
Run-time Systems for
High-Assurance Systems
Programming

Mark P. Jones, Andrew McCreight,
and Andrew Tolmach

Vision

• A tool-chain for developing robust, reliable, and
secure systems software that spans the full range
of concerns:

– From high-level analysis and verification

– To low-level, performance-sensitive
implementation

Focus: Systems Software

Examples: Operating system kernels, Hypervisors,
VMMs, Device Drivers, etc…

• Essential: key components in any computer
system

• Critical: failures can compromise higher-level,
“secure” application layers

Current Practices

Industry practices for developing systems software
typically rely on fairly low-level languages and tools
(e.g., C)

+ Enables programmers to address low-level issues
& performance concerns

- Harder to reason formally about the code

Using a Functional Language …

• Functional languages can provide:

– Improved productivity

– Memory safety

– Type safety

– Formal semantics

– Connections to proof assistants, etc…

• But can you build systems software in a
functional language?

Welcome to our House
! House is a proof-

of-concept OS,
written in Haskell:

! Kernel + basic
drivers (~5KLOC)

! Network driver
(~2KLOC)

! GUI (~6KLOC)

! Apps

! User programs

! A starting point for
the Galois HaLVM

• House relies on services provided by the “GHC

run-time system”:

• a general purpose software component

• currently around 35-50KLOC of C code

• Any assurance argument that we might make

about House requires a corresponding argument

about the run-time system

A Credibility Gap

• Reduce code size:

• Eliminate functionality that we don’t need

• Eliminate accidental/historical complexity

• Implement in a framework that supports formal
verification

How to Bridge the Gap

Example: Garbage Collection (GC)

• A simple, verifiable GC can be written in 100-300
lines

• There are fielded, production-quality GC
implementations with good performance and
support for a rich set of language features in
2KLOC

Feasibility

High-Assurance RTS for Haskell, Java, …

• Design Philosophy:

• “As simple as possible”

• Modular

• Formal verification

• Services:

• Garbage collection

• Concurrency

• Interfacing to untrusted languages

HARTS

First priority

• Languages like C provide run-time libraries for
allocating and freeing memory

• It is notoriously difficult to use these functions
correctly:

• Freeing memory too early can result in
corruption and crashes

• Freeing memory too late can result in space
leaks and denial of service

• Memory allocation bugs are very hard to find

Memory Allocation

• A mechanism for reclaiming and reusing unused
memory automatically

• Many different approaches:

• Reference Counting, Mark-sweep, Stop-and-
copy, Generational, Incremental, Real-time, …

• Programmer doesn’t free memory by hand:

• Less code to write

• Fewer memory allocation bugs

Garbage Collection

Allocate memory from a “heap”

Stop-and-copy Garbage Collection

Allocate memory from a “heap”

Stop-and-copy Garbage Collection

Allocate memory from a “heap”

Stop-and-copy Garbage Collection

Allocate memory from a “heap”

Stop-and-copy Garbage Collection

Eventually, the heap is full!

Stop-and-copy Garbage Collection

But we may only be using
a part of this …

Stop-and-copy Garbage Collection

A

A

B

B

C

C

D

D

E

E

root

Everything else is
“garbage”

Stop-and-copy Garbage Collection

A

B

C D

E

C A B E D

Assume that we have a second block of memory
that we can use as a new heap

(Algorithm due to Cheney, 1970)

Stop-and-copy Garbage Collection

C A B E D

Stop-and-copy Garbage Collection

C

A

B E DA

Copy A into the new heap

Stop-and-copy Garbage Collection

C

A B

E DA B

Scavenge A (copy B into the new heap)

Stop-and-copy Garbage Collection

CA B

E

D

A BC D

Scavenge B (copy C and D into the new heap)

Stop-and-copy Garbage Collection

CA B

E

D

A BC D

Scavenge C (no objects copied)

Stop-and-copy Garbage Collection

CA B ED

A BC DE

Scavenge D (copy E into the new heap)

Stop-and-copy Garbage Collection

CA B ED

A BC DE

Scavenge E (B is already in the new heap)

• All live data has been copied to the new heap;

• The original data structure has been preserved;

• Unused memory reorganized in a single block.

Stop-and-copy Garbage Collection

A BC DE

CA B ED

• All live data has been copied to the new heap;

• The original data structure has been preserved;

• Unused memory reorganized in a single block.

Stop-and-copy Garbage Collection

CA B ED

The beginnings of a
formulation of

correctness for this GC
algorithm

• GC bugs show up regularly in public bug and
vulnerability databases

• Example: Widely used browsers (IE, Firefox,
Safari), have all suffered from JavaScript engine
GC bugs that can lead to:

• browser crashes

• denial of service attacks

• execution of arbitrary code

Garbage Collectors have Bugs Too!

• Errors in algorithms

– Especially for highly-concurrent algorithms

• Errors in GC implementation

• Errors in mutator

– Mutator must identify all roots

– Mutator must respect GC data structures

Where Do GC Bugs Come From?

Focus for Today

Formalizing the contract is a critical first step

• Insist on machine-checked proofs

• Verify the actual implementation

• Amortize the cost of verification over all uses

• Engineer a re-usable framework for future
verifications of similar style

• Amortize the cost of building the framework over
multiple GCs

• Leverage existing work

– INRIA (Leroy et al)

– Yale (Shao, McCreight, et al)

Principles for Verified GC

• Long-standing goal: define a type system rich
enough to express a GC

– Proposals to date are complex and only
guarantee safety

• We propose a different path using general-
purpose provers (e.g. Coq, Isabelle, etc.)

• Type-based approach may still be good choice
for mutator

Typed Garbage Collection?

A certified compiler developed by
Xavier Leroy et al. using the Coq proof

assistant

The Compcert Framework

PowerPC
assembly

Clight code
Mathematical

model

Formal semantics

Mathematical
modelFormal semantics

!
Mechanized proof that compilation

preserves semantics

The Compcert Framework

Clight code

PowerPC
assembly

Implemented as a pipeline with
multiple stages

The Compcert Framework

Clight code
Mathematical

model

Formal semantics

PowerPC
assembly

Mathematical
modelFormal semantics

!

Mathematical
model

Formal semantics

Mathematical

model

Formal semantics

!

!

The Compcert Framework

Clight code

PowerPC
assembly

Cminor

Java bytecode

One of the intermediate languages is called
“Cminor”

Simple, structured, weakly typed

A good target for compiling other languages

GHC

The Compcert Framework

Clight code

PowerPC
assembly

Cminor

Java bytecode

These languages require GC services!

GHC

Our Strategy:

• Write GC in Cminor

• Use Cminor semantics to prove correctness

• Compcert backend preserves correctness

GC (Memory Management Library)

Stop-and-copy GC code (1)
#define NULL_PTR 0

var "freep"[4]

var "toStartp"[4]

var "toEndp"[4]

var "frStartp"[4]

var "frEndp"[4]

"numFields" (x) : int -> int

{ return int32[x]; }

"fieldIsPointer" (x,k) : int -> int -> int

{ return int32[x+4] <= k; }

"memCopy" (src,dst,len) : int -> int -> int -> void

{ var i;

 i = 0;

 while (I < len) {
 int32[dst + 4 * i] = int32[src + 4 * i];

 i = i + 1;

 }

 }

"scanPtrField" (xp,free) : int -> int -> int

{

 var x, len, hdr;

 x = int32[xp];

 if (x == NULL_PTR)

 return free;

 hdr = int32[x - 4];

 if (hdr != NULL_PTR) {

 len = "numFields"(hdr) : int -> int;

 "memCopy"(x - 4, free, len + 1) : int -> int -> int -> void;

 int32[x] = free + 4;

 int32[x - 4] = NULL_PTR;

 free = free + 4 * len + 4;

 }

 int32[xp] = int32[x];

 return free;

}

"cheneyCollect" (rootp) : int -> int {

 var hdr,len,toStart,toEnd,root,free,frStart,frEnd,scan,i,isPtr;

 frStart = int32["toStartp"];

 toStart = int32["frStartp"];

"cheneyAlloc"(hdr,root) : int -> int -> int

{

 var free,len;

 free = int32["freep"];

 len = "numFields"(hdr) : int -> int;

 len = len * 4;

 if (len == 0)

 return 0;

 if (free + len + 4 >= int32["toEndp"]) {

 free = "cheneyCollect"(root) : int -> int;

 if (free + len + 4 >= int32["toEndp"])

 return 0;

 }

 int32["freep"] = free + len + 4;

 int32[free] = hdr;

 return (free + 4);

}

 int32["toStartp"] = toStart;

 int32["frStartp"] = frStart;

 toEnd = int32["frEndp"];

 frEnd = int32["toEndp"];

 int32["toEndp"] = toEnd;

 int32["frEndp"] = frEnd;

 free = "scanPtrField"(root, toStart) : int -> int -> int;

 scan = toStart;

 while (scan != free) {

 hdr = int32[scan];

 scan = scan + 4;

 len = "numFields"(hdr) : int -> int;

 i = 0;

 while (I < len) {

 isPtr = "fieldIsPointer"(hdr,i) : int -> int -> int;

 if (isPtr)

 free = "scanPtrField"(scan,free) : int -> int -> int;

 scan = scan + 4;

 i = i + 1;

 }

 }

}

Stop-and-copy GC code (2)

Example: in-place list reversal
"reverse" (v) : int -> int {

 var w,t;

 w = 0;

 {{ loop {

 if (v == 0)

 exit 0;

 t = int32[v + 4];

 int32[v + 4] = w;

 w = v;

 v = t;

 } }}

 return w;

}

w

v

v

w

a b c

a b c

0

0

• Proving correctness of imperative pointer-based
programs is a hot research topic

• (Different from Compcert’s goal, which is about
proving compiler correctness)

• Our current direction:

• Construct proofs on a deep embedding of
the Cminor semantics in Coq

• Use separation logic to describe the heap

Proving Cminor Programs

• In a shallow embedding, the program is
represented by a term in the prover’s logic

+Can reason directly using full power of prover

– Hard to formalize connection with actual code

• In a deep embedding, the program is
represented as a syntactic object (AST):

+Compcert gives operational semantics for this
already

– But reasoning requires lots of tactic support

Shallow vs. Deep Embeddings

Framework Overview

Abstract machine:
Cminor syntax and

semantics

Program logic:
verified verification
condition generator

Separation logic:
reasoning about heap &

stack

Utility libraries:
32 bit integers;

modular arithmetic;
etc…

Everything is implemented in the Coq proof assistant

• Logic for reasoning about heaps [Reynolds,
O’Hearn, …]

• Key predicates:

P * Q Heap is split into two disjoint parts

P holds on one part, Q on the other

x a v Holds on a heap containing only

address x that contains value v

• Neatly encapsulates complexities of reasoning
about pointer-based programming (aliasing, etc.)

Separation Logic

• Relating list values to in-memory representation:

Fixpoint plist (x:val) (xs:list val) :=

 match xs with

 | nil => !(x = null_ptr)

 | (x'::ys) =>

 !(x = x') * lexists v, lexists y,

 (x a v) * ((x+4) a y) * plist y ys

end.

• Separating conjunction enforces that elements are
disjoint (and hence lists are acyclic)

Example: Linked Lists

• Definitions and properties of predicates

–Commutativity, associativity, etc.

• Tactics are critical:

–Simplification

–Rearranging

–Matching

Separation Logic Implementation

• Hoare-style reasoning using pre- and
post-conditions

• Similar to prog logic of [Appel Blazy 07]

• Verified verification condition generation

–Generator calculates a verification
condition (VC) for each statement

–Resulting semantics consistent with
original Cminor semantics

Program Logic

• Example: vc (x := e) Q s
 = " v. s ! e # v

 $ Q(s{x:=v})

• Extra predicate arguments are added for
return, call, and jump

• Infrastructure provides tools for helping
to prove VCs automatically

Verification Conditions precondition of
next statement

initial state

Lemma reverseOk : fdefOk reversePre reversePost reverseDef.

Proof Example: List Reverse

Pre-condition:

Definition

 reversePre is args:=

 lexists i, !(args=i::nil) *
 plist i is.

Post-condition:

Definition

 reversePost is result :=

 plist result (rev is).

Loop Invariant:

Definition inv is (s:cstate) :=

 exists w, exists v,

 (vfEqv (xv :: xw :: xt :: nil) ((xw,w) :: (xv, v) :: nil) (cvfOf s) /\

 (lexists vl, lexists wl,

 plist v vl * plist w wl * !(rev vl ++ wl = rev is)) (cmemOf s)).

• Main proof: ~ 45 lines

• Comparable length to
our proof of the same
result using a shallow-
embedding of Cminor
semantics

• Program logic and
Separation logic tactics
make this possible.

Proof Details:

Infrastructure Line Counts

Abstract machine:
definitions and properties;
reasoning about Cminor

programs.

Program logic:
(verified)

verification
condition generator

Separation logic
reasoning about memory

Utility libraries:
32 bit integers;

modular arithmetic;
etc…

Garbage Collector:

~3,300 ~5,750

~4,100~1,550

5,000

Lemma cheneyCollectorOk :
fdefOk cheneyCollectorPre cheneyCollectorPost cheneyCollectorDef.

Stop-and-copy GC Proof

 Definition cheneyCollectorPre objs fields cmap (rootp:addr) root C cl
 (frStart frEnd toStart toEnd:addr) (vv:list val) :=
 let objsAddrs := objs_addrs objs cl cmap in
 !(vv = (rootp:val)::nil /\
 (root = null_ptr \/ ptr_In root objs) /\
 contiguous frStart objsAddrs /\
 (Z_of_nat (AS.cardinal objsAddrs) < indexBound)%Z) **
 rootp |-> root **
 clDescrs C cmap ** gcInfo toStart toEnd frStart frEnd **

 okObjHp C cmap objs objs cl fields **
 buffer toStart (AS.cardinal objsAddrs).

Pre-condition

 Definition cheneyCollectorPost (objs:AS.t) (fields:addr->list val) cmap
 rootp root C (cl:addr->addr) (frStart frEnd toStart toEnd:addr) (v:val) :=
 lexists M, lexists phi,
 let objs' := AASetMap.map phi M in
 let cl' := seq (inv M phi) cl in
 let fields' := seq (inv M phi) fields in
 let objsAddrs := objs_addrs objs cl cmap in
 let objs'Addrs := objs_addrs objs' cl' cmap in
 let free := toStart + 4 * AS.cardinal objs'Addrs in

 !(map_inj M phi /\
 (forall x, AS.In x M -> vaReachable cmap cl fields root x) /\
 (root = null_ptr \/ ptr_In root M) /\
 AS.Subset M objs /\
 contiguous toStart objs'Addrs /\
 v = free) **
 rootp |-> fwd_ptr phi root **
 okObjHp C cmap objs' objs' cl' (fwd_objs_fields cmap cl' phi fields') **
 buffer frStart (AS.cardinal objsAddrs) **
 clDescrs C cmap ** gcInfo frStart frEnd toStart toEnd **

 buffer free (AS.cardinal objsAddrs - AS.cardinal objs'Addrs).

Post-condition

#define NULL_PTR 0

var "freep"[4]
var "toStartp"[4]
var "toEndp"[4]
var "frStartp"[4]
var "frEndp"[4]

"numFields" (x) : int -> int

{ return int32[x]; }

"fieldIsPointer" (x,k) : int -> int -> int
{ return int32[x+4] <= k; }

"memCopy" (src,dst,len) : int -> int -> int -> void
{ var i;
 i = 0;
 while (I < len) {
 int32[dst + 4 * i] = int32[src + 4 * i];

 i = i + 1;
 }
 }

"scanPtrField" (xp,free) : int -> int -> int
{
 var x, len, hdr;

 x = int32[xp];

 if (x == NULL_PTR)
 return free;
 hdr = int32[x - 4];
 if (hdr != NULL_PTR) {
 len = "numFields"(hdr) : int -> int;
 "memCopy"(x - 4, free, len + 1) : int -> int -> int -> void;
 int32[x] = free + 4;
 int32[x - 4] = NULL_PTR;
 free = free + 4 * len + 4;
 }

 int32[xp] = int32[x];
 return free;
}

"cheneyCollect" (rootp) : int -> int {
 var hdr,len,toStart,toEnd,root,free,frStart,frEnd,scan,i,isPtr;

 frStart = int32["toStartp"];
 toStart = int32["frStartp"];

 int32["toStartp"] = toStart;
 int32["frStartp"] = frStart;
 toEnd = int32["frEndp"];
 frEnd = int32["toEndp"];
 int32["toEndp"] = toEnd;
 int32["frEndp"] = frEnd;

 free = "scanPtrField"(root, toStart) : int -> int -> int;
 scan = toStart;
 while (scan != free) {

 hdr = int32[scan];
 scan = scan + 4;
 len = "numFields"(hdr) : int -> int;
 i = 0;
 while (I < len) {
 isPtr = "fieldIsPointer"(hdr,i) : int -> int -> int;
 if (isPtr)
 free = "scanPtrField"(scan,free) : int -> int -> int;
 scan = scan + 4;
 i = i + 1;

 }
 }
}

"cheneyAlloc"(hdr,root) : int -> int -> int
{
 var free,len;

 free = int32["freep"];

 len = "numFields"(hdr) : int -> int;
 len = len * 4;
 if (len == 0)
 return 0;
 if (free + len + 4 >= int32["toEndp"]) {
 free = "cheneyCollect"(root) : int -> int;
 if (free + len + 4 >= int32["toEndp"])
 return 0;
 }
 int32["freep"] = free + len + 4;

 int32[free] = hdr;
 return (free + 4);
}

Definition

• We’ve proved correctness of a realistic GC
implementation written in Cminor

• One remaining technical lemma to prove

• Advances on our previous work:

– Uses true machine arithmetic

– Supports arbitrary record sizes

– Supports precise pointer information

• Next steps: Proof of generational collector

• Next steps: Must ensure that mutator keeps to
its part of the GC contract …

Key Points

• Assurance of programs written in high-level
languages requires assurance of underlying run-
time systems

• Results described today:

• A verified implementation of realistic GC

• A general verification infrastructure for GCs
and other code that manipulates the heap

• Essential use of tactics to automate reasoning

• An enabling step towards the use of high-level
languages for high-assurance applications.

Conclusions

