historical complexity

• Implement in a framework that supports formal
verification

How to Bridge the Gap



Example: Garbage Collection (GC)

• A simple, verifiable GC can be written in 100-300
lines

• There are fielded, production-quality GC
implementations with good performance and
support for a rich set of language features in
2KLOC

Feasibility

High-Assurance RTS for Haskell, Java, …

• Design Philosophy:

• “As simple as possible”

• Modular

• Formal verification

• Services:

• Garbage collection

• Concurrency

• Interfacing to untrusted languages

HARTS

First priority



• Languages like C provide run-time libraries for
allocating and freeing memory

• It is notoriously difficult to use these functions
correctly:

• Freeing memory too early can result in
corruption and crashes

• Freeing memory too late can result in space
leaks and denial of service

• Memory allocation bugs are very hard to find

Memory Allocation

• A mechanism for reclaiming and reusing unused
memory automatically

• Many different approaches:

• Reference Counting, Mark-sweep, Stop-and-
copy, Generational, Incremental, Real-time, …

• Programmer doesn’t free memory by hand:

• Less code to write

• Fewer memory allocation bugs

Garbage Collection



Allocate memory from a “heap”

Stop-and-copy Garbage Collection

Allocate memory from a “heap”

Stop-and-copy Garbage Collection



Allocate memory from a “heap”

Stop-and-copy Garbage Collection

Allocate memory from a “heap”

Stop-and-copy Garbage Collection



Eventually, the heap is full!

Stop-and-copy Garbage Collection

But we may only be using
a part of this …

Stop-and-copy Garbage Collection
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Everything else is
“garbage”

Stop-and-copy Garbage Collection

A

B

C D

E

C A B E D

Assume that we have a second block of memory
that we can use as a new heap

(Algorithm due to Cheney, 1970)

Stop-and-copy Garbage Collection

C A B E D



Stop-and-copy Garbage Collection

C

A

B E DA

Copy A into the new heap

Stop-and-copy Garbage Collection

C

A B

E DA B

Scavenge A (copy B into the new heap)



Stop-and-copy Garbage Collection

CA B

E

D

A BC D

Scavenge B (copy C and D into the new heap)

Stop-and-copy Garbage Collection

CA B

E

D

A BC D

Scavenge C (no objects copied)



Stop-and-copy Garbage Collection

CA B ED

A BC DE

Scavenge D (copy E into the new heap)

Stop-and-copy Garbage Collection

CA B ED

A BC DE

Scavenge E (B is already in the new heap)



• All live data has been copied to the new heap;

• The original data structure has been preserved;

• Unused memory reorganized in a single block.

Stop-and-copy Garbage Collection

A BC DE

CA B ED

• All live data has been copied to the new heap;

• The original data structure has been preserved;

• Unused memory reorganized in a single block.

Stop-and-copy Garbage Collection

CA B ED

The beginnings of a
formulation of

correctness for this GC
algorithm



• GC bugs show up regularly in public bug and
vulnerability databases

• Example: Widely used browsers (IE, Firefox,
Safari), have all suffered from JavaScript engine
GC bugs that can lead to:

• browser crashes

• denial of service attacks

• execution of arbitrary code

Garbage Collectors have Bugs Too!

• Errors in algorithms

– Especially for highly-concurrent algorithms

• Errors in GC implementation

• Errors in mutator

– Mutator must identify all roots

– Mutator must respect GC data structures

Where Do GC Bugs Come From?

Focus for Today

Formalizing the contract is a critical first step



• Insist on machine-checked proofs

• Verify the actual implementation

• Amortize the cost of verification over all uses

• Engineer a re-usable framework for future
verifications of similar style

• Amortize the cost of building the framework over
multiple GCs

• Leverage existing work

– INRIA (Leroy et al)

– Yale (Shao, McCreight, et al)

Principles for Verified GC

• Long-standing goal: define a type system rich
enough to express a GC

– Proposals to date are complex and only
guarantee safety

• We propose a different path using general-
purpose provers (e.g. Coq, Isabelle, etc.)

• Type-based approach may still be good choice
for mutator

Typed Garbage Collection?



A certified compiler developed by
Xavier Leroy et al. using the Coq proof

assistant

The Compcert Framework

PowerPC
assembly

Clight code
Mathematical

model

Formal semantics

Mathematical
modelFormal semantics

!
Mechanized proof that compilation

preserves semantics

The Compcert Framework

Clight code

PowerPC
assembly

---

---

Implemented as a pipeline with
multiple stages



The Compcert Framework

Clight code
Mathematical

model

Formal semantics

PowerPC
assembly

Mathematical
modelFormal semantics

!
---

Mathematical
model

Formal semantics

---
Mathematical

model

Formal semantics

!

!

The Compcert Framework

Clight code

PowerPC
assembly

Cminor

---

Java bytecode

One of the intermediate languages is called
“Cminor”

Simple, structured, weakly typed

A good target for compiling other languages

GHC



The Compcert Framework

Clight code

PowerPC
assembly

Cminor

---

Java bytecode

These languages require GC services!

GHC

Our Strategy:

• Write GC in Cminor

• Use Cminor semantics to prove correctness

• Compcert backend preserves correctness

GC (Memory Management Library)

Stop-and-copy GC code (1)
#define NULL_PTR 0

var "freep"[4]

var "toStartp"[4]

var "toEndp"[4]

var "frStartp"[4]

var "frEndp"[4]

"numFields" (x) : int -> int

{ return int32[x]; }

"fieldIsPointer" (x,k) : int -> int -> int

{ return int32[x+4] <= k; }

"memCopy" (src,dst,len) : int -> int -> int -> void

{ var i;

  i = 0;

  while (I < len) {  
     int32[dst + 4 * i] = int32[src + 4 * i];

     i = i + 1;

  }

 }

"scanPtrField" (xp,free) : int -> int -> int 

{

    var x, len, hdr;

    x = int32[xp];

    if (x == NULL_PTR) 

      return free;

    hdr = int32[x - 4];

    if (hdr != NULL_PTR) {

      len = "numFields"(hdr) : int -> int;

      "memCopy"(x - 4, free, len + 1) : int -> int -> int -> void;

      int32[x] = free + 4;

      int32[x - 4] = NULL_PTR;

      free = free + 4 * len + 4;

    }

    int32[xp] = int32[x];

    return free;

}

"cheneyCollect" (rootp) : int -> int  {

    var hdr,len,toStart,toEnd,root,free,frStart,frEnd,scan,i,isPtr;

    frStart = int32["toStartp"];

    toStart = int32["frStartp"];



"cheneyAlloc"(hdr,root) : int -> int -> int

{

    var free,len;

    free = int32["freep"];

    len = "numFields"(hdr) : int -> int;

    len = len * 4;

    if (len == 0) 

      return 0;

    if (free + len + 4 >= int32["toEndp"]) {

      free = "cheneyCollect"(root) : int -> int;

      if (free + len + 4 >= int32["toEndp"]) 

        return 0;

    }

    int32["freep"] = free + len + 4;

    int32[free] = hdr;

    return (free + 4);

}

    int32["toStartp"] = toStart;

    int32["frStartp"] = frStart;

    toEnd = int32["frEndp"];

    frEnd = int32["toEndp"];

    int32["toEndp"] = toEnd;

    int32["frEndp"] = frEnd;

    free = "scanPtrField"(root, toStart) : int -> int -> int;

    scan = toStart;

    while (scan != free) { 

        hdr = int32[scan];

        scan = scan + 4;

        len = "numFields"(hdr) : int -> int;

        i = 0;

       while (I < len) { 

             isPtr = "fieldIsPointer"(hdr,i) : int -> int -> int;

             if (isPtr) 

               free = "scanPtrField"(scan,free) : int -> int -> int;

             scan = scan + 4;

             i = i + 1;

       }

    }

}

Stop-and-copy GC code (2)

Example: in-place list reversal
"reverse" (v) : int -> int {

  var w,t;

  w = 0;

  {{ loop {

     if (v == 0)

       exit 0;

     t = int32[v + 4];

     int32[v + 4] = w;

     w = v;

     v = t;

  } }}

  return w;

}

w

v

v

w

a b c

a b c

0

0



• Proving correctness of imperative pointer-based
programs is a hot research topic

• (Different from Compcert’s goal, which is about
proving compiler correctness)

• Our current direction:

• Construct proofs on a deep embedding of
the Cminor semantics in Coq

• Use separation logic to describe the heap

Proving Cminor Programs

• In a shallow embedding, the program is
represented by a term in the prover’s logic

+Can reason directly using full power of prover

– Hard to formalize connection with actual code

• In a deep embedding, the program is
represented as a syntactic object (AST):

+Compcert gives operational semantics for this
already

– But reasoning requires lots of tactic support

Shallow vs. Deep Embeddings



Framework Overview

Abstract machine:
Cminor syntax and

semantics

Program logic:
verified verification
condition generator

Separation logic:
reasoning about heap &

stack

Utility libraries:
32 bit integers;

modular arithmetic;
etc…

Everything is implemented in the Coq proof assistant

• Logic for reasoning about heaps [Reynolds,
O’Hearn, …]

• Key predicates:

P * Q Heap is split into two disjoint parts

P holds on one part, Q on the other

x a v Holds on a heap containing only

address x that contains value v

• Neatly encapsulates complexities of reasoning
about pointer-based programming (aliasing, etc.)

Separation Logic



• Relating list values to in-memory representation:

Fixpoint plist (x:val) (xs:list val) :=

 match xs with

 | nil  => !(x = null_ptr)

 | (x'::ys) =>

     !(x = x') * lexists v, lexists y,

                     (x a v) * ((x+4) a y) * plist y ys

end.

• Separating conjunction enforces that elements are
disjoint (and hence lists are acyclic)

Example: Linked Lists

• Definitions and properties of predicates

–Commutativity, associativity, etc.

• Tactics are critical:

–Simplification

–Rearranging

–Matching

Separation Logic Implementation



• Hoare-style reasoning using pre- and
post-conditions

• Similar to prog logic of [Appel Blazy 07]

• Verified verification condition generation

–Generator calculates a verification
condition (VC) for each statement

–Resulting semantics consistent with
original Cminor semantics

Program Logic

• Example: vc (x := e) Q s
                         = " v. s ! e # v

     $ Q(s{x:=v})

• Extra predicate arguments are added for
return, call, and jump

• Infrastructure provides tools for helping
to prove VCs automatically

Verification Conditions precondition of
next statement

initial state



Lemma reverseOk : fdefOk reversePre reversePost reverseDef.

Proof Example: List Reverse

Pre-condition:

Definition

  reversePre is args:=

    lexists i, !(args=i::nil) *
                            plist i is.

Post-condition:

Definition

  reversePost is result :=

      plist result (rev is).

Loop Invariant:

Definition inv is (s:cstate) :=

  exists w, exists v,

    (vfEqv (xv :: xw :: xt :: nil) ((xw,w) :: (xv, v) :: nil) (cvfOf s) /\

      (lexists vl, lexists wl,

        plist v vl * plist w wl * !(rev vl ++ wl = rev is)) (cmemOf s)).

• Main proof: ~ 45 lines

• Comparable length to
our proof of the same
result using a shallow-
embedding of Cminor
semantics

• Program logic and
Separation logic tactics
make this possible.

Proof Details:



Infrastructure Line Counts

Abstract machine:
definitions and properties;
reasoning about Cminor

programs.

Program logic:
(verified)

verification
condition generator

Separation logic
reasoning about memory

Utility libraries:
32 bit integers;

modular arithmetic;
etc…

Garbage Collector: 

~3,300 ~5,750

~4,100~1,550

5,000

Lemma cheneyCollectorOk :
fdefOk cheneyCollectorPre cheneyCollectorPost cheneyCollectorDef.

Stop-and-copy GC Proof

 Definition cheneyCollectorPre objs fields cmap (rootp:addr) root C cl
    (frStart frEnd toStart toEnd:addr) (vv:list val) :=
    let objsAddrs := objs_addrs objs cl cmap in
      !(vv = (rootp:val)::nil /\
        (root = null_ptr \/ ptr_In root objs) /\
        contiguous frStart objsAddrs /\
        (Z_of_nat (AS.cardinal objsAddrs) < indexBound)%Z) **
    rootp |-> root **
    clDescrs C cmap ** gcInfo toStart toEnd frStart frEnd **

    okObjHp C cmap objs objs cl fields **
    buffer toStart (AS.cardinal objsAddrs).

Pre-condition

 Definition cheneyCollectorPost (objs:AS.t) (fields:addr->list val) cmap
    rootp root C (cl:addr->addr) (frStart frEnd toStart toEnd:addr) (v:val) :=
    lexists M, lexists phi,
      let objs' := AASetMap.map phi M in
      let cl' := seq (inv M phi) cl in
      let fields' := seq (inv M phi) fields in
      let objsAddrs := objs_addrs objs cl cmap in
      let objs'Addrs := objs_addrs objs' cl' cmap in
      let free := toStart + 4 * AS.cardinal objs'Addrs in

        !(map_inj M phi /\
          (forall x, AS.In x M -> vaReachable cmap cl fields root x) /\
          (root = null_ptr \/ ptr_In root M) /\
          AS.Subset M objs /\
          contiguous toStart objs'Addrs /\
          v = free) **
        rootp |-> fwd_ptr phi root **
        okObjHp C cmap objs' objs' cl' (fwd_objs_fields cmap cl' phi fields') **
        buffer frStart (AS.cardinal objsAddrs) **
        clDescrs C cmap ** gcInfo frStart frEnd toStart toEnd **

        buffer free (AS.cardinal objsAddrs - AS.cardinal objs'Addrs).

Post-condition

#define NULL_PTR 0

var "freep"[4]
var "toStartp"[4]
var "toEndp"[4]
var "frStartp"[4]
var "frEndp"[4]

"numFields" (x) : int -> int

{ return int32[x]; }

"fieldIsPointer" (x,k) : int -> int -> int
{ return int32[x+4] <= k; }

"memCopy" (src,dst,len) : int -> int -> int -> void
{ var i;
  i = 0;
  while (I < len) {  
     int32[dst + 4 * i] = int32[src + 4 * i];

     i = i + 1;
  }
 }

"scanPtrField" (xp,free) : int -> int -> int
{
    var x, len, hdr;

    x = int32[xp];

    if (x == NULL_PTR)
      return free;
    hdr = int32[x - 4];
    if (hdr != NULL_PTR) {
      len = "numFields"(hdr) : int -> int;
      "memCopy"(x - 4, free, len + 1) : int -> int -> int -> void;
      int32[x] = free + 4;
      int32[x - 4] = NULL_PTR;
      free = free + 4 * len + 4;
    }

    int32[xp] = int32[x];
    return free;
}

"cheneyCollect" (rootp) : int -> int  {
    var hdr,len,toStart,toEnd,root,free,frStart,frEnd,scan,i,isPtr;

    frStart = int32["toStartp"];
    toStart = int32["frStartp"];

    int32["toStartp"] = toStart;
    int32["frStartp"] = frStart;
    toEnd = int32["frEndp"];
    frEnd = int32["toEndp"];
    int32["toEndp"] = toEnd;
    int32["frEndp"] = frEnd;

    free = "scanPtrField"(root, toStart) : int -> int -> int;
    scan = toStart;
    while (scan != free) {

        hdr = int32[scan];
        scan = scan + 4;
        len = "numFields"(hdr) : int -> int;
        i = 0;
       while (I < len) {
             isPtr = "fieldIsPointer"(hdr,i) : int -> int -> int;
             if (isPtr)
               free = "scanPtrField"(scan,free) : int -> int -> int;
             scan = scan + 4;
             i = i + 1;

       }
    }
}

"cheneyAlloc"(hdr,root) : int -> int -> int
{
    var free,len;

    free = int32["freep"];

    len = "numFields"(hdr) : int -> int;
    len = len * 4;
    if (len == 0)
      return 0;
    if (free + len + 4 >= int32["toEndp"]) {
      free = "cheneyCollect"(root) : int -> int;
      if (free + len + 4 >= int32["toEndp"])
        return 0;
    }
    int32["freep"] = free + len + 4;

    int32[free] = hdr;
    return (free + 4);
}

Definition



• We’ve proved correctness of a realistic GC
implementation written in Cminor

• One remaining technical lemma to prove

• Advances on our previous work:

– Uses true machine arithmetic

– Supports arbitrary record sizes

– Supports precise pointer information

• Next steps: Proof of generational collector

• Next steps: Must ensure that mutator keeps to
its part of the GC contract …

Key Points

• Assurance of programs written in high-level
languages requires assurance of underlying run-
time systems

• Results described today:

• A verified implementation of realistic GC

• A general verification infrastructure for GCs
and other code that manipulates the heap

• Essential use of tactics to automate reasoning

• An enabling step towards the use of high-level
languages for high-assurance applications.

Conclusions


