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Abstract—Anomaly detection promises to find elements of 
abnormality in a field of data. Computational barriers constrain 
anomaly detection to sparse subsets of total anomaly space. 
Barriers manifest in three ways – conserving both pattern 
memory capacity and pattern matching cycle time, while closing 
off scalability. The research reported here has discovered and 
analyzed a technology to eliminate two of these barriers, memory 
capacity and cycle time, and by targeting implementation at a 
new VLSI pattern processor, eliminate the third scalability 
barrier. An example shows how 10 to the 15 patterns integrated 
as a single gang detector can be stored in 193 bytes of memory, 
with much larger pattern magnitudes practical as well. The 
architecture of the gang detector enables complete processing of 
all 10 to the 15 patterns in time determined by the number of 
features in a single pattern, rather than the total number of 
patterns. Scalability is provided by a reconfigurable massively 
parallel VLSI pattern-matching processor chip that can 
accommodate a virtually unbounded number of such gang 
detectors. Anomalous behavior detection promises a way round 
the limitations of looking only for known attack patterns, but it 
raises new issues in the cyber domain of higher false positive 
rates and questionable normal-behavior stability. Work reported 
in this paper describes the nature and capability of gang detector 
employment, and suggests that the traditional issues of anomaly 
detection can be addressed with an architecture that engages in 
continuous learning and re-profiling of normal behavior, and 
employs a sensemaking hierarchy to reduce false positives. The 
architecture is based on process patterns from the biological 
immune system combined with process patterns of mammalian 
cortical hierarchical sensemaking.  
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I. INTRODUCTION 
Anomaly detection promises to find elements of 

abnormality in a field of data. High end applications include 
finding patterns in unstructured data, identifying emergent 
behaviors in multi-agent systems, illuminating insider threats in 
progress, and detecting cyber attack vectors unseen previously.  

Computational barriers constrain anomaly detection to 
sparse subsets of total anomaly space. Barriers manifest in 

three ways – conserving both pattern memory capacity and 
pattern matching cycle time, while limiting scalability.  

The research reported here has discovered and analyzed a 
patent-pending technology to eliminate two of these barriers, 
memory capacity and cycle time, and by targeting 
implementation at a new VLSI pattern processor, eliminate the 
third barrier of scalability. An example discussed shows how 
1015 patterns integrated as a single gang detector can be stored 
in 193 bytes of memory, with much larger pattern magnitudes 
practical as well. The architecture of the gang detector enables 
complete processing of all 1015 patterns in time determined by 
the number of features in a single pattern, rather than the total 
number of patterns. Thus, 1015 patterns that each have seven 
features require only seven simple byte-matching 
computational cycles. Scalability is provided by a 
reconfigurable massively parallel VLSI pattern-matching 
processor chip that can accommodate a virtually unbounded 
number of such gang detectors. Unbounded in that multiple 
pattern processors can be employed should one be insufficient. 

Feasibility of gang detectors filtering network traffic was 
demonstrated with simulators during phase 1 of a DHS SBIR 
contract. The pattern processor chip is in final stages of 
production preparation, having demonstrated its capabilities in 
a prior DHS S&T SBIR contract. Combining gang detectors 
with the pattern processor makes practical previously 
unattainable anomaly detection in many domains.  

Anomalous behavior detection promises a way around the 
limitations of looking only for known attack patterns, but it 
raises traditional issues of higher false positive rates and 
questionable normal-behavior stability. Mitigation of these two 
issues is not a topic covered in this article, but will have some 
discussion in the conclusion section where next phase project 
work is briefly outlined. 

Phase 1 work reported in this article describes the nature 
and capability of gang detector employment, and suggests that 
the traditional issues of anomaly detection can be addressed 
with an architecture that engages in continuous learning and re-
profiling of normal behavior, and employs a sensemaking 
hierarchy to reduce false positives. Notably, the architecture is 
based on process patterns from the biological immune system  
combined with process patterns of mammalian cortical 
hierarchical sensemaking [3]. 
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This project was undertaken to generate innovative resilient 
network technology. Its focus on sensing and sensemaking 
recognized the imbalance between remediation options, such as 
those now promised by cloud computing and virtualization – 
and the ability to better sense when remediation is required.  

II. HARDWARE FOR MASSIVE PATTERN DETECTION 
This research project leverages a new VLSI pattern 

processing technology, referred to here as the pattern processor 
(PatProc), which promises to overcome the barriers to a high 
fidelity immune-system-like network anomaly detection 
capability. This technology enables the capabilities developed 
under the research project, and some background discussion is 
necessary in order to understand the research approach and  
results.   

In June 2008 a General Purpose Set Theoretic Processor 
architecture for realization in VLSI was patented [6], featuring 
affordable massively parallel pattern detection in data streams. 
Phase 1 and phase 2 SBIR contracts (NBCHC070016) awarded 
by DHS developed FPGA prototypes, explored applications in 
security and related domains, and enabled successful licensing 
for  production and marketing to a major VLSI producer. Initial 
chips are currently in advanced stages of production design, 
with availability sufficient for phase 2 prototyping. 

The PatProc architecture [1] represented conceptually in 
Fig. 1 has the unique features of: (a)  constant data-stream 
throughput independent of the number and complexity of the 
patterns being filtered simultaneously in the data stream, and 
(b) affordable unbounded scalability with low-cost high-
capacity pattern-detector chips that can be combined in tandem 
should a single chip be insufficient.  

 

Figure 1.  Reconfigurable pattern processor – reusable cells reconfigurable in 
an open-ended architecture 

A single PatProc will accommodate a large number 
(potentially 10 thousand or more in first silicon) of “individual” 
anomaly detectors. As will be seen later, this project has found 
a now patent pending way to increase that number to vast 
quantities well in excess of the 1015 pattern-capacity examples 
that will be shown.  

III. SPECULATIVE ANOMALY DETECTION 
Speculative anomaly detectors, like biological immune 

system (BIS) antibodies, are randomly generated patterns that 
are generally not known from prior learned experience or from 
external sources of known intrusion patterns. The process for 
generating and managing the life cycle of speculative detectors 
developed in this study is inspired by the adaptive biological 
immune system. The concept is important for our work, as a 
prime objective is to detect never before seen attacks.  

Biological immune systems are highly effective at detecting 
and neutralizing attacks and infections by microorganisms. The 
highest evolved form, in mammals, sports remarkably 
adaptable processes for detecting and identifying new foreign-
body invasions not encountered previously. This is 
accomplished by a process which inspired a modified version 
shown in Fig. 2 that continuously generates random, diverse, 
and large quantities of speculative detectors (antibodies). 
Before release into the blood stream, new detectors are first 
tested to make sure that they will not respond to elements of 
“self”, prohibiting a false positive alarm that would then trigger 
an undesirable immune response. Detectors that pass the self-
tolerant test are released into time limited service – and 
eliminated if they fail to detect a foreign invader (antigen) by 
the end of their programmed life-cycle. This self-tolerization 
process is referred to as negative selection, as the detectors that 
remain have been selected by virtue of not reacting to self. 
They are then put into service looking for anomalies that don’t 
belong in blood.   

 

Figure 2.  General  detector life cycle 

Stephanie Forrest, of the University of New Mexico and 
Santa Fe Institute, opened the artificial immune system (AIS) 
door for cyber security purposes in the early ‘90s, with seminal 
modeling of biological immune system processes and 
translations into cyber-appropriate process models [5]. 
Forrest’s work and that of her colleagues, and those that have 
built upon that work, have informed and guided the phase 1 
work. The Ph.D. dissertation of Steven Hofmeyr [7], one of 
Forrest’s students, was especially informative. Hofmeyr 
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graciously participated as a subject-matter-expert in reviews of 
our work in process, offering helpful suggestions and 
encouragement, though no endorsement is implied. 

Somewhat similar to BIS detectors (antibodies) ,which start 
out as fuzzy detectors that will match a range of similar 
antigens, we employ a gang detector (GD) that is an integrated 
collection of many patterns into a single detector. A GD is 
therefore fuzzy in that it is not clear upon detection which 
pattern was matched. However, unlike the BIS, we can 
immediately determine the exact individual pattern that caused 
the match by simply looking at what is in the data stream that 
triggered the gang detector’s match event.  

IV. GANG DETECTORS 
Fig. 3 depicts a typical way the PatProc might be 

configured to detect a specific single pattern. The PatProc 
could be configured with many such single-pattern detectors, 
each sensitive to different patterns and all active 
simultaneously. 

In Fig. 3 the depicted pattern detector consists of 7 multi-
feature detectors (MFDs) connected by sequential activation 
links, each with a single feature indicator set. Collectively these 
7 MFDs will detect a pattern (path through the MFD) of 7 
contiguous feature-stream byte values that correspond to the 
feature indicators set in each MFD respectively. Fig. 3 depicts a 
single pattern detector that would be appropriate for detecting 
specific packet header information that has been extracted from 
the raw packet by a preprocessor (PreProc) and then fed to the 
pattern processor as 7 contiguous features (bytes). Many such 
single-pattern detectors could be present and active in the 
pattern processor simultaneously, all examining the same 
feature stream for different patterns. 

 

Figure 3.  Single-pattern detector for a specific packet header connection 

Multi-feature detectors are called such because they may 
have multiple feature indicators set, and thus are sensitive to 
multiple feature values rather than just one. A gang detector 
employs this multiple setting capability to detect many patterns 
integrated as a group within a single collection of MFDs. Fig. 4 

depicts the concept and points out the unique benefits of this 
approach unattainable previously.   

The vast numbers of anomaly detectors possible in a GD 
enable a high fidelity artificial immune system, something not 
witnessed with current conventional technology. All pattern 
space not associated with normal operational behavior patterns 
(self) must be covered completely by detectors looking for non-
self patterns. If this can be accomplished, false negative 
anomalies would be eliminated, assuming all of the normal 
behavior patterns associated with self can be removed from the 
mechanism employed to detect anomalies. Unfortunately, as 
has been noted repeatedly in the literature, cyber network 
environments are not stable and normal behavior changes, 
unlike the biological immune systems. 

Two issues must be addressed: complete coverage of 
anomalous pattern space, and a continuous reevaluation of 
normal operating behavior and its complimentary 
characterization of anomalous behavior patterns. 

In a simple example, a gang detector might be created at 
birth with all feature indicators set, allowing it to cover 100% 
of all pattern space, both normal and non-normal (anomalous). 
The gang detector could then be exposed to normal behavior 
for some period of time, and every pattern that was detected 
during this self-tolerization, or training, period, would then be 
removed from the gang detector. At some appropriate time 
when patterns are no longer detected it might be assumed that 
the gang detector no longer contains any patterns associated 
with normal behavior and then be put into service. 

 

Figure 4.  Conceptual depiction of a gang detector 

A gang detector like that in Fig. 4, fully populated with 
feature indicators, covers 2566 x 8 = 2.25x1015 unique Pattern 
Paths. … represented in just (6x32)+1 = 193  bytes. If each of 
these patterns were in a conventional pattern list, seven times 
the number of possible patterns in feature-byte storage would 
be required, or approximately: 1016 bytes in contrast. 
Computational time aside, these storage comparisons show the 
prohibitive barrier for achieving high-fidelity immune-system 
performance with traditional computational approaches 
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Assuming for the moment a stable environment that has 
presented all normal behavior, there is still a problem: 
removing a single specific pattern from a gang detector is not 
possible. It should be clear that removing a pattern does not 
require the removal of the entire path (all seven feature 
indicators). The removal of any single feature indictor in the 
path disables that pattern from further detection. However, 
removing a single feature indicator disables many more 
patterns, ones that may be legitimate anomalous patterns that 
use that feature indicator in combination with other feature 
indicators unrelated to the normal pattern that was disabled. 

The solution to the removal problem is central to the issue 
of full anomalous pattern space coverage, and is statistical in 
nature. In short, full coverage is accomplished by using many 
gang detectors that each covers overlapping but different 
portions of anomalous pattern space. Fig. 5, borrowed from the 
artificial immune system literature, depicts a two dimensional 
representation of pattern space, and shows a portion reserved 
for self and the remaining portion partially covered by many 
other detectors likened to fuzzy antigen detectors, antibodies 
that will react to many different antigens before they are cloned 
and improved for a precise match through a process called 
somatic hypermutation [7:10].  

BIS solves full coverage with two mechanisms: random 
generation of many antibodies with diverse but somewhat 
overlapping coverage, and continuous cycling over time 
through the entire pattern space with new fuzzy antibodies 
replacing those that have failed to encounter an antigen. Our 
approach is similar in achieving full coverage through 
statistical means, in that we generate many diverse gang 
detectors, but we are more efficient, in that we can field a 
sufficient set of gang detectors to statistically cover virtually all 
of the anomalous pattern space at any one time, should that 
prove to be necessary or useful. 

 

Figure 5.  Pattern space and self-nonself discrimination, 
 graphic from [4] 

Fig. 5 characterizes BIS pattern space as a universe of data 
points partitioned into two sets – self and non-self. Negative 
detectors, those selected after tolerization for non reaction to 
self, individually cover somewhat overlapping subsets of non-
self. 

Subsets are continuously replaced over time with new 
subsets that cover different portions of non-self pattern space, 
eventually cycling through entire coverage of non-self space. 
BIS appears to cover a pattern space of something like 10 to the 
9 patterns [2] over a period of 8-10 weeks or so. 

Now consider a speculative GD creation process that 
randomly turns on 50% of the feature indicators within a 256-
bit multi-feature detector, and repeats that process for all 7 cells 
in a 7-cell detector. If all 256 values in each of the first six 
detector cells could potentially be encountered, and 8 values 
within the seventh, such a detector would match 1286 x 4 
different patterns on average – considering that 50% allowable 
feature indicators on average are set in each multi-feature 
detector. That means one detector can match 1.76x1013 
different patterns. There are 2566 x 8 possible patterns in all of 
pattern space, which is 2.25x1015 patterns. Thus, a single 7-cell 
detector generated in this manner can cover 0.78% of all 
pattern space.  

We investigated the feasibility of pattern-space coverage 
for some appropriate set of security signature domains. For 
matters of convenience, we chose to employ detectors for the 
IPv4 packet connection domain, with an eye on IPv6 scaling 
issues. The principal work was to understand how GD 
construction and pattern space behave interactively, and to 
determine appropriate bounds on GD construction for the 
intended first generation PatProc technology.  

Three key questions to answer about GDs employed for 
anomalous behavior detection are associated with pattern space 
coverage: 

x How is pattern space coverage affected by the number 
of multi-feature detectors in a GD? (two sizes are 
examined: 6 and 32) 

x How many GDs are required to cover pattern space 
sufficiently? (see Fig.6) 

x Can this number of GDs be practically accommodated 
by the pattern processor technology? (yes - easily) 

A. IPv4 Gang Detector Coverage 
Pattern space for a 7-feature pattern, where six feature may 

have 256 different values and one may have 8 values, 
encompasses a total pattern space of 2.25x1015 unique patterns. 
A statistical model was built in Excel to determine how much 
of pattern space is covered by different numbers of such 7-
feature GDs from what is believed to be an optimal (for 
coverage) set of construction parameters, 50% cardinality, 
meaning half the feature indicators are turned on. The results of 
that model are shown in Fig. 6 at the top, and indicate that 512 
GDs appear to provide more than sufficient coverage for the 
chosen construction parameters.  

It should be noted that it is not necessary to provide full 
coverage with 512 GDs at any one end point at any one time if 
similar endpoints share the discovery of anomalies, so that 10 
sharing endpoints would only require 1/10th as many GDs to 
have the same coverage effect. Also each endpoint will cycle 
its in-service GDs over time to address the possibility of 
changes in the operational environment, repopulating the set of 
GDS in service. Thus the same effect of coverage is obtained at 
any one endpoint by ten cycles of 50 GDs as is obtained with a 
single cycle of 500 GDs 
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Figure 6.  Top graph show high coverage at 512 GDs for an IPv4-connection 
signature of 7 MFDs at 50% cardinality (half the bits on average turned on in 
a GD). Bottom graph shows that higher cardinality is required to obtain high 

coverage with longer patterns such as IPv6 would require. 

B. IPv6 Gang Detector Coverage 
What appears clear is that a GD composed of 7 feature 

cells, appropriate for IPv4-connection pattern space, has 
excellent application qualifications. What also appears clear, as 
shown in Fig. 6 at the bottom, is that there is a limit to how 
many features can be “practically” accommodated in GD 
patterns without employing GDs with higher than 50% 
cardinality.   

Other construction parameters for GDs have been probed 
and tested for effect, and one shows promise for maintaining 
high coverage (90%+). With a 32 MFD GD, 1024 GDs can 
cover 90%+ of pattern space at all times. This is likely much 
more than necessary given the constant refresh of the GDs in 
service and network inter-endpoint collaboration.  

C. Cardinality and Coverage 
GDs are generated at birth with a biased random generation 

of feature indicators, whose count is the cardinality at birth. A 
60% bias at birth would place 0.6 x 256 = 154 feature 
indicators randomly in each MFD. The cardinality at birth is 
thus 154. Training then reduces that cardinality as the GD is 

tolerized to normal behavior and feature indicators are 
removed. Diversity among the GDs employed for pattern space 
coverage is affected by cardinality. If cardinality is too high 
there is a lot of useless pattern overlap among the GDs that 
requires processing attention as high multiple hits occur for any 
given anomaly pattern. If cardinality is too low many more 
GDs are required in order to cover pattern space completely. It 
is felt, though not verified, that the optimal working cardinality 
for GDs in service would be 50%, and that 40% would be an 
acceptable lower bound.    

D. Testing for GD Training and Service Characterization 
Demonstrating feasibility of gang detector technology with 

a custom developed simulation system focused generally on 
IPv4 network traffic, and specifically on in-and-out 
TCP/UDP/ICMP/Other traffic connections, characterized in 
packet header data. Scaling to IPv6 connection traffic was 
analyzed only to confirm feasibility. 

Test data sets were generated from weeks to a few months 
of packet traffic capture from a variety of small-office 
machines. With a sufficient understanding of how the number 
of GDs, their structure, and their tolerization training, affects 
pattern space coverage. 

V. DETECTOR CONTEXT AND DETECTOR SETS  

A. Detector Context in Network Architecture 
An agent, in the sense that we employ the term, is a self 

contained entity that is responsible for a specific type of 
detection activity at an endpoint. It is currently anticipated, as 
shown in Fig. 7, that three agents, of identical gang-detector-
based architecture, will each be responsible for a different 
hierarchical level of detection at each endpoint. 

 

Figure 7.  SornS Multi-Agent Endpoint and Network Architecture 
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Three general types of pattern detection are thought 
appropriate for the first three levels of SornS sensemaking 
classification: spatial, temporal, and correlative respectively.  

x Spatial detectors at level 1 (L1) are structured to detect 
contiguous ordered sequences of features: something 
immediately followed by something immediately 
followed by something, and so on. The input for L1 in 
this feasibility study focused on sequential bytes of 
packets, principally in headers for analytical purposes 
but also on content for concept extension. L1 sends a 
feature stream to L2.  

x Temporal detectors at level 2 (L2) represent something 
followed by something followed by something, and so 
on, but not necessarily contiguous as each contiguous 
group of features fed to L2 may have been separated 
from adjacent contiguous features by L1 data 
considered of no importance. Hence, L2 processes 
features that are ordered in time and space, all from the 
same packet but not necessarily spatially congruent. L2 
sends a feature stream to L3. 

x Correlative detectors at level 3 (L3) are then fed 
features that represent a temporal sequence of 
anomalies detected at L2, which may be cross packet 
and/or cross flow.  

The feature-feeding mechanisms between levels and the 
temporal and correlative detectors, cannot be discussed further 
in the space limitations of this article. 

B. Detector Sets 
Fig. 8 depicts the four different detector sets contained 

within the PatProc for each endpoint hierarchical level, and 
indicates the life-cycle flow of detectors between sets.  

 

Figure 8.  Four sets of detectors filter the same datastream 

There are four detector sets, all simultaneously filtering the 
feature stream presented by the agent’s preprocessor: 

x Nursery set – this set is where the agent’s preprocessor 
(PreProc) places newly birthed GDs and manages their 
tolerization process. When a hit occurs during 
tolerization the agent’s postprocessor (PostProc) is 
notified and removes an appropriate feature indicator 
from the GD (perhaps multiples) experiencing the hit. 
When a GD completes its tolerization it is eligible for 
transfer to the service set. Transfer occurs when there 
is room for a GD in the service set. GDs in the nursery 
set are terminated and replaced if they are tolerized 
below a minimum cardinality threshold. New GDs are 
added to the nursery set by the agent’s GD birthing 
process whenever there is room. 

x Service set – this set contains tolerized GDs that look 
for anomalies. When one is found the PostProc is 
notified and accesses the working memory to extract 
the specific single signature that caused the hit. The 
extracted signature is then eligible for transfer into the 
memory set as a single signature detector (SD). 
Transfer to the memory set occurs when there is room 
for another SD. Individual GDs are terminated in the 
service set when their lifetime is over, determined by a 
combination of total time in the service set and a 
threshold for minimal time-based detection 
performance. Time may be measured in either 
operating time and/or quantity of datastream processed. 

x Memory set – this set contains single signature 
detectors that represent working anomaly detectors. 
SDs have a utility measure (U) associated with them in 
working memory. Lifetime for an SD in the memory 
set is determined by its U value. U values are promoted 
and demoted by higher level agents according to the 
utility of the SD in higher level anomaly detection. SDs 
that fall below a minimal threshold utility value are 
terminated. A portion of the memory set is reserved for 
SDs that can be inserted as trials by the agent even 
when the rest of the memory set is filled with high 
utility SDs – to help mitigate the effect of 
environmental changes that might be too-slowly 
adjusted by higher level utility values.  

x Action set – this set contains SDs that if hit will call for 
or cause immediate action – such as a black list entry 
for a known bad packet address that then causes the 
packet to be flushed, or a white list entry that overrides 
anomaly detection. It is expected that the action set will 
be populated and depopulated by directives from a 
level above the endpoint levels. It is not expected that 
the action set will contain identical network-wide SDs, 
which are more efficiently dealt with by a network 
appliance. 

Detector sets are associated with specific detection 
domains. For processing packet data these domains are 
demarcated separately for packet connection processing and for 
packet content processing individually associated with a 
specific application, such as a web application, a Microsoft 
office application, an SQL server, and such, as shown in Fig. 9. 
Switching between domains means saving and restoring the 
state of the relevant detector sets – a no-time cost activity that 
is part of the on-board PatProc capability, which is also used 
for immediate switching between multi-packet flows. 

 

Figure 9.  Separate detector sets for each domain of detection 
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VI. IN CONCLUSION 
This project did not begin with any hint that its 

accomplishments would include a patent-pending Very Large 
Scale Anomaly Detector (gang detector). Although we had 
total confidence that the underlying hardware PatProc 
technology would enable innovative and important advances in 
high fidelity artificial immune system performance, the 
breakthrough in anomalous pattern capacity was unforeseen, as 
was the uncompromising total coverage of a vast pattern space. 

Although the gang detector architecture can be usefully 
implemented in conventional technologies for certain small 
applications, without the new VLSI PatProc none as scalable 
and  none as inexpensive are known to the author. Some 
context to keep in mind: the gang detector is good for negative 
selection, not positive selection, you cannot build a gang 
detector by adding patterns to it, and you cannot delete a single 
pattern from it (like Bloom filters that way). 

This project focused on the application of the gang detector 
for network connection-based anomaly sensing, a specific 
domain instance of the more general “normal vs. anomalous 
behavior” classification problem. The approach should be self-
adaptive to local dynamics and provide custom anomaly 
detection with no two installations alike in learned pattern 
content. In summary, analysis for a seven feature packet-
connection pattern example showed: 

• Memory breakthrough: 193 bytes vs. 1016 bytes for 
pattern storage 

• Coverage breakthrough: 512 GDs covers 99.97% of 
pattern space at 1 endpoint 

• Good network-wide coverage does not require high 
coverage at any endpoint: endpoint multiples boost 
total coverage with the same coverage curve, and 
endpoint cyclic refresh boosts total coverage with the 
same coverage curve over time. 

Anomalous behavior detection promises a way round the 
limitations of looking only for known attack patterns, but it 
raises new issues in the cyber domain of high false positive 
rates and questionable stability of normal behavior profiles. 
Fundamentally, anomaly detectors learn in some fashion what 
is normal, and then classify all else as anomalous. High false 
positive rates result from anomaly detections that are benign or 
of no utility, yet demand human evaluation, as well as normal 
behaviors that were not present during the training period. The 
stability issue relates to the dynamics of normal behavior, 
characterized by changes in personnel and operational 
behaviors, as well as hardware and software resource changes. 

By themselves, the vast coverage of GDs can reduce false 
negatives, but not false positives, and may increase the 
occurrence of false positives due to greater coverage of 
anomalous pattern space. It is anticipated that the ability to 
reduce false positives will be accomplished by two aspects of 
the overall architecture: (1) with human evaluation at level 4, 
principally of correlative anomalies, those that occur in 
anomalous combinations, will be presented for evaluation, 
reducing the more numerous quantity of anomalies detected at 
lower levels; and (2) human evaluative feed-back will be 

captured as learning in lower-level memory sets and action 
sets, intending to eliminate repetitive evaluations of the same 
anomalies.  

The issue of normal-behavior stability in typical, but not all, 
cyber networks will be addressed by at least two aspects of the 
overall architecture: (1) continuous re-generation of new GDs 
that will track normal behavior through changes in the 
environment; and (2) feed-back directives from level four to 
temporarily suspend certain memory and action set anomaly 
detection when temporary changes to the environment are 
made.  

The next phase of the project is extending the work 
reported here further into the hierarchical learning mechanisms, 
and building endpoint bump-on-the-wire prototypes for 
operational testing. 
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