
SPARK Language and Toolset:
an intensive overview

Rod Chapman
Praxis High Integrity Systems

Copyright © Praxis HIS - 2006 Slide 1

Agenda

• SPARK – Rationale, Goals and
Language

• Coffee

• SPARK Design, Verification and
Security Topics

Copyright © Praxis HIS - 2006 Slide 2

Agenda

• SPARK – Rationale, Goals and
Language

• Coffee

• SPARK Design, Verification and
Security Topics

Copyright © Praxis HIS - 2006 Slide 3

SPARK Rationale, Goals and
Language

• Mini-Agenda
– High-Integrity Software and

Correctness by Construction
– Static Verification – Goals
– The catch…
– SPARK is…SPARK isn’t…
– A little history…
– SPARK language – subset and

contracts

Copyright © Praxis HIS - 2006 Slide 4

High-Integrity Software

• Characteristics:
– Zero tolerance of defects in-the-field

• Potential for catastrophic loss

– Presence of a regulator and/or legal
liability

– Need to generate evidence of fitness-for-
purpose before first deployment

• “Patch it later” is not possible!
• This is totally different from systems which

can evolve ultra-reliability over many years
and upgrades.

Copyright © Praxis HIS - 2006 Slide 5

So what is Correctness-by-
Construction (CbyC)?

• Two central principles.

• Prevent defect introduction
throughout the lifecycle.

• Detect and remove defects as soon
as possible after their introduction.

• Easy huh?!?

Copyright © Praxis HIS - 2006 Slide 6

CbyC Characteristics

• A development approach
characterized by:
– Use of static verification (SV) to prevent defects

at all stages.

– Small, verifiable design steps.

– Appropriate use of formality.

– “Right tools and notations for the job” approach.

– Generation of certification/evaluation evidence as
a side-effect of the development process. E.g.
for a security evalution.

Copyright © Praxis HIS - 2006 Slide 7

A Note on Testing…

• So why not just “test it to death…”?
• Program state space is vast. Testing only

ever touches a tiny fraction of the paths and
inputs.

• Statistics: to claim a reliability of N, how
much testing to you need to do?

• Quiz: commercial aircraft aim for 1 failure in
109 flying hours. 109 hours is…?

• How much testing are you gonna do?!?
• Are you willing to stand up in court and say

this?

Copyright © Praxis HIS - 2006 Slide 8

Static Verification

• Static Verification (SV)…
– Verification of system properties

based on analysis of design
artefacts (e.g. source code),
without observation or “testing” of
the running system.

• Prevent mistakes
• Discover mistakes sooner rather than

later (e.g. in testing!)

Copyright © Praxis HIS - 2006 Slide 9

Static Verification Goals

• Ideally, we would like SV to deliver
analyses which are:
– Deep

(tells you something useful…)
– Sound

(with no false-negatives…)
– Fast

(tells you it now…)
– Complete

(with as few false-positives as possible…)
– Modular and Constructive

(and works on incomplete programs.)

Copyright © Praxis HIS - 2006 Slide 10

Static Verification – the Catch…

• There’s a big catch…

• Our ability to deliver SV critically
depends on the language that is
being analysed.

• Most languages were not designed
with static verification as a primary
design goal. It shows!

Copyright © Praxis HIS - 2006 Slide 11

Static Verification – the Catch…

• With contemporary unsubsetted
languages, you just can’t deliver all 5
goals…
– Some interesting problems are

NP-Hard or just undecideable…
– Ambiguity in language definition

hinders out ability to reason, or just
leads to unsoundness.

Copyright © Praxis HIS - 2006 Slide 12

Aside: The irony of language
subsets and their analysis

• To gain market share, most tools
have to analyse the “whole
language”, or (worse…) a set of
dialects of a language.
– e.g. ISO 1990 C, or C “as implemented” by

compilers X, Y and Z…

• But everyone uses a subset!
• Has your project got a coding

standard?
• Does it say “you must use every

language feature” ?!?

Copyright © Praxis HIS - 2006 Slide 13

Ambiguity?

• SV is kind of like asking questions:
– “What does this program mean?”
Or…more specifically…
– “Does my program have property

X?” (e.g. “no buffer overflows…”)
• We want only one answer!
• A tool that response “Don’t know…”

isn’t much good.
• A tool that just silently gives you the

wrong answer is dangerous!

Copyright © Praxis HIS - 2006 Slide 14

Why (lack of) ambiguity is crucial

• The Standard definitions of all common
unsubsetted programming languages are
ambiguous.
– E.g. unspecified and undefined behaviours in C
– E.g. implementation-dependent and

implementation-defined behaviours in Ada.
• The Standards are important, because

that’s what the compilers implement.
• Ambiguity is terrible curse from the point of

view of a verification tool, since it impacts
soundness and completeness.

• Here is a small example:

Copyright © Praxis HIS - 2006 Slide 15

#include “nasty test case”
#include "stdio.h"
static int d;

int f(int x)
{

d = 5;
return (x + 1);

}

int main (int argc, char **argv)
{

int y;
int a[4] = {1, 2, 3, 4};

d = 2;
y = a[d] + f (5);
printf ("Value of y is %d\n", y);
return 0;

}

Copyright © Praxis HIS - 2006 Slide 16

Here are a couple of clues…
#include "stdio.h"
static int d;

int f(int x)
{

d = 5; /* Side effect */
return (x + 1);

}

int main (int argc, char **argv)
{

int y;
int a[4] = {1, 2, 3, 4};

d = 2;
y = a[d] + f (5); /* Evaluation order dependency! */
printf ("Value of y is %d\n", y);
return 0;

}

Copyright © Praxis HIS - 2006 Slide 17

#include “nasty test case”
• What does this program mean?
• If left-to-right evaluation order, then

Value of y is 9

• If right-to-left, then there’s a buffer overflow, so
behaviour is undefined.
– GNAT Pro 3.16a (gcc 2.8.1):

Value of y is 4198647

– Microsoft Visual C 6.0:
Value of y is 4198748

• Even knowing which compiler you are using doesn’t
help!

• What should a static analysis tool do?

Copyright © Praxis HIS - 2006 Slide 18

SPARK…

• SPARK is…
– A programming language designed

to deliver SV that really is deep,
sound, as complete as possible,
fast, constructive, and modular.

– A programming language with an
unambiguous semantics.

– A design philosophy for high-
integrity software.

Copyright © Praxis HIS - 2006 Slide 19

SPARK…

• SPARK is…
– A subset of Ada…
– A superset of Ada…
– A totally distinct language in its

own right…
– “Eiffel on steroids…”

• All of the above!

Copyright © Praxis HIS - 2006 Slide 20

What SPARK is NOT

• SPARK is not…
– “just a subset” of Ada…
– A “code scanning” or “bug finding”

style static analysis tool…
– Suitable for retrospective use on

existing code…

Copyright © Praxis HIS - 2006 Slide 21

Aside: some history

• There has been a significant growth
in interest in static verification
recently…

• This leads people to think that
SPARK is “new”…

• Far from it…we’ve been in this game
for a long time…

Copyright © Praxis HIS - 2006 Slide 22

History

• Mid-1980s
– UK Military starts using

retrospective SV to assess aircraft
software.
• Rapid discovery that

retrospective analysis is limited.
– Program Validation Limited (PVL)

founded
• SPADE Pascal language and

tools

Copyright © Praxis HIS - 2006 Slide 23

History

• Late-1980s
– SPARK83 designed. Based on

Ada83. (Modula-2 was only other
candidate base language…)

• 1990 – first big industrial project –
EuroFighter. Still going!

• Early 1990s – attempt to design
“SPADE C”, based on ISO C90.
Failed!

Copyright © Praxis HIS - 2006 Slide 24

History

• 1995 – Praxis acquires PVL.
• 1997 – SPARK95 – based on Ada95

– a much bigger language.
• 2002 – More language growth, e.g

OO stuff from Ada95.
• 2003 – RavenSPARK – “SPARK with

tasking” based on Ada95 Ravenscar
Profile

Copyright © Praxis HIS - 2006 Slide 25

SPARK Design Goals…

• “Design goals…hmmm…yes….you should
definitely have some!”
– Guy L Steele Jr (ACM SIGPLAN PLDI

1994)

• The design goals of SPARK were initially
laid down in the mid-1980s.

• The language and tools have grown
significantly since then, but the goals have
remained the same.

Copyright © Praxis HIS - 2006 Slide 26

SPARK Design Goals…

• Logical soundness
– The language “makes sense” as a whole, distinct

language.

• Simplicity of formal language definition
– It’s possible to write a formal semantics…
– We did it in 1994/5 for SPARK83.

• Expressive power
– Expressive enough to construct real-world industrial

applications. Not a toy!
– Main application domain: embedded, critical systems.

• Security
– All language rules are statically checkable using sound

algorithms.

Copyright © Praxis HIS - 2006 Slide 27

SPARK Design Goals…

• Verifiability
– Provision of a working Hoare-logic verification system

and theorem-proving framework.

• Bounded space and time requirements
– Programs should be amenable to the static verification

of worst-case memory usage and execution time.

• Correspondence with Ada
– So useful with standard compiler and other tools.

• Verifiability of compiled code
– Sometimes a very difficult problem, so let’s

simplify it!
• Minimal run-time system requirements

– Run-time library? What run-time library?!?
– No requirement for any operating system at all…

Copyright © Praxis HIS - 2006 Slide 28

SPARK Language

• Principal features
• Type system
• Statements
• Subprograms
• Packages
• Annotations and Contracts

Copyright © Praxis HIS - 2006 Slide 29

Principal language features

• “Keeps the good stuff” from Ada:
– The type system

• Especially scalar subtypes.

– Strict separation of specification
and body for all units.

– Packages
– Private types
– “Readable by default”

Copyright © Praxis HIS - 2006 Slide 30

The SPARK Type System

• A significant simplification of Ada…
• All types are named (no anonymous)
• Constraints are static.

– “How big” a type is (in bits) is a compile-time
known value.

– No (implicit) allocation or deallocation on a heap
at all…

Copyright © Praxis HIS - 2006 Slide 31

The SPARK Type System

• Arrays and records are first-class
– Can be passed as parameters and returned from

functions.

• Records can be “tagged” – these
have OO properties of inheritance,
extendability, and overriding of
inherited operations.

• BUT…no polymorphism or “dynamic
dispatch” of method calls…
– How do you statically analyse a dynamically

dispatched call (without looking at the whole
program)?!?! Err…

Copyright © Praxis HIS - 2006 Slide 32

The SPARK Type System

• No explicit declaration or use of
access types (aka “pointers”)
– (C programmers usually choke and fall off their

chair at this point…)

• Why?
– Permits sound and efficient aliasing analysis – a pre-requisite

for Hoare-logic to work at all.
– Ada gives us high-level parameter passing semantics – no

need for pointers here!
– Ada’s “chapter 13” allows for low-level programming (e.g.

device drivers) – no pointers!
– Array types are first class – no pointers!
– Building linked data structures – we use arrays as “heaps”

and array indexes as “references”.

Copyright © Praxis HIS - 2006 Slide 33

The SPARK Type System

• Expressions…

• Functions may not have any side-
effects, so expressions are pure.

• Expressions are neutral to evaluation
order
– it doesn’t matter what order a compiler chooses,

you always get the same result.

• The SPARK Examiner strictly
enforces these rules.

– Another pre-requisite for efficient flow-analysis and Hoare
logic.

Copyright © Praxis HIS - 2006 Slide 34

Statements

• Statements may have a side-effect.
• Simple statements:

– Null
– Assignment
– Procedure call
– Return

Copyright © Praxis HIS - 2006 Slide 35

Statements

• Compound statements
– Pretty much as you’d expect
– If, case, while-loop, for-loop, general-loop

• Control-flow graphs are restricted to
be reducible and semi-structured for
analysis purposes:
– Some restriction on the placement of the return

statement.
– No multi-level loop exits.
– No goto statement.

• Acceptable expressive power once
you get used to it!

Copyright © Praxis HIS - 2006 Slide 36

Subprograms

• Functions are an abstraction of an
expression – no side-effects.

• Procedures are an abstraction of a
sequence of statements – almost
always have a side-effect.

Copyright © Praxis HIS - 2006 Slide 37

Packages

• Packages are used to group related
entities together – e.g. a type and
subprograms that operate on objects
of that type.

• Nesting of packages and
subprograms is natural and
encouraged.
– Like in Pascal!

Copyright © Praxis HIS - 2006 Slide 38

Packages

• Child packages are allowed.

• Public child packages allow
“programming by extension”
– Very useful in combination with OO tagged

types.

• Private child packages allow nested
abstractions to be constructed and
enforced.

Copyright © Praxis HIS - 2006 Slide 39

Annotations and Contracts

• Subsetting is OK so far, but it’s not
enough to hit the “big five” goals for
SV.

• We need more…

• This brings us to “annotations” – also
known as “contracts” in the
terminology introduced by Eiffel.

Copyright © Praxis HIS - 2006 Slide 40

Annotations and Contracts

• Some of the annotations in SPARK are
mandatory.
– Without them, your program isn’t SPARK

at all.
• Annotations are syntactically and

semantically equal in status and importance
to all other language constructs.

• Saying “SPARK without the annotations” is
like saying “C without the assignment
statement”
– Total nonsense!

Copyright © Praxis HIS - 2006 Slide 41

Annotations and Contracts

• Important note: when using SPARK,
there is no “Add the annotations
later” phase. This doesn’t work!

• Do NOT attempt to “SPARKify”
existing Ada code – not a good idea!

• Hint: require your supplier to deliver
SPARK, not Ada!

Copyright © Praxis HIS - 2006 Slide 42

Why Annotations?

• Annotations provide
– Specification and design

information about what your
program is supposed to do.

– Redundant information that can be
cross-checked by tools.

– Information where it’s needed to
enable efficient and modular
analysis.

Copyright © Praxis HIS - 2006 Slide 43

The need for annotations – an
example

• Consider the following Ada procedure
specification:
procedure Inc (X : in out Integer);

• What does this procedure do?

• What doesn’t it do?!?

Copyright © Praxis HIS - 2006 Slide 44

The need for annotations – an
example
• Consider the following Ada procedure

specification:
procedure Inc (X : in out Integer);

• According to the semantics of Ada, this
procedure:
– Has a single parameter X of type Integer, which may

be read and/or updated.
– If it terminates, then the final value of X is type Integer.
– May read or update any other visible global variable in

your program (its doesn’t say which ones…)
– May terminate with an unhandled exception (it doesn’t

say…)

Copyright © Praxis HIS - 2006 Slide 45

The need for annotations – an
example

• Consider the following Ada procedure
specification:
procedure Inc (X : in out Integer);

• Pretty weak really!
• What can we do with this

specification? Not much, other than
generate code to call it…

• Moral: don’t let compiler writers
design programming languages!

Copyright © Praxis HIS - 2006 Slide 46

The need for annotations – an
example
• Here it is in bare-minimum SPARK:

procedure Inc (X : in out Integer);
--# global in out CallCount;

• In SPARK, this means:
– It must read X and either update X or preserve the

initial value of X
– Ditto for global variable CallCount
– No other global variables are accessed at all
– If it terminates, then the final value of X is type Integer.
– It never raises any exceptions

• Somewhat more useful!
• These properties will be checked when we

(eventually) present the body of Inc for
analysis.

Copyright © Praxis HIS - 2006 Slide 47

Going further with annotations:

• We can (optionally) add more:
procedure Inc (X : in out Integer);
--# global in out CallCount;
--# derives Callcount from CallCount &
--# X from X;

• This adds an information-flow
contract, that additionally states:
– The final value of CallCount depends on the

initial value of CallCount, but NOT the initial
value of X, and

– The final value of X depends on the initial value
of X, but NOT the initial value of CallCount.

Copyright © Praxis HIS - 2006 Slide 48

Going further with annotations (2):

• We can (optionally) add (even) more:
procedure Inc (X : in out Integer);
--# global in out CallCount;
--# derives Callcount from CallCount &
--# X from X;
--# post (X~ < Integer’Last ->
--# X = X~ + 1) and
--# (X~ = Integer’Last ->
--# X = X~);

• Aha! It’s a saturating Incrementer!
• Final value of CallCount remains

unspecified.

Copyright © Praxis HIS - 2006 Slide 49

An example (detection of erroneous constructs)

procedure Inc (X : in out Integer);

--# global in out Callcount;

detection of function side-effect
function AddOne (X : Integer)

return Integer is
XLocal : Integer := X;

begin
Inc (Xlocal); -- illegal in SPARK
return XLocal;

end AddOne;

Nb: this analysis is achieved without “looking in the body” of
Inc.

Copyright © Praxis HIS - 2006 Slide 50

An example (detection of erroneous constructs)

procedure Inc (X : in out Integer);

--# global in out Callcount;

detection of aliasing
Inc (CallCount); -- illegal in SPARK

Nb: this analysis is achieved without “looking in the body” of
Inc.

Copyright © Praxis HIS - 2006 Slide 51

Annotations: summary

• Annotations provide the information needed
for verification where it’s needed – nearly
always on the specification of a unit.
– SPARK never “looks in the body” of a

unit to see what it does…
• This has a huge impact on efficiency of

analysis. e.g. Aliasing analysis is sound
and done in Polynomial time.

• This also allows for modular and
constructive analysis, since you probably
haven’t written the body yet anyway!

Copyright © Praxis HIS - 2006 Slide 52

Agenda

• SPARK – Rationale, Goals and
Language

• Coffee

• SPARK Design, Verification and
Security Topics

Copyright © Praxis HIS - 2006 Slide 53

Agenda

• SPARK – Rationale, Goals and
Language

• Coffee

• SPARK Design, Verification and
Security Topics

Copyright © Praxis HIS - 2006 Slide 54

SPARK Design Mini-Agenda

• Building blocks
– Abstract data types (OO and non-

OO)
– Abstract state machines
– Input/Output
– Protected types and objects
– Tasks

Copyright © Praxis HIS - 2006 Slide 55

Abstract Data Types (ADTs)

• ADTs group a type, its basic
operations, and contracts together
using a package.

• These can be “tagged” (I.e. OO – like
a “class” in other languages) or non-
tagged.

• Let’s start with the non-OO version:

Copyright © Praxis HIS - 2006 Slide 56

The ubiquitous “Stack” ADT
specification…

package Stack is
type Number is range 0 .. 20;
type T is limited private;
function EmptyStack (S : in T) return Boolean;
function FullStack (S : in T) return Boolean;

procedure ClearStack(S : out T);
--# derives S from ;

procedure Push(S : in out T; X : in Number);
--# derives S from S, X;

procedure Pop(S : in out T; X : out Number);
--# derives S, X from S;

private
--# hide Stacks;
end Stack;

Copyright © Praxis HIS - 2006 Slide 57

Stack ADT – refining the types

• We need to complete the “private part” with the
detail of how the Stack is to be represented. For
example:

private
StackSize : constant := 100;
type PointerRange is range 0 .. StackSize;
subtype IndexRange is PointerRange range 1 .. StackSize;
type Vector is array(IndexRange) of Number;
type T is

record
StackVector : Vector;
StackPointer : PointerRange;

end record;
end Stacks;

Copyright © Praxis HIS - 2006 Slide 58

Stack ADT – completing the body

package body Stack is
function EmptyStack(S : T) return Boolean is
begin

return S.StackPointer = 0;
end EmptyStack;

function FullStack(S : T) return Boolean is
begin

return S.StackPointer = StackSize;
end FullStack;

procedure ClearStack(S : out T)
is
begin

S := T’(Vector’(others => 0), 0);
end ClearStack;

Copyright © Praxis HIS - 2006 Slide 59

Stack ADT – completing the body

procedure Push(S : in out T; X : in Number)
is
begin

S.StackPointer := S.StackPointer + 1;
S.StackVector(S.StackPointer) := X;

end Push;

procedure Pop(S : in out T; X : out Number)
is
begin

X := S.StackVector(S.StackPointer);
S.StackPointer := S.StackPointer - 1;

end Pop;

end Stack;

Copyright © Praxis HIS - 2006 Slide 60

Tagged ADTs

• Consider a base “Object” ADT for a
geometry program:

package Object is
type T is tagged record

X, Y : Float;
end record;

procedure Init (X, Y : in Float;

Obj : out T);
--# derives Obj from X, Y;

function Area (Obj : in T) return Float;
end Object;

Copyright © Praxis HIS - 2006 Slide 61

Tagged ADTs (2)

• Since Object.T is “tagged”, we may inherit
from it and extend it to define a new type:

with Object;
--# inherit Object;
package Circle is

-- Extend Object.T with a new field Radius
type T is new Object.T with record

Radius : Float;
end record;

-- Init procedure inherited implicitly here

-- Override inherited Area function
function Area (Obj : in T) return Float;

end Object;

Copyright © Praxis HIS - 2006 Slide 62

SPARK Design Mini-Agenda

• Building blocks
– Abstract data types (OO and non-

OO)
– Abstract state machines
– Input/Output
– Protected types and objects
– Tasks

Copyright © Praxis HIS - 2006 Slide 63

Abstract State Machines (ASMs)

• ASMs declare a single persistent
state variable (or an abstraction of
several states), and operations that
act on it.

• Two annotations help to specify
ASMs
– The “own variable” annotation “announces” that a

package has a persistent state variable, and
names it for use in other annotations.

– The “initializes” annotation declares that an own
variable is (or isn’t) initialized by the package at
program startup time.

Copyright © Praxis HIS - 2006 Slide 64

Abstract State Machines

package KeyStore
--# own State;
is

type Key is …; -- whatever…

procedure ClearAll;
--# global out State;
--# derives State from ;

procedure LoadKey (K : in Key);
--# global in out State;
--# derives State from State, K;

end KeyStore;

Copyright © Praxis HIS - 2006 Slide 65

Abstract State Machines

• Notes on KeyStore:
– KeyStore.State is NOT initialized by default.

(Absence of an initializes annotation tells us this)
– KeyStore.Load reads the initial value of

KeyStore.State
– Therefore, any attempt to call KeyStore.Load

before KeyStore.State has been properly
initialized will result in a data-flow error

– In other words – you must call KeyStore.ClearAll
before any call to KeyStore.Load

– Of course, the tool checks this...

Copyright © Praxis HIS - 2006 Slide 66

Abstract State Machines

• Notes on KeyStore:
– “derives State from ;”
means
– “The final value of State is derived from the initial

value of <NO VARIABLES>”

– What sort of expression has no variables?
– Answer: A constant!

– So...ClearAll initializes State to a well-defined
and constant value.

– The tool checks this as well…

Copyright © Praxis HIS - 2006 Slide 67

SPARK Design Mini-Agenda

• Building blocks
– Abstract data types (OO and non-

OO)
– Abstract state machines
– Input/Output
– Protected types and objects
– Tasks

Copyright © Praxis HIS - 2006 Slide 68

Input/Output

• It’s really easy to write correct, safe,
and secure code if it does no I/O!

• I/O is hard, especially for a static
verification tool:
– Devices may fail
– Inputs may be malicious
– Inputs may look OK, but be out of

expected range and/or type
– Inputs are Volatile – the outside

world keeps changing ‘em!

Copyright © Praxis HIS - 2006 Slide 69

Input/Output

• SPARK offers a special type of own-
variable for modelling I/O – the
external variable.

• These act like a stream of values
flowing to/from your program.
– Aside: compare with functional programming I/O

approaches.

• External own variables have a
“mode” that indicates the direction of
the stream of values.

Copyright © Praxis HIS - 2006 Slide 70

Input/Output

-- Example:
-- A device driver for an Input device…

package Temperature
--# own in Values; -- external own var
is

type Celsius is range 0 .. 100;

function Read return Celsius;
--# global in Values;

end Temperature;

Copyright © Praxis HIS - 2006 Slide 71

Input/Output

• Analysis of external variables is
subtly different from normal variables:
– The information-flow analyser knows that

such variables are volatile – i.e. reading
an input twice doesn’t necessarily yield
the same value!

– The Proof System doesn’t trust any
value coming from an external variable,
so you can’t prove anything until you’ve
checked the validity of the data…

• …it forces you to remember to validate input
data…cool! ☺

Copyright © Praxis HIS - 2006 Slide 72

SPARK Design Mini-Agenda

• Building blocks
– Abstract data types (OO and non-

OO)
– Abstract state machines
– Input/Output
– Protected types and objects
– Tasks

Copyright © Praxis HIS - 2006 Slide 73

Protected types and objects

• In 2003, we added implemented
RavenSPARK – “SPARK with
Tasking”, based on the Ada95
“Ravenscar Profile”

• Ravenscar is a very simple, light
concurrency model suitable for hard
real-time, embedded systems.

Copyright © Praxis HIS - 2006 Slide 74

Ravenscar Profile

• A Ravenscar program has:
– A fixed set of library-level (I.e. “global”)

tasks.
• No nested tasks or dynamic creation of

tasks…
• Tasks may be “periodic” (e.g. activated every

N milliseconds) or “sporadic” (e.g. tied to an
interrupt)

– A fixed of “protected objects” that are
used for inter-task communication and
synchronization.

Copyright © Praxis HIS - 2006 Slide 75

Ravenscar Profile

• Protected Objects
– Are basically like ASMs, but where

operations are guaranteed to be
executed in mutual exclusion.

– Like a classical Hoare Monitor (a la
Modula-1), but with

• A single guarded “entry” that a single task
may “block” upon.

• Clever scheduling semantics…

Copyright © Praxis HIS - 2006 Slide 76

Ravenscar Profile

• Scheduling in Ravenscar…
– …Is fixed-priority pre-emptive, with mutual

exclusion in PO’s implemented by “immediate
priority ceiling inheritance”…

• What does that mean in English?!?!
– It’s very simple to implement on a single

processor (no semaphores at all…)
• Implementations with evidence suitable for DO-

178B Level A are commercially available and
fielded.

– Mutual exclusion and deadlock freedom are
guaranteed

– It’s amenable to static analysis of schedulability –
aka “Rate Monotonic Analysis”

Copyright © Praxis HIS - 2006 Slide 77

RavenSPARK

• So…
RavenSPARK =

Sequential SPARK +
Ada95 Ravenscar Tasking +
A few more annotations +
More verification

e.g. inter-task information-flow
analysis…

Copyright © Praxis HIS - 2006 Slide 78

SPARK Verification and Analyses

• Mini Agenda
– Tools
– Examiner analyses
– Simplifer and Checker
– Security properties

Copyright © Praxis HIS - 2006 Slide 79

SPARK Tools

• The main tools:
– The Examiner is the main static

verification tool.

– The Simplifier is an automatic
theorem-prover.

– The Checker is a user-assisted
theorem-prover.

• They fit together like this:

Copyright © Praxis HIS - 2006 Slide 80

SPARK Tools (1)

SPARKMake

Index File (.idx)
Meta File (.smf)

SPARK Source
Code Files

SPARK
Examiner

Report File
(spark.rep)

Listing Files (.lst)HTML Browsable
Output (.htm)

FDL
Declarations

(.fdl)
Rules (.rls)

Verification
Conditions

(.vcg)

for each subprogram

Warning File (.wrn)
Switch File (.sw)

Target Configuration
File (.cfg)

SPARKFormat

Copyright © Praxis HIS - 2006 Slide 81

SPARK Tools (2)

Simplifier

Proof Checker
POGS

SPARKSimp

FDL
Declarations

(.fdl)
Rules (.rls)

Verification
Conditions

(.vcg)

in
vo

ke
s

fo
r

ea
ch

 V
C

 fi
le

Simplifier Log
(.slg)

User Defined
Proof Rules

(.rul)

Proof Log
(.plg)

Command
Log (.cmd)

Proof Review
Files (.prv)

Summary File
(.sum)

Simplified
VCs (.siv)

Copyright © Praxis HIS - 2006 Slide 82

SPARK Tools (3)

• There are a few other supporting
tools:
– SPARKFormat – a pretty-printer

for annotations
– SPARKMake – an analysis-order

generator
– SPARKSimp – a parallel “make”

tool for the Simplifier.
– POGS – Proof Obligation

Summarizer

Copyright © Praxis HIS - 2006 Slide 83

The Examiner

• The Examiner is kind of structured like a
compiler at first…lexical analysis, parsing
etc…

• Then…
– Subset analysis
– Static semantics (e.g. type checking)
– Aliasing analysis
– Side-effects analysis
– Information flow analysis

• If all of the above are OK then we can
enable the biggie – Verification Condition
Generation (VCG).

Copyright © Praxis HIS - 2006 Slide 84

Information flow analysis
• Based on the classic Denning/Denning

paper from 1977, and extended by
Bergeretti and Carré (ACM TOPLAS Jan
1985)
– Subsumes traditional data-flow analysis, and is

sound and fast.
• Eliminates all possibility of undefined

behaviour (e.g. a read of an uninitialized
variable) – another pre-requisite for the
VCG to work.

• Also finds ineffective statements and
invariant expressions.

• Verifies that specified information flow (the
“derives” annotation) is actually
implemented by the code.

Copyright © Praxis HIS - 2006 Slide 85

The Verification Condition Generator

• Basically, this generates Verification
Conditions (VCs) - conjectures about your
program, the proof of which demonstrate
certain properties, such as:
– Type safety (aka “No runtime errors”)
– Partial correctness with respect to pre-

and post-conditions
– Invariants pertaining to program state,

inputs and outputs

Copyright © Praxis HIS - 2006 Slide 86

Type Safety and “Runtime errors”

• These VCs are generated “for free” –
no annotations are needed, since
they are implicit in the semantics.
You get VCs to show the absence of
– Arithmetic overflow
– Division by zero
– Array index range error (“buffer

overflow”)
– And many more…
– …for every statement in your program…

Copyright © Praxis HIS - 2006 Slide 87

Type Safety and “Runtime errors”

• Lots and lots of VCs…but they
should be easy to prove…just right
for an automated theorem prover!

• Quiz: sounds like a new-fangled idea,
right?
– Nope…
– When was this approach first

published?

Copyright © Praxis HIS - 2006 Slide 88

Type Safety and “Runtime errors”

• In industrial applications, we find that
the Simplifier should be able to prove
over 95% of the “runtime error” VCs
automatically….

• If not…
– Your program is too complex (or just

wrong)!
– Go back and correct it!

• We do this before code review – why
not…
– “…We have the technology…”

Copyright © Praxis HIS - 2006 Slide 89

SPARK and Secure Systems

• SPARK is mostly know for its use in
the safety-critical arena.

• Ironic, actually, since most of the
background research came from the
ComSec community.

• Does it work with Secure Systems?

Copyright © Praxis HIS - 2006 Slide 90

SPARK and Secure Systems

• Useful properties of SPARK for security:
– Information flow analysis

• No uninitialized variables…good…
these can form a covert channel!

• Information flow analysis can be used
to verify MILS Properties e.g. “no
secret info leaking to unclassified
output” – we’re working on this now…

Copyright © Praxis HIS - 2006 Slide 91

SPARK and Secure Systems

• Useful properties of SPARK for security:
– Verification Conditions and Proof

• Validation of Input Data is pretty much mandatory
if you want to prove anything…

• Proof of “No runtime errors” is really useful…
• Proof of partial correctness can be useful as an aid

to…
• …security properties can be proved if they can be

expressed as assertions.

– What can be proved?
• Basically, anything that can be expressed as

an assertion in first-order predicate logic…

Copyright © Praxis HIS - 2006 Slide 92

SPARK and Secure Systems

• Lack of runtime-library
– Can be useful in high-grade applications,

where evaluation of any COTS
component could be impossible or
prohibitively expensive.

– SPARK answer: don’t have a run-time
library at all!

– You can account for every byte of object
code in the system.

• Not to everyone’s taste (especially if you’re
used to Java… ☺)

Copyright © Praxis HIS - 2006 Slide 93

SPARK and Secure Systems

• The real bottom line:
1) SPARK strongly encourages you to

think and to construct programs in a
rigorous and disciplined fashion.

2) SPARK programs exhibit a remarkably
low pre-test defect rate.

• Ask the SEI about the correlation between
pre-test defect rate and project over-spend
and/or over-run…

Copyright © Praxis HIS - 2006 Slide 94

SPARK and Secure Systems

• Some real SPARK security projects

– Built by Praxis
• MULTOS CA (published in IEEE

Software)
• Tokeneer ID Station (published in

ISSSE Conference)

– Built by others using SPARK
• NATO C3 Agency (unpublished)
• Rockwell Collins (see our press

release)

Copyright © Praxis HIS - 2006 Slide 95

Agenda

• One final topic…

• Adopting SPARK…

Copyright © Praxis HIS - 2006 Slide 96

Adopting SPARK…

• …is non-trivial.

• It isn’t a “quick fix” that you can just
plug in to your existing software
process.

Copyright © Praxis HIS - 2006 Slide 97

Adopting SPARK…

• SPARK has an impact on many other
areas of software development:
– Design approach
– Review criteria and check-lists
– Testing (e.g. don’t do so much!)
– Generation of evaluation evidence

• It works best on “Green field” projects
where you can start with a clean
slate.

Copyright © Praxis HIS - 2006 Slide 98

Adopting SPARK…

• SPARK is highly “culturally
compatible” with mature software
processes, especially in the world of
high-integrity systems – for example:
– CMM Levels 4+
– SEI’s PSP and TSP

• (I took my PSP training using
SPARK…it works… ☺)

Copyright © Praxis HIS - 2006 Slide 99

Adopting SPARK - barriers

• Technically, SPARK is a no-brainer…
• Commercially, delivering <0.1 defects

per kloc ought to be a no-brainer…
• The biggest barrier remains cultural

and political inertia.
– Change is seen as risky…
– Spending more money “up front” (I.e. in design

and code) scares project managers…
– You don’t get fired for just doing the same thing

as the last project (no matter how badly it
screwed up…)

Copyright © Praxis HIS - 2006 Slide
100

Adopting SPARK

• “it’s like dieting…”
– Lots and lots of potions, magics, pills and “easy”

solutions (and a multi-billion dollar market for
them…)

– To really change, you have to change your life-
style…

Copyright © Praxis HIS - 2006 Slide
101

Conclusions

• A precise programming language, designed for
analysis completely changes the way we build
software

• Emphasis on error prevention rather than error
detection

• Replace “seeking suspicious constructs” with
“prove system has desired properties”

• Modifies engineers’ behaviour towards rigour
and discipline

• We call it “Correctness by Construction”
• It can be better and cheaper.

Copyright © Praxis HIS - 2006 Slide
102

Final mandatory quote

"There is still no silver bullet, but
dramatic improvements in software
quality can be achieved through the
rigorous and systematic application
of what we already know…"

Martyn Thomas
Professor of Software Engineering,
Oxford University (and the founder of
Praxis…)

Copyright © Praxis HIS - 2006 Slide
103

Contacts and Questions
In the USA:
Pyrrhus Software
www.pyrrhusoft.com
sparkinfo@pyrrhusoft.com

Rest of the world:
Praxis High Integrity Systems
www.praxis-his.com
www.sparkada.com
sparkinfo@praxis-his.com

http://www.pyrrhusoft.com/
http://www.pyrrhusoft.com/
mailto:sparkinfo@pyrrhusoft.com
http://www.praxis-his.com/
http://www.sparkada.com/
mailto:sparkinfo@praxis-his.com

Copyright © Praxis HIS - 2006 Slide
104

Resources
• Cook, David. Evolution of Programming Languages and Why a

Language Is Not Enough to Solve Our Problems. Crosstalk Dec
99. pp 7-12
(http://www.stsc.hill.af.mil/crosstalk/frames.asp?uri=1999/12/cook.asp)

• Amey, Peter. Correctness by Construction - Better Can Also be
Cheaper. Crosstalk March 2002 pp 24 -28. (http://www.praxis-
his.com/pdfs/c_by_c_better_cheaper.pdf)

• ISO/IEC JTC1/SC22/WG9. Programming Languages - Guide for
the Use of the Ada Programming Language in High Integrity
Systems. (www.dkuug.dk/jtc1/sc22/wg9/n359.pdf)

• German, Andy, Software Static Code Analysis Lessons Learned.
Crosstalk Nov 2003. pp 13-17.
(http://www.stsc.hill.af.mil/crosstalk/2003/11/0311German.pdf)

• Hall, Anthony and Chapman, Roderick: “"Correctness By
Construction: Developing a Commercial Secure System“, IEEE
Software, Jan/Feb 2002, pp18-25 (http://www.praxis-
his.com/pdfs/c_by_c_secure_system.pdf)

• King, Steve; Hammond, Jonathan; Chapman, Rod and Pryor, Andy:
"Is Proof More Cost Effective Than Testing?”, IEEE Transactions on
Software Engineering, Volume 26 Number 8 (http://www.praxis-
his.com/pdfs/cost_effective_proof.pdf)

Copyright © Praxis HIS - 2006 Slide
105

Resources (contd.)
• Butler, Ricky W., and George B. Finelli, eds. “The Infeasibility of

Quantifying the Reliability of Life-Critical Real-Time Software.” IEEE
Transactions on Software Engineering 19(1): 3-12.
(http://shemesh.larc.nasa.gov/paper-nonq/nonq-paper.pdf)

• Littlewood & Strigini“Validation of Ultrahigh Dependability for
Software-based Systems”.. CACM Nov 1993
(http://www.csr.city.ac.uk/people/lorenzo.strigini/ls.papers/CACMnov93_lim
its/CACMnov93.pdf)

• Amey, Peter. “A Language for Systems not Just Software”. ACM
SigAda 2001. (http://www.praxis-his.com/pdfs/systems_not_just_sw.pdf)

• Chapman, Rod., Amey, Peter. “Industrial Strength Exception
Freedom”. Proceedings of ACM SigAda 2002. (http://www.praxis-
his.com/pdfs/Industrial_strength.pdf)

• Chapman, Rod; Hilton, Adrian: “Enforcing Security and Safety
Models with an Information Flow Analysis Tool”. Proceedings of
ACM SIGAda 2004 (http://www.praxis-
his.com/sparkada/pdfs/infoflow_paper.pdf)

• Peter Amey, Rod Chapman, Neil White: “Smart Certification Of
Mixed Criticality Systems”. Ada Europe 2005 (http://www.praxis-
his.com/sparkada/pdfs/Smart_Certification.pdf)

• Janet Barnes, Rod Chapman: “Engineering the Tokeneer Enclave
Protection Software”. Proceedings of IEEE ISSSE 2006

Copyright © Praxis HIS - 2006 Slide
106

Resources (contd.)
• Amey, Peter,. and White, Neil. “High Integrity Ada in a UML and C

World”. Lecture Notes in Computer Science 3063
A. Llamosi, A. Strohmeier (Eds.): Reliable Software Technologies –
Ada-Europe 2004 9th Ada-Europe International Conference, La
Palma de Mallorca, June 2004, pp. 225-236. (http://www.praxis-
his.com/sparkada/pdfs/ada_uml_and_c.pdf)

• See also www.sparkada.com

	Agenda
	Agenda
	SPARK Rationale, Goals and Language
	High-Integrity Software
	So what is Correctness-by-Construction (CbyC)?
	CbyC Characteristics
	A Note on Testing…
	Static Verification
	Static Verification Goals
	Static Verification – the Catch…
	Static Verification – the Catch…
	Aside: The irony of language subsets and their analysis
	Ambiguity?
	Why (lack of) ambiguity is crucial
	#include “nasty test case”
	Here are a couple of clues…
	#include “nasty test case”
	SPARK…
	SPARK…
	What SPARK is NOT
	Aside: some history
	History
	History
	History
	SPARK Design Goals…
	SPARK Design Goals…
	SPARK Design Goals…
	SPARK Language
	Principal language features
	The SPARK Type System
	The SPARK Type System
	The SPARK Type System
	The SPARK Type System
	Statements
	Statements
	Subprograms
	Packages
	Packages
	Annotations and Contracts
	Annotations and Contracts
	Annotations and Contracts
	Why Annotations?
	The need for annotations – an example
	The need for annotations – an example
	The need for annotations – an example
	The need for annotations – an example
	Going further with annotations:
	Going further with annotations (2):
	An example (detection of erroneous constructs)
	An example (detection of erroneous constructs)
	Annotations: summary
	Agenda
	Agenda
	SPARK Design Mini-Agenda
	Abstract Data Types (ADTs)
	The ubiquitous “Stack” ADT specification…
	Stack ADT – refining the types
	Stack ADT – completing the body
	Stack ADT – completing the body
	Tagged ADTs
	Tagged ADTs (2)
	SPARK Design Mini-Agenda
	Abstract State Machines (ASMs)
	Abstract State Machines
	Abstract State Machines
	Abstract State Machines
	SPARK Design Mini-Agenda
	Input/Output
	Input/Output
	Input/Output
	Input/Output
	SPARK Design Mini-Agenda
	Protected types and objects
	Ravenscar Profile
	Ravenscar Profile
	Ravenscar Profile
	RavenSPARK
	SPARK Verification and Analyses
	SPARK Tools
	SPARK Tools (1)
	SPARK Tools (2)
	SPARK Tools (3)
	The Examiner
	Information flow analysis
	The Verification Condition Generator
	Type Safety and “Runtime errors”
	Type Safety and “Runtime errors”
	Type Safety and “Runtime errors”
	SPARK and Secure Systems
	SPARK and Secure Systems
	SPARK and Secure Systems
	SPARK and Secure Systems
	SPARK and Secure Systems
	SPARK and Secure Systems
	Agenda
	Adopting SPARK…
	Adopting SPARK…
	Adopting SPARK…
	Adopting SPARK - barriers
	Adopting SPARK
	Conclusions
	Final mandatory quote
	Contacts and Questions
	Resources
	Resources (contd.)
	Resources (contd.)

