Safety-constrained Reinforcement Learning for MDPs

HCSS 2016

Nils Jansen

Some results on Controller Synthesis for Probabilistic Systems

HCSS 2016

Nils Jansen

Safety-constrained Reinforcement Learning for MDPs

Sebastian Junges, Nils Jansen, Christian Dehnert, Ufuk Topcu, and Joost-Pieter Katoen

Exclude safety-critical behavior

Algorithms speed-up

- Probabilistic quicksort
- Rabin-Miller primality test
- Verification of matrix multiplication

- Leader election (Angluin '80)
- Ethernet's randomized exponential backoff (IEEE 802.3)

Algorithms speed-up

- Probabilistic quicksort
- Rabin-Miller primality test
- Verification of matrix multiplication

Deterministic techniques fail - symmetry breaking

- Dinning philosopher problem (Lehmann & Rabin '81)
- Leader election (Angluin '80)
- Ethernet's randomized exponential backoff (IEEE 802.3)

- Probabilistic quicksort
- Rabin-Miller primality test
- Verification of matrix multiplication

Find the best way to the cheese

Find the best way to the cheese

Find the best way to the cheese

While moving mouse discovers exhausting surfaces

Find the best way to the cheese

While moving mouse discovers exhausting surfaces

Find the best way to the cheese

While moving mouse discovers exhausting surfaces

Avoid randomly moving cat

Find safe and cost-optimal strategy to get to the cheese

Find the best way to the cheese

While moving mouse discovers exhausting surfaces

Avoid randomly moving cat

Find safe and cost-optimal strategy to get to the cheese

Find the best way to the cheese

While moving mouse discovers exhausting surfaces

Avoid randomly moving cat

Find safe and cost-optimal strategy to get to the cheese

multi-objective model checking

Cost is not known prior to exploring the grid

Find the best way to the cheese

While moving mouse discovers exhausting surfaces

> Avoid randomly moving cat

Try all safe ways to the cheese (for future mice)

Find safe and cost-optimal strategy to get to the cheese

Cost is not known prior to exploring the grid

Deploy multiple strategies for safe exploration (permissive strategy)

Overview - Permissive Approach

Overview - Permissive Approach

INSTITUTE COMPUTATIONAL ENGINEERING & SCIENCES

Related Work

Klaus Dräger, Vojtech Forejt, Marta Z. Kwiatkowska, David Parker, Mateusz Ujma: **Permissive Controller Synthesis for Probabilistic Systems.** LMCS 2015

Klaus Dräger, Vojtech Forejt, Marta Z. Kwiatkowska, David Parker, Mateusz Ujma: **Permissive Controller Synthesis for Probabilistic Systems.** TACAS 2014

Related Work

Klaus Dräger, Vojtech Forejt, Marta Z. Kwiatkowska, David Parker, Mateusz Ujma: **Permissive Controller Synthesis for Probabilistic Systems.** LMCS 2015

Klaus Dräger, Vojtech Forejt, Marta Z. Kwiatkowska, David Parker, Mateusz Ujma: **Permissive Controller Synthesis for Probabilistic Systems.** TACAS 2014

Alexandre David, Peter Gjøl Jensen, Kim Guldstrand Larsen, Marius Mikucionis, Jakob Haahr Taankvist: **Uppaal Stratego.** TACAS 2015

Kim G. Larsen, Marius Mikucionis, Marco Muniz, Jiri Srba and Jakob Haahr Taankvist: Online and Compositional Learning of Controllers with Application to Floor Heating. TACAS 2016

Probability of reaching shall be less than 0.3

 $s_0 \mapsto a, \ s_1 \mapsto d$ $s_0 \mapsto b, \ s_1 \mapsto c$ safe $s_0 \mapsto b, \ s_1 \mapsto d$

$s_0 \mapsto a, s_1 \mapsto c$ unsafe

 $s_0 \mapsto a, s_1 \mapsto c$ unsafe

SMT for permissive strategies

$$\begin{array}{cccc} p_{s_{I}} \leq \lambda & & & & \\ \forall s \in S. & \bigvee_{a \in Act(s)} y_{s,a} & & & \\ \exists t \text{ least one action per state} & \\ \forall s \in T. & p_{s} = 1 & & & \\ \forall s \in S. \forall a \in Act(s). & y_{s,a} \rightarrow p_{s} \geq \sum_{s' \in S} \mathcal{P}(s,a,s') \cdot p_{s'} & \\ & & & \\ & & & \\ \hline \text{probability of each state is assigned the maximum under the permissive strategy} & \\ \hline \text{Variables} & & \\ & & & \\$$

INSTITUTE FOR COMPUTATIONAL ENGINEERING & SCIENCES

SMT for permissive strategies

$$\begin{array}{cccc} p_{s_{T}} \leq \lambda & \mbox{probability smaller than threshold} \\ \forall s \in S. & \bigvee_{a \in Act(s)} y_{s,a} & \mbox{at least one action per state} \\ \forall s \in T. & p_{s} = 1 & \mbox{probability of target states is one} \\ \forall s \in S. \forall a \in Act(s). & y_{s,a} \rightarrow p_{s} \geq \sum_{s' \in S} \mathcal{P}(s, a, s') \cdot p_{s'} \\ & \mbox{probability of each state is assigned the maximum} \\ & \mbox{Variables} \\ y_{s,a} & \mbox{action is chosen at state} \\ p_{s} & \mbox{probability of state} \end{array}$$

INSTITUTE FOR COMPUTATIONAL ENGINEERING & SCIENCES

Reinforcement learning explores the state space

- (unknown) cost function $\rho\colon S\to \mathbb{R}$ is refined and
- unknown cost values are instantiated by given lower bounds yielding $\rho_l\colon S\to \mathbb{R}$

Reinforcement learning explores the state space

- (unknown) cost function $\rho\colon S\to \mathbb{R}$ is refined and
- unknown cost values are instantiated by given lower bounds yielding $\rho_l\colon S\to \mathbb{R}$

Reinforcement learning explores the state space

- (unknown) cost function $\rho\colon S\to \mathbb{R}$ is refined and
- unknown cost values are instantiated by given lower bounds yielding $\rho_l\colon S\to \mathbb{R}$

Reinforcement learning explores the state space

- (unknown) cost function $\rho\colon S\to \mathbb{R}$ is refined and
- unknown cost values are instantiated by given lower bounds yielding $\rho_l\colon S\to \mathbb{R}$

Multi-objective model checking yields even tighter bounds.

Iterating means tightening the bounds

Iterating means tightening the bounds

About permissiveness

About permissiveness

everything allowed except of reaching the cheese

Quantifying permissiveness may not be beneficent

single safe strategy

About permissiveness

Benchmark		states	trans.	branch.	λ	opt.	i	t	lower	upper
Janitor	$5,\!5$	625	1125	3545	0.1	88.6	1	813	84	88.6
		020					2	2578	84	88.6
							1	41	715.4	717.1
	$30,\!15$	455	1265	3693	0.01	716.0	3	85	715.62	716.83
FolLine							13	306	715.9	716.5
	40,15	625	1775	5223	0.12	966.0	1	304	964.8	968.2
							3	420	965.4	967.2
							8	738	965.6	966.7
						54.5	1	5	0.3	113.3
	$6,\!6,\!6$	823	2603	3726	0.08		2	26	0.3	74.9
ComExp							3	105	0.3	57.3
							1	15	0.42	163.1
	8,8,6	1495	4859	6953	0.12	72.9	2	80	0.42	122.0
							3	112	0.42	90.1
							7	1319	0.42	78.2

Benchmark		states	trans.	branch.	λ	opt.	i	t	lower	upper
Janitor	$5,\!5$	625	1125	3545	0.1	88.6	1	813	84	88.6
		020					2	2578	84	88.6
							1	41	715.4	717.1
	$30,\!15$	455	1265	3693	0.01	716.0	3	85	715.62	716.83
FolLine							13	306	715.9	716.5
	40,15	625	1775	5223	0.12		1	304	964.8	968.2
						966.0	3	420	965.4	967.2
							8	738	965.6	966.7
							1	5	0.3	113.3
	$6,\!6,\!6$	823	2603	3726	0.08	54.5	2	26	0.3	74.9
ComExp							3	105	0.3	57.3
							1	15	0.42	163.1
	8,8,6	1495	4859	6953	0.12	72.9	2	80	0.42	122.0
							3	112	0.42	90.1
							7	1319	0.42	78.2

Benchmark		states	trans.	branch.	λ	opt.	i	t	lower	upper
Janitor	5 5	625	1125	3545	0.1	88.6	1	813	84	88.6
o carrie o r	0,0	020	1120				2	2578	84	88.6
							1	41	715.4	717.1
	$30,\!15$	455	1265	3693	0.01	716.0	3	85	715.62	716.83
FolLine							13	306	715.9	716.5
	40,15	625	1775	5223	0.12	966.0	1	304	964.8	968.2
							3	420	965.4	967.2
							8	738	965.6	966.7
						54.5	1	5	0.3	113.3
	$6,\!6,\!6$	823	2603	3726	0.08		2	26	0.3	74.9
ComExp							3	105	0.3	57.3
-	8,8,6	1495	4859	6953	0.12	72.9	1	15	0.42	163.1
							2	80	0.42	122.0
							3	112	0.42	90.1
							7	1319	0.42	78.2

Benchmark		states	trans.	branch.	λ	opt.	i	t	lower	upper
Janitor	55	625	1125	3545	0.1	88.6	1	813	84	88.6
ounion	0,0	0-0	11=0				2	2578	84	88.6
		455	1265	3693	0.01	716.0	1	41	715.4	717.1
	$30,\!15$						3	85	715.62	716.83
FolLine							13	306	715.9	716.5
	40,15	625	1775	5223	0.12	966.0	1	304	964.8	968.2
							3	420	965.4	967.2
							8	738	965.6	966.7
						54.5	1	5	0.3	113.3
	$6,\!6,\!6$	823	2603	3726	0.08		2	26	0.3	74.9
ComExp							3	105	0.3	57.3
-	8,8,6	1495	4859	6953	0.12	72.9	1	15	0.42	163.1
							2	80	0.42	122.0
							3	112	0.42	90.1
							7	1319	0.42	78.2

Results

• Soundness: SMT encoding is correct

- Soundness: SMT encoding is correct
- Completeness: Optimal safe strategy is computed

- Soundness: SMT encoding is correct
- Completeness: Optimal safe strategy is computed
- No efficient representation for 'maximally' permissive strategy

- Soundness: SMT encoding is correct
- Completeness: Optimal safe strategy is computed
- No efficient representation for 'maximally' permissive strategy
- Utilizing bounds: Significant speedup for costly computation

- Soundness: SMT encoding is correct
- Completeness: Optimal safe strategy is computed
- No efficient representation for 'maximally' permissive strategy
- Utilizing bounds: Significant speedup for costly computation
- Extension to randomized schedulers (non-linear)

Synthesis of Shared Control Protocols

Nils Jansen and Ufuk Topcu

Shared Control

Galán et al.

Brain-actuated Wheelchair

Shared Control Protocol

Shared Control Protocol

Shared Control Protocol

Shared Control Protocol

Human Model

Human Model

Abstract concrete p_{high} if $\mathcal{P}_h(s, \alpha, s') > y$ probabilities by parameters p_{low} if $\mathcal{P}_h(s, \alpha, s') \le y$

GINEERING & SCIENCES

INSTITUTE FOR

Abstract concrete p_{high} if $\mathcal{P}_h(s, \alpha, s') > y$ probabilities by parameters p_{low} if $\mathcal{P}_h(s, \alpha, s') \le y$

GINFERING & SCIENCES

INSTITUTE COMPULATION

GINFERING & SCIENCES

Shared Control Protocol

Blending function $f_a \colon S \to [0, 1]$

- confidence in human
- level of abstraction for human
- accuracy of autonomy protocol

INSTITUTE FOR

ENGINEERING & SCIENCES

Blending function $f_a \colon S \to [0, 1]$

- confidence in human
- level of abstraction for human
- accuracy of autonomy protocol

$$\sigma_{ah}(s,\alpha) = f_a(s) \cdot \sigma_h(s,\alpha) + (1 - f_a(s)) \cdot \sigma_a(s,\alpha)$$

$$\sigma_{ah}(s,\alpha) = f_a(s) \cdot \sigma_h(s,\alpha) + (1 - f_a(s)) \cdot \sigma_a(s,\alpha)$$

INSTITUTE FOR

ENGINEERING & SCIENCES

Compute autonomous strategy such that

Compute autonomous strategy such that

• blended strategy deviates minimally from human strategy

Compute autonomous strategy such that

• blended strategy deviates minimally from human strategy

• safety and performance specs are satisfied

Compute autonomous strategy such that

• blended strategy deviates minimally from human strategy

• safety and performance specs are satisfied

• if not feasible, obtain new blending function

Compute autonomous strategy such that

• blended strategy deviates minimally from human strategy

minimal additive perturbation of human strategy

• safety and performance specs are satisfied

model checking

• if not feasible, obtain new blending function

minimal deviation from given blending function or safety shield

minimize $\|(\delta^{s\alpha} \mid s \in S, \alpha \in Act)\|$ such that

$$p_{s_{I}} \leq \lambda$$

$$\forall s \in T. \quad p_{s} = 1$$

$$\forall s \in S. \quad \sum_{\alpha \in Act} \sigma_{a}^{s,\alpha} = \sum_{\alpha \in Act} \sigma_{ah}^{s,\alpha} = 1$$

$$\forall s \in S. \forall \alpha \in Act. \quad \sigma_{ah}^{s,\alpha} = \sigma_{h}(s)(\alpha) + \delta^{s,\alpha}$$

$$\forall s \in S. \quad \sum_{\alpha \in Act} \delta^{s,\alpha} = 0$$

$$\forall s \in S. \forall \alpha \in Act. \quad \sigma_{ah}^{s,\alpha} = f_{a}(s) \cdot \sigma_{h}(s)(\alpha) + (1 - f_{a}(s)) \cdot \sigma_{a}^{s,\alpha}$$

$$\forall s \in S. \quad p_{s} = \sum_{\alpha \in Act} \sigma_{ah}^{s,\alpha} \cdot \sum_{s' \in S} \mathcal{P}(s,\alpha)(s') \cdot p_{s'}$$

minimize $\|(\delta^{s\alpha} \mid s \in S, \alpha \in Act)\|$ such that

$$p_{s_{I}} \leq \lambda$$

$$\forall s \in T. \quad p_{s} = 1$$

$$\forall s \in S. \quad \sum_{\alpha \in Act} \sigma_{a}^{s,\alpha} = \sum_{\alpha \in Act} \sigma_{ah}^{s,\alpha} = 1$$

$$\forall s \in S. \forall \alpha \in Act. \quad \sigma_{ah}^{s,\alpha} = \sigma_{h}(s)(\alpha) + \delta^{s,\alpha}$$

$$\forall s \in S. \quad \sum_{\alpha \in Act} \delta^{s,\alpha} = 0$$

$$\forall s \in S. \forall \alpha \in Act. \quad \sigma_{ah}^{s,\alpha} = f_{a}(s) \cdot \sigma_{h}(s)(\alpha) + (1 - f_{a}(s)) \cdot \sigma_{a}^{s,\alpha}$$

$$\forall s \in S. \quad p_{s} = \sum_{\alpha \in Act} \sigma_{ah}^{s,\alpha} \cdot \sum_{s' \in S} \mathcal{P}(s,\alpha)(s') \cdot p_{s'}$$

non-linear programming

Current/Future Work

- avoid non-linear program
- model repair
- convex form
- include permissiveness into autonomy
- start conducting real case studies

Thank you for your attention!

