
Semantics-Driven Testing of the PKCS11 API

Matthew Bauer, Mike Dodds
Joint work with Charisee Chiw, Joey Dodds and Stephen Magill

Galois Consultancy

2

Amazon

LG

Founded in 1999 • Based in Portland, OR • 100 Employees

Galois / AWS Collaboration

● Collaboration: Key Security related projects in partnership with AWS

● Approach: continuous formal methods

○ Tight integration with engineering processes
○ Integration into CI / CD pipeline
○ High levels of automation
○ Low cost of maintenance
○ Actionable bug reports

● Ongoing formal methods success story: we’re helping bringing high
assurance software to AWS end users (ie. everyone)

● NB: lots of other AWS formal methods work - see other talks at HCSS!

3

● Cryptographic Algorithm verification

○ SIKE / BIKE - Post-quantum algorithms
○ HMAC/DRBG - TLS core algorithms

● Cryptographic Protocol verification

○ s2n - Amazon TLS handshake protocol

● Cryptographic APIs testing

○ PKCS11 - Public-Key Cryptography Standards

Galois / AWS Projects

4

This Project: Assuring API Implementations

● Each API defines expected sets of
behaviours - an API is pretty much a
specification.

● Library implementations should
match the spec i.e.

○ Not crash

○ Return expected values

● Often not the case!

5

Encryption
UnInitialized

Encryption
Initialized

(Init, O
k)

(*, BufferTooSmall)
(Init, OpeationActive)

(Update, Ok)

(F
ina

l, O
k)

(Update, Ok)
(Init, OperationActive)

Encryption
Updating

Target: The PKCS11 API

● A platform independent API standard for interacting with cryptographic tokens
such as hardware security modules (HSMs) and smart cards

● Functionality:

○ Store cryptographic tokens on devices

○ Generate cryptographic keys and random numbers

○ Encrypt, decrypt, hash, sign and verify data

○ Wrap and unwrap keys

6

The PKCS11 API - Keys

● Keys hold cryptographic data and properties, which include:

○ Key type (e.g. AES)

○ Key class (e.g. private key, public key, secret key)

○ Storage characteristics (e.g. does it persist on the device)

○ Supported operation types (e.g. encryption, decryption, etc...)

○ User defined labels

7

The PKCS11 API - Mechanisms

● Each cryptographic operation is parameterized by a mechanism that
describes the underlying algorithms used in the cryptographic operation

● Example: AES-CBC for encryption and decryption describes:

○ The algorithm (AES) and mode (CBC)

○ Parameters to the algorithm (such as an initialization vector)

8

The PKCS11 API is Complicated

● ~350 pages of specification (~150 base spec, ~200 key/mechanism spec)

● ~50 function specifications

● ~45 cryptographic algorithms

● ~90 error codes

→ size makes it challenging to formally verify code.

9

Instead: Model-based Test Synthesis

● Write a strict formal model of the API - values and transitions

● Synthesize a test set by exploring the model

● Use formal techniques to ensure a high level of coverage

● Test the implementation library, add tests to CI

→ Achieve a high level of API confidence.

10

PKCS11 Testing in Detail

PKCS11 API Function Descriptions

CK_DEFINE_FUNCTION(CK_RV, C_EncryptInit)(
 CK_SESSION_HANDLE hSession,
 CK_MECHANISM_PTR pMechanism,
 CK_OBJECT_HANDLE hKey
);

12

Function name and
return type

Argument types and
order

PKCS11 API Function Descriptions

Informal Description: C_EncryptInit initializes an encryption operation. hSession
is the session’s handle; pMechanism points to the encryption mechanism; hKey is
the handle of the encryption key

13

PKCS11 API Function Descriptions

Stateful Behavior: After calling C_EncryptInit, the application can either call
C_Encrypt to encrypt data in a single part; or call C_EncryptUpdate zero or more
times, followed by C_EncryptFinal, to encrypt data in multiple parts

14

PKCS11 API Function Descriptions

Error Handling: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED … (20 Returns in
total)

15

PKCS11 API Return Code Descriptions

● Returns codes are organized by section,
where a section’s order in the document
defines a precedence on the return codes
it contains

● Each section also defines a order on the
return codes within in.

○ In some sections, this is a total order
according to order of appearance

○ In some sections, this is a partial order
where all returns are unordered unless
explicitly stated

16

{
{<

<

??

PKCS11 API Pitfalls

● Behavior is underspecified

○ Possible return codes may not be listed
○ Extra return codes may be listed
○ Not all return codes are described

● Return code precedences are not concisely and uniformly described

● The description of stateful behavior is imprecise and scattered across the
document

17

→ Need a formal description of the API!

Formally Modeling the API

● Cryptographic algorithms

● Error conditions associated with each function

● Stateful behavior that defines how functions interact

18

Formal Cryptographic Specifications

● Specified using Cryptol, a domain specific language for cryptography

● Cryptol specifications are executable programs that closely resemble their
mathematical definitions

● We have specified the following algorithms

○ AES
○ Triple DES
○ ECDSA
○ RSA
○ SHA

19

Formal Return Code Specifications

● What error conditions are possible and how are they triggered?

○ We describe errors as constraints over function arguments and the
(model of) the system state

○ Return code precedence complicates constraints, all conditions of higher
priority errors must not be true

○ SMT solvers are used to synthesize the necessary system state and
function inputs that generate a particular error

20

Formal State Models

21

Encryption
UnInitialized

Encryption
Initialized

Transitions = (Function Name, Return Code)

(Init, Ok)

(*, BufferTooSmall)(Init, OperationActive)

(Update, Ok)(Init, OperationActive)

(Update, Ok)

(Final, Ok)
Encryption
Updating

State Model Encoding in Haskell

incrementalStateTransition UnInit C_EncryptInit CKR_OK = Initialized
incrementalStateTransition UnInit _ _ = UnInit

incrementalStateTransition Initialized C_EncryptUpdate CKR_BUFFER_TOO_SMALL = Initialized
incrementalStateTransition Initialized C_EncryptInit CKR_OPERATION_ACTIVE = Initialized
incrementalStateTransition Initialized C_EncryptUpdate CKR_OK = Updating
incrementalStateTransition Initialized _ _ = UnInit

incrementalStateTransition Updating C_EncryptUpdate CKR_OK = Updating
incrementalStateTransition Updating C_EncryptInit CKR_OPERATION_ACTIVE = Updating
incrementalStateTransition Updating C_EncryptFinal CKR_OK = UnInit
incrementalStateTransition Updating _ _ = UnInit

22

System Architecture

23

Return Code
Constraints

C Tests
F(A1, …, AN)

=
RV

State
Machine

Description

Transition
Processor

Function: F
Return: RV

Args: A1, …, AN

Cryptol
Algorithm Specs

Test Vectors

Test Generation

● Generated tests that exercised every
software triggered return code for every
stateful operation

● Explored every path through the finite
state machines as well as all meaningful
compositions of different paths

● Over 1,500 test cases in total

Encryption - 442 tests

Decryption - 438 tests

Digest - 182 tests

Sign - 128 tests

Verify - 150 tests

Sign Recover - 30 tests

Verify Recover - 30 tests

Session Management - 42 tests

24

Test Results

25

● Tested against OpenCryptoki and
pre-release Amazon CloudHSM

● Bugs fixed before production:

○ Library segmentation faults

○ Invalid state machines

○ Improper return codes

○ Missing null pointer handling

○ Lossy object copies

CloudHSM

Library Segfaults7

State machine errors2

Improper return codes20+

Example State Machine Error

26

Encryption
UnInitialized

Encryption
Initialized

(Init, O
k)

(*, BufferTooSmall)
(Init, OpeationActive)

(Update, Ok)

(F
ina

l, O
k)

(Update, Ok)
(Init, OperationActive)

Encryption
UnInitialized

Encryption
Initialized

(Init, O
k)

(*, BufferTooSm
all)

(*, Ok)

(F
ina

l, O
k)

Spec OpenCryptoki

Encryption
Updating

(Init, OpeationActive)(Update, Ok)
(Init, OperationActive)

Encryption
Updating

Example State Machine Error

27

Encryption
UnInitialized

Encryption
Initialized

(Init, O
k)

(*, BufferTooSmall)
(Init, OpeationActive)

(Update, Ok)

(F
ina

l, O
k)

(Update, Ok)
(Init, OperationActive)

Encryption
UnInitialized

Encryption
Initialized

(Init, O
k)

(*, Ok)

(F
ina

l, O
k)

Spec CloudHSM

Encryption
Updating

(*, BufferTooSmall)
(Init, OpeationActive)

(Update, Ok)

Encryption
Updating

(Init, Ok)

Keys to Deployment Success

● Categorization of failures by type and severity

● Test case reproducibility

● Speed

● Metrics

● Configurability

28

Amazon Deployment

● The test suite is deployed in Amazon’s CI/CD pipeline.

○ Test suite and specification compliance is continuously maintained

○ Searchable metrics are published with each run

○ Detailed logs capturing all object instantiations, function calls and return values are captured

○ Over 10,000 tests execute in less than 30 minutes

29

Thank you!

