Science of Security and Game Theory

Jeff S Shamma Georgia Institute of Technology

> JASON 2010 Summer Study Science of Cyber Security June 29, 2010

- Introduction to game theory:
 - Modeling formalisms
 - Intuition
- Illustrative examples:
 - Traditional
 - Cyber security (simplistic)
- References:
 - Game theory texts & monographs (many!)
 - Alpcan & Başar, Network Security: A Decision and Game Theory Approach, online
 - Roy et al., "A survey of game theory as applied to network security", 2010

What is game theory?

• Myerson, Game Theory: Analysis of Conflict, 1997:

"the study of mathematical models of conflict and cooperation between intelligent rational decision makers"

• Popular perception:

• Broader view: Auctions & markets, conventions, social networks, traffic,...

• Players (actors, agents):

$$\mathcal{P} = \{1, 2, \dots, p\}$$

- Strategies (choices):
 - Individual:

 $s_i \in \mathcal{S}_i$

– Collective:

$$(s_1, ..., s_p) \in \mathcal{S} = \mathcal{S}_1 \times ... \times \mathcal{S}_p$$

• Preferences, expressed as utility function:

 $u_i: \mathcal{S} \to \mathbf{R}$ $s \succeq_i s' \quad \Leftrightarrow \quad u_i(s) \ge u_i(s')$

• Essential feature: Preferences over collective strategies:

 $\max_{s_i \in \mathcal{S}_i} u_i(s_i) \quad \text{VS} \quad \max_{s_i \in \mathcal{S}_i} u_i(s_i, s_{-i})$

Outline

- Modeling formalisms:
 - Static games w/ Perfect information
 - Static games w/ Imperfect information
 - Dynamic games w/ Perfect information
 - Dynamic games w/ Imperfect information
- Full rationality vs bounded rationality
- Throughout:
 - Players
 - Strategies
 - Preferences
- Omission: Cooperative game theory

- Setup:
 - Players bid b_i for shared resource
 - Resource allocated to player i is:

$$\frac{b_i}{b_1 + \ldots + b_p}$$

– Player utility is:

$$u_i(b) = \phi_i \left(\frac{b_i}{b_1 + \dots + b_p}\right) - b_i$$

for specified $\phi_i(\cdot)$.

• Proportional allocation is one (of several) *mechanisms* for resource allocation.

- Players & strategies:
 - Administrator: {Monitor, Not Monitor}
 - Attacker: {Attack, Not Attack}
- Preferences/utility function:

	Μ	NM
Α	$-c_f - c_a, w - c_m$	$w - c_a, 0$
NA	$0, w - c_m$	0, w

where

- w = value of asset
- $c_f = \text{cost}$ of failed attack
- $c_a = \text{cost}$ to execute attack
- $c_m = \text{cost to monitor}$

Example: Network monitoring (dynamic w/ perfect info)¹

- Setup: External world (E), Web server (W), File server (F), Workstation (N)
- States:
 - Software: ftpd, httpd, nfsd, process, sniffer, virus
 - Flags: User account compromised & data compromised
 - 4 Traffic levels per edge
 - Number of states \approx 4 billion

Source: Lye & Wing, "Game strategies in network security", Int J Inf Secur, 2005.

• Actions (per state):

```
A Attacker = { Attack_httpd,
Attack_ftpd,
Continue_attacking,
Deface_website_leave,
Install_sniffer,
Run_DOS_virus,
Crack_file_server_root_password,
Crack_workstation_root_password,
Capture_data,
Shutdown_network,
φ}
```

 $A^{Administrator} = \{$

Remove_compromised_account_restart _httpd, Restore _website_remove_compromised_account, Remove_virus _and_compromised_account, Install _sniffer _detector, Remove_sniffer _detector, Remove_compromised_account_restart _ftpd, Remove_compromised_account_sniffer, φ}

● *Note:* "Action" ≠ "Strategy"

- Dynamics:
 - State/action dependent transition probabilities
 - Transition dependent rewards/costs
- Stochastic Markov game:
 - Stategy = state dependent action rules
 - Preferences = Expected future discounted rewards/costs
- Compare:

(blurred distinction)

- Single decision maker:
 - Strategy: \mathcal{S}
 - Preferences: u(s)
 - Model of rational agent:

$$s^* = \arg\max_{s' \in \mathcal{S}} u(s')$$

- Multiple decision makers:
 - Model of collective = "Solution concept"
 - Prevalent solution concept: Nash equilibrium
 - Others: No regret set, correlated equilibrium, cognitive hierarchy
- The action profile a^* is a *Nash equilibrium* if for every player *i*,

$$u_i(s^*) = u_i(s_i^*, s_{-i}^*) \ge u_i(s_i, s_{-i}^*)$$

for every $s_i \in S_i$.

• No player has a *unilateral* incentive to change action

- Existence (Nash theorem)
- Multiple equilibria:

- NE $\left(S,S\right)$ is "payoff dominant"
- NE $({\cal H},{\cal H})$ is "risk dominant"
- Descriptive value, e.g. "beauty contest":
 - Players select number between 0 & 100
 - Player closest to 2/3 of average wins
- Computational complexity in large games

- No NE for "pure" strategies
- Introduce "mixed" strategies
 - $-\mathbf{Pr}[\mathbf{A}] = p \quad \& \quad \mathbf{Pr}[\mathbf{NA}] = 1 p$
 - $-\operatorname{\mathbf{Pr}}\left[\mathsf{M}\right] = q$ & $\operatorname{\mathbf{Pr}}\left[\mathsf{NM}\right] = 1 q$
 - Restate preferences as expected utility
- NE: Solve (p,q)

$$w - c_m = (1 - p) \cdot w$$
$$q \cdot (-c_f - c_a) + (1 - q) \cdot (w - c_a) = 0$$

- Implications:
 - At NE, both players are *indifferent*
 - Specific probabilities depend on opponent's utility

• Case I: Dominant strategy

- s_i^* is a (weakly) **dominant strategy** if for *all* s_{-i} :

 $u_i(s_i^*, s_{-i}) \ge u_i(s_i', s_{-i})$

i.e., s_i^* is always optimal

- Example: 2nd price sealed bid auction
 - * Players have private valuations, v_i
 - * Players bid b_i
 - * High bid wins and pays second highest bid
 - * Fact: $b_i = v_i$ is a dominant strategy
- Case II: Security strategy (hedge against worst case)

$$s_i^{\text{sec}} = \arg\max_{s_i} \min_{s_{-i}} u_i(s_i, s_{-i})$$

- Idea: Select s_i^{sec} to maximize *guaranteed* utility
- Special cases: Security strategies define NE
- Example: Zero-sum games with mixed strategies (minimax theorem)

- Modeling formulations:
 - Static games w/ Perfect information
 - Static games w/ Imperfect information
 - Dynamic games w/ Perfect information
 - Dynamic games w/ Imperfect information
- Full rationality vs bounded rationality
- Throughout:
 - Players
 - Strategies
 - Preferences

- Example²:
 - System user knows own "type"
 - Administrator receives signals (e.g., $\{G, Y, R\}$) and forms "beliefs"

$$* G \Rightarrow \Pr[\mathsf{Malicious} = 0.05]$$

- * $Y \Rightarrow \Pr[\mathsf{Malicious} = 0.25]$
- $R \Rightarrow \Pr[\text{Malicious} = 0.8]$
- Can introduce uncertainty to either or both players (e.g., "honey pot or not")
- Standard example: Auctions

²Source: Liu et al., "A Bayesian game approach for intrusion detection in wireless ad hoc networks", *GameNets*, 2006.

- Strategy: Mapping from signal to action probabilities
- Note distinction between "strategy" and "action"
- Bayesian NE: Mutually optimal strategies
- Common knowledge, e.g.³,

- Beliefs:

* Player 1:
$$\Pr[\omega | \overline{\alpha}] = \{1, 0, 0\}$$
 & $\Pr[\omega | \overline{\beta \gamma}] = \{0, 3/4, 1/4\}$

- * Player 2: $\Pr[\omega | \overline{\alpha \beta}] = \{3/4, 1/4/0\}$ & $\Pr[\omega | \overline{\gamma}] = \{0, 0, 1\}$
- Examine "knowledge" in state γ
- Value of information: More accurate signals can lead to lower utility.
- Sensitivity: NE depend on belief probabilities and signal structure of opponents.

³Source: Osborne, An Introduction to Game Theory, 2003.

• Setup:

$$\begin{array}{ccc} \text{Private info} & \stackrel{\mathcal{D}}{\Longrightarrow} & \text{Social decision} \\ & \text{vs} \\ \text{Private info} & \stackrel{\mathcal{S}}{\Longrightarrow} & \text{Messages} & \stackrel{\mathcal{M}}{\Longrightarrow} & \text{Social decision} \end{array}$$

– A "mechanism" $\ensuremath{\mathcal{M}}$ is a rule from reports to decisions.

- Basis:

- \ast Solution concept ${\cal S}$ for induced game
- * Probabilistic model of agent views of environment

– $\mathcal{D} = \mathcal{M} \circ \mathcal{S}$?

• Standard example: 2nd price auction

- Modeling formulations:
 - Static games w/ Perfect information
 - Static games w/ Imperfect information
 - Dynamic games w/ Perfect information
 - Dynamic games w/ Imperfect information
- Full rationality vs bounded rationality
- Throughout:
 - Players
 - Strategies
 - Preferences

Extensive form: Taking turns

- Entry game:
 - Challenger (Player 1) determines whether or not to compete
 - Incumbent (Player 2) determines whether or not to oppose challenger
 - Payoffs to (player 1, player 2)
- Strategy = Player's action at *every* node
- Strategic form representation:

 $\begin{array}{c|c} {\sf Yield} & {\sf Fight} \\ {\sf In} & 2,1 & 0,0 \\ {\sf Out} & 1,2 & 1,2 \\ \end{array}$

- NE of strategic form representation: (In,Yield) & (Out,Fight)
- Issue: Non-credible threats!

- Backwards induction (i.e., dynamic programming) leads to
 - Construction of Nash equilibrium
 - Exclusion of non-credible threats

Terminology: subgame perfect equilibrium

- Fact: For centipede game, subgame perfect equilibrium is to Stop at any opportunity for both players
- Criticism: Imagine very long centipede game.
 - What should Player 2 do according to subgame perfect equilibrium at interim stage?
 - What should Player 2 do intuitively?

- Players engage in repeated engagements of same game
- Assumption: Players observe actions of opponents
- Strategy: Mapping from history to (probabilities of) actions

 $\sigma_i: \mathcal{H} \to \mathcal{A}_i$

- Note distinction between "strategy" & "action"
- Network monitoring:

 $\{(NA, NM), (NA, NM), (A, NM)\} \longrightarrow ???$

- Utilities:
 - Sum of stage payoffs (finite)
 - Discounted future sum of stage payoffs (infinite)

. . .

• Standard example: Long run vs long run Prisoner's dilemma

- One shot or finitely repeated NE: Play D (dominant strategy)
- Repeated NE: Play C until observe D, then punish
- Entry game: Long run vs short run players

- One shot or finitely repeated NE: Fight is not credible
- Repeated NE: Fight is credible
- cf., Repeated game "folk theorems"
- Note: "infinite repetition" equivalent to probabilistic termination

Outline

- Modeling formulations:
 - Static games w/ Perfect information
 - Static games w/ Imperfect information
 - Dynamic games w/ Perfect information
 - Dynamic games w/ Imperfect information
- Full rationality vs bounded rationality
- Throughout:
 - Players
 - Strategies
 - Preferences

Illustration: Noisy state monitoring

• Setup:

- Two states & two players
- Action dependent state transition probabilities
- Each player has correlated observations about state
- Strategy: Mapping from *private* history to actions
- Obstruction:
 - Beliefs (of beliefs...) on opponent observations
 - Non-standard information patterns
 - In brief: Intractable
- Positive results for special cases:
 - Repeated games with public monitoring
 - Belief-free equilibria

• Setup:

- Administrator (row) knows state (allowed behavior)
- Attacker has probabilistic beliefs
- Players monitor actions of opponent
- Two-stages
- NE (depending on specifics...)
 - Administrator does *not* use dominant strategy
 - Rather, use probabilities based on true state (deception?)

Outline

- Modeling formulations:
 - Static games w/ Perfect information
 - Static games w/ Imperfect information
 - Dynamic games w/ Perfect information
 - Dynamic games w/ Imperfect information

• Full rationality vs bounded rationality

- Throughout:
 - Players
 - Strategies
 - Preferences

• How could agents converge to NE? If so, which NE?

Arrow: "The attainment of equilibrium requires a disequilibrium process."

- Monographs:
 - Weibull, Evolutionary Game Theory, 1997.
 - Young, Individual Strategy and Social Structure, 1998.
 - Fudenberg & Levine, The Theory of Learning in Games, 1998.
 - Samuelson, Evolutionary Games and Equilibrium Selection, 1998.
 - Young, Strategic Learning and Its Limits, 2004.
 - Sandholm, Population Dynamics and Evolutionary Games, 2010.
- Surveys:
 - Hart, "Adaptive heuristics", *Econometrica*, 2005.
 - Fudenberg & Levine, "Learning and equilibrium", Annual Review of Economics, 2009.
- Relevance: Online distributed self-configuration

Learning among learners

- Single agent adaptation:
 - Stationary environment
 - Asymptotic guarantees
- Multiagent adaptation:

Environment

=

Other learning agents

Non-stationary

 \Rightarrow

- *A* is learning about *B*, whose behavior depends on *A*, whose behavior depends on *B*...
- Resulting "feedback loop" has major implications on achievable outcomes.

- Rock-paper-scissors
- Reinforcement learning/replicator dynamics with & without "marginal foresight"

$$\dot{q}_{1}^{j} = \left(e_{j}^{\mathsf{T}}M_{12}(q_{2} + \gamma \dot{r}_{2}) - q_{1}^{\mathsf{T}}M_{12}(q_{2} + \gamma \dot{r}_{2})\right)q_{1}^{j}$$
$$\dot{q}_{2}^{j} = \left(e_{j}^{\mathsf{T}}M_{21}(q_{1} + \gamma \dot{r}_{1}) - q_{2}^{\mathsf{T}}M_{21}(q_{1} + \gamma \dot{r}_{1})\right)q_{2}^{j}$$
$$\dot{r}_{1} = \lambda(q_{1} - r_{1})$$
$$\dot{r}_{2} = \lambda(q_{2} - r_{2})$$

⁴Arslan & Shamma, "Anticipatory learning in general evolutionary games", *IEEE Conference on Decision and Control*, 2006.

- Cyber security and mathematical social sciences:
 - Human decision makers
 - Growing interest in "behavioral game theory" and "neuro-economics"
 - Limitations on repeatable controlled experiments
- Issues:
 - Descriptive vs Prescriptive agenda
 - Computational requirements
 - Full rationality
 - Breaking the symmetry
 - * Setup: Repeated game with slightly perturbed payoffs
 - * Players monitor opponent actions but do not know opponent perturbation
 - * Players play optimal strategies w.r.t. probabilistic forecast models
 - * *Theorem⁵:* Forecast probabilities are incorrect

⁵Source: Foster & Young, "On the impossibility of predicting the behavior of rational agents," PNAS, 2001.

- Cyber security and mathematical social sciences:
 - Human decision makers
 - Growing interest in "behavioral game theory" and "neuro-economics"
 - Limitations on repeatable controlled experiments
- Issues:
 - Descriptive vs Prescriptive agenda
 - Computational requirements
 - Full rationality
 - Breaking the symmetry
 - * Setup: Repeated game with slightly perturbed payoffs
 - * Players monitor opponent actions but do not know opponent perturbation
 - * Players play optimal strategies w.r.t. probabilistic forecast models
 - * *Theorem⁵:* Forecast probabilities are incorrect

Lou Rawls: "Ain't a horse that can't be rode; ain't a man that can't be throwed."

⁵Source: Foster & Young, "On the impossibility of predicting the behavior of rational agents," PNAS, 2001.