
C Source Code Analysis for Memory Safety
using Abstract Interpretation

Henny Sipma
Kestrel Technology

September 17, 2020

Paul E. Black
National Institute of

Standards and Technology

Abstract interpretation
engine

Iterators

Abstract domains:
constants
intervals

strided intervals
linear equalities

polyhedra
symbolic sets

value sets
taint

sound abstraction from Java
byte code into CHIF

Java byte code front end

CIL
sound abstraction from

preprocessed CIL code into
CHIF

C source code front end

disassembly
abstraction from x86 binary

code into CHIF

x86 binary front end

.class
.jar
.war

.c

.exe

Kestrel Technology CodeHawk Tool Suite

Abstract interpretation
engine

Iterators

Abstract domains:
constants
intervals

strided intervals
linear equalities

polyhedra
symbolic sets

value sets
taint

CIL
sound abstraction from

preprocessed CIL code into
CHIF

C source code front end

.c

CodeHawk C Analyzer

Acknowledgements

The development of the CodeHawk Tool Suite was in part supported by

The development of the CodeHawk C Analyzer was in part supported by

Sound Static Memory Safety Analysis for C

Goal: Mathematically prove absence of memory safety vulnerabilities
(covering more than 50 CWEs) for real-world applications

Approach:
• Specification: C99 Standard – specification of undefined behavior

• Translate into preconditions on instructions and library functions

• Prove that all preconditions are valid

Advantages:
• If successful: full assurance of memory safety

• Exhaustive: no false negatives

• Evidence: results can be independently audited

• Metrics:

1) Progress: percentage of proof obligations proven valid (safe: 100%)

2) Difficulty: distribution of proof techniques required

Sound Static Memory Safety Analysis for C
Challenges

Approach:

ü Specification: C99 Standard – specification of undefined behavior

ü Translate into preconditions on instructions and library functions:

primary proof obligations (PPOs)

Ø Prove that all primary proof obligations (PPOs) are valid

Not automatic -- May involve significant effort

Analysis

Open
Primary proof obligations

(PPOs)
Closed PPOs

Test Applications
application LOC
Cairo-1.14.12 227,818

Cleanflight-CLFL-v2.3.2 118,758

Dnsmasq-2.76 29,922

Dovecot-2.0.beta6 (SATE 2010) 208,636

File 14,379

Git-2.17.0 205,636

Hping 11,336

Irssi-0.8.14 (SATE 2009) 61,972

Lighttpd-1.4.18 (SATE 2008) 49,747

Nagios-2.10 (SATE 2008) 47,652

Naim-0.11.8.3.1 (SATE 2008) 25,759

Nginx-1.14.0 103,388

Nginx-1.2.9 102,151

Openssl-1.0.1.f 275,060

Pvm3.4.6 (SATE 2009) 60,029

Wpa_supplicant-2.6 96,554

Total 1,638,797

Creating Primary Proof Obligations: Fully Automatic

.c

Gcc - preprocessor

Makefile

bear

CIL

CodeHawk C Analyzer

PPOs

File/function
semantics

primary proof obligations

Primary Proof Obligations: How Many?

6,481,212
PPO
count

1,000,000

800,000

600,000

400,000

200,000

Primary Proof Obligations: How Many?

6,481,212
PPO
density

(PPOs/LOC)

PPO
count

5

4

3

2

1

1,000,000

800,000

600,000

400,000

200,000

Primary Proof Obligations: What are they?
First-order predicates

• allocation-base(p)
• cast(x,t1,t2)
• common-base(p1,p2)
• common-base-type(p1,p2)
• format-string(p)
• global-memory(p)
• index-lower-bound(a)
• index-upper-bound(a,s)
• initialized(v)
• initialized-range(p,s)
• int-overflow(op,a,b,t)
• int-underflow(op,a,b,t)
• lower-bound(p)
• no-overlap(p1,p2)

• non-negative(a)
• not-null(p)
• not-zero(a)
• null(p)
• null-terminated(p)
• pointer-cast(p,t1,t2)
• ptr-lower-bound(op,p,a)
• ptr-upper-bound(op,p,a)
• ptr-upper-bound-deref(op,p,a)
• signed-to-unsigned-cast(a,t1,t2)
• unsigned-to-signed-cast(a,t1,t2)
• upper-bound(p)
• valid-memory(p)
• value-constraint(x)
• width-overflow(a)

Some examples:

Primary Proof Obligations: How do we prove them valid?

Use increasingly sophisticated techniques, based on

A. Individual statement level information

B. Function-local invariants

C. Automatically inferred api conditions

D. Manually constructed contract conditions

Metric 2): Difficulty: distribution of proof techniques required

Primary Proof Obligations: Analysis

Simple Things First

A. Check validity based on individual statement level information

int a[10];
...
a[3] = 0;

strcpy(dst,”string”)

index-lower-bound(3)

index-upper-bound(3,10)

null-terminated(“string”)

not-null(“string”)

lower-bound(“string”)

upper-bound(“string”)

valid-memory(“string”)

proof obligations

3,917,498

2,563,714

Primary Proof Obligations

Discharge PPOs at the statement level

Primary Proof Obligations

Discharge PPOs at the statement level
(as a percent of total)

2,563,714

3,917,498

Primary Proof Obligations: Analysis
Generating Invariants

B. Check validity based on invariants generated

int a[10];
....
for (int i=0; i < 10; i++) {

a[i] = 0;
}

i = [0 .. 9]index-lower-bound(i)
index-upper-bound(i)

1. int x;
....
10. x =
....
20. x = x + 1;

...
initialized (x)
...

x:initialized@10

proof obligations invariant

Abstract interpretation
engine

Iterators

Abstract domains:
constants
intervals

strided intervals
linear equalities

polyhedra
symbolic sets

value sets
taint

Analysis: Generating Local Invariants
(Context-insensitive)

• Abstract Interpretation (Cousot, Cousot, 1977)

• Domains:

• Intervals (Cousot, Cousot)

• Linear Equalities (Karr, 1976)

• Value Sets (Reps, 2004)

• Symbolic Sets

• Parametric Ranges

• Flow-sensitive, Path-insensitive

Analysis: Generating Local Invariants

.c

Gcc - preprocessor

Makefile

bear

CIL

CodeHawk C Analyzer

PPOs

File/function
semantics

primary proof obligations

Analysis: Generating Local Invariants

CodeHawk C Analyzer

PPOs

File/function
semantics

primary proof obligations

Analysis: Generating Local Invariants

CodeHawk C Analyzer

PPOs

File/function
semantics

invariants

4,702,430

Primary Proof Obligations

Discharge PPOs using local function invariants
1,778,782

4,702,430

Primary Proof Obligations

Discharge PPOs using local function invariants
(as a percent of total)

1,778,782

Analysis: Delegating Proof Obligations
(Context sensitivity)

C. Lift responsibility to api

int f (int *p) {
int *q;
int x;
...
q = p;
x = *q + 5;

1. not-null(q)
2. valid-memory(q)
3. lower-bound(q)
4. upper-bound(q)
5. initialized(*q)
6. Int-overflow(*q+5)

p = q

proof obligations

invariant

1. not-null(p)
2. valid-memory(p)
3. lower-bound(p)
4. upper-bound(p)
5. initialized(*p)
6. Int-overflow(*p + 5)

API requirements on f

Analysis: Delegating Proof Obligations
Impose Preconditions on Callers

!

arguments

Analysis: Delegating Proof Obligations
Create Supporting Proof Obligations

CodeHawk C Analyzer

PPOs

File/function
semantics

invariants

api
requirements

python API

linker

SPOs

Analysis: Delegating Proof Obligations
Impose Postconditions on Callers?

?

return values

arguments

! Ø Global variables?
Ø Heap-allocated data structures?

Analysis: Delegating Proof Obligations
File/Function Contracts

CodeHawk C Analyzer

PPOs

File/function
semantics

invariantsapi
requirements

python API

linker

SPOs

File/Function Contracts

5,288,039

Primary Proof Obligations

Discharge PPOs using context sensitivity and contracts
1,193,173

5,288,039

Primary Proof Obligations

Discharge PPOs using context sensitivity and contracts
(as a percent of total)

1,193,173

5,288,039

Primary + Supporting Proof Obligations

1,193,173 416,779

372,264

+
+

1,609,952

5,660303

=
=

5,288,039

Primary + Supporting Proof Obligations

1,193,173 416,779

372,264

+
+

1,609,952

5,660303

=
=

False Positives?

Our perspective: Anything that cannot be proven safe needs work:

Ø Additional user input (in the form of contract conditions), and/or

Ø Additional analysis capabilities, and/or

Ø Modifications to the program

Bugs?

A proof obligation is marked ‘violated’ (and closed) if

• A proof obligation is violated for all behaviors (universal), or

• An existential condition is identified that violates a proof obligation

• Use of return value from malloc, calloc, realloc without null check

• Use of return value from fopen, getenv, etc., without null check

• Unchecked user input values

• Volatile values, random values

• An existential condition outside the realm of reasoning is identified that may

violate a proof obligation

• unchecked return value from strchr, strrchr, strtol, strtoll, etc.

3 potentially serious memory vulnerabilities found in one of the test applications

Juliet Test Suite

• Comprehensive set of tests for wide variety of vulnerabilities

• Developed by CAS (Center for Assured Software)

• Updated and maintained by NIST

• Primary purpose: static analysis tool evaluation

• Vulnerability coverage

• Program construct support

• Extremely valuable for tool developers:

• Tool validation

• Enumeration of corner cases

• Regression tests

But ……

not really representative of real-world
applications

ap
pl

ic
at

io
ns

Ju
lie

t T
es

t S
ui

te

PPOs

Juliet Test Suite: Quantitative Comparison with Applications
in terms of proof obligation difficulty

Applications Juliet Test Suite

Much higher level of
context sensitivity

Hardly any context
sensitivity

Many more
“difficult” proof
obligations

Many more
“trivial” proof
obligations

Hardly any API
conditions

Much more API
conditions

More contracts:
From “template”

Fewer contracts:
Requires work

Conclusions

Analysis

Open
Primary proof obligations

(PPOs)
Closed PPOs

Our goal is:

Conclusions

Analysis

Open
Primary proof obligations

(PPOs)

Closed PPOs

Our goal is:

Analysis

In practice:

Primary
proof

obligations

Supporting
proof

obligations

Conclusions

Analysis

In practice:

• Full semantics of application in accessible form
• Exhaustive set of proof obligations + evidence
• Function api conditions
• Invariants generated
• Programmable api in python

• Specialized analyses
• Incremental analysis
• Every result is subject to verification
• Modular analysis (function/file level)
• Clear measure of success

enables

Conclusions

Analysis

In practice

• Full semantics of application in accessible form
• Exhaustive set of proof obligations +evidence
• Function api conditions
• Invariants generated
• Programmable api in python

• Specialized analyses
• Incremental analysis
• Every result is subject to verification
• Modular analysis (function/file level)
• Clear measure of success

Most analysis results can be
reused across versions;
Assumptions can be rechecked

enables

Conclusions: What’s next?

• Extend with other properties, specified by state machines

• Extend expressiveness of contract specifications

• Continuous improvement of the analyzer, increase automation, C++

……….. and eventually

For every (many) important open-source C applications:

Create an open-source community-owned exhaustive set of proof
obligations with (partial) analysis results, full set of assumptions
(represented as api requirements and contract conditions) that evolves
with new versions created

………… and

Make sound static analysis an integral part of the open-
source software development process

Conclusions: What’s next?
Open-source: available on GitHub:

sipma@kestreltechnology.com

THANK YOU !

Under MIT License

paul.black@nist.gov

https://github.com/static-analysis-engineering

Give it a try and let us know what you think!

CodeHawk-C

CodeHawk-C-Targets-Juliet

CWE’s covered
118 Improper access of indexed resource (range error)
119 improper restriction of operations within the bound
120 Buffer copy without checking size of input (classic buffer overflow)
121 Stack-based buffer overflow
122 Heap-based buffer overflow
123 Write-what-where condition
124 Buffer underwrite
125 Out-of-bounds read
126 Buffer over-read
127 Buffer under-read
128 Wrap-around error
129 Improper validation of array index
130 Improper handling of length parameter inconsistency
131 Incorrect calculation of buffer size
135 Incorrect calculation of multi-byte string length
170 Improper null termination

CWE’s covered
190 Integer Overflow or wrap-around

191 Integer Underflow or wrap-around

193 Off-by-one error

195 Signed to unsigned conversion error

196 Unsigned to signed conversion error

242 Use of inherently dangerous function (as related to memory safety)

415 Double free

416 Use after free

456 Missing initialization of variable

466 Return of pointer value outside of expected range

467 Use of sizeof() on pointer type

469 Use of pointer subtraction to determine size

476 Null pointer dereference

588 Attempt to access child of non-structure pointer

590 Free of memory not on the heap

785 Use of path manipulation function without maximum-sized buffer

CWE’s covered
786 Access of memory location before start of buffer
787 Out-of-bounds write
788 Access of memory location after start of buffer
805 Buffer access with incorrect length value
822 Untrusted pointer dereference
823 Use of out-of-range pointer offset
824 Use of uninitialized pointer
825 Expired pointer dereference
839 Numeric range comparison check without maximum check
843 Access of reource using incompatible type (type confusion)
369 Divide by zero
134 Uncontrolled format string
197 Numeric truncation

