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Applications in several 
domains

Probabilistic programs are simple 
and intuitive to understand

Deterministic techniques fail 
- symmetry breaking

Algorithms speed-up

• Dinning philosopher problem  
(Lehmann & Rabin ’81) 

• Leader election (Angluin ’80)
• Ethernet’s randomized exponential

backoff (IEEE 802.3)

• Probabilistic quicksort 
• Rabin-Miller primality test
• Verification of matrix multiplication

Randomization

communication
cryptography

data  
management optimization

biology

robotics
computer 

vision

repeat

c := coin flip(0.5)
until (c=heads)
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surfaces

Avoid randomly 
moving cat

Find safe and 
cost-optimal 
strategy to 
get to the 

cheese

Cost is not 
known prior to 
exploring the 

grid

Deploy 
multiple 

strategies for 
safe 

exploration 
(permissive 
strategy)

Try all safe ways to 
the cheese (for 
future mice)

multi-objective model checking
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Bounds on the Safe Optimum
Reinforcement learning explores the state space

• (unknown) cost function                is refined and⇢ : S ! R

• unknown cost values are instantiated by given lower bounds 
yielding ⇢l : S ! R

Multi-objective model checking yields even tighter bounds.

Model checking performance 
on original MDP

From best safe strategy so far

lower bound upper bound
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Compare to upper bound on original MDP

Compare to lower bound - already optimal?

Exploitation vs. Exploration 
• overly optimistic expected rewards 

initialize Q-learning (via lower bounds)  
to favor unexplored parts of the MDP

Iterating means tightening the bounds
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• Soundness: SMT encoding is correct
• Completeness: Optimal safe strategy is computed
• No efficient representation for ‘maximally’ permissive strategy
• Utilizing bounds: Significant speedup for costly computation
• Extension to randomized schedulers (non-linear)

TACAS 2016
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Design of Autonomy Protocol

Compute autonomous strategy such that

• blended strategy deviates minimally from human strategy

• safety and performance specs are satisfied

• if not feasible, obtain new blending function

minimal additive perturbation of human strategy 

model checking 

minimal deviation from given blending function or safety shield
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Current/Future Work

• avoid non-linear program 
• model repair 
• convex form 
• include permissiveness into autonomy 
• start conducting real case studies 

Thank you for your attention!


