Semantics-Driven Testing of the PKCS11 API

Matthew Bauer, Mike Dodds

Joint work with Charisee Chiw, Joey Dodds and Stephen Magill

| galois|

@~ Homeland
W Security

] st
% ..' .‘

Founded in 1999 Based in Portland, OR « 100 Employees

MARINES

|galois| 2

e Collaboration: Key Security related projects in partnership with AWS

e Approach: continuous formal methods

Tight integration with engineering processes
Integration into Cl / CD pipeline

High levels of automation

Low cost of maintenance

Actionable bug reports

e Ongoing formal methods success story: we're helping bringing high
assurance software to AWS end users (ie. everyone)
e NB: lots of other AWS formal methods work - see other talks at HCSS!

O O O O O

|galois| 3

e Cryptographic Algorithm verification

¢

o SIKE / BIKE - Post-quantum algorithms

o HMAC/DRBG - TLS core algorithms %

e Cryptographic Protocol verification
o s2n-Amazon TLS handshake protocol Sn
e Cryptographic APls testing
o PKCS11 - Public-Key Cryptography Standards OASIS 9

|galois| 4

) Encryption
e Each API defines expected sets of [umnirt}il;)nzed}
behaviours - an APl is pretty much a / \
specification. & 2
> %
] [. AN O
e Library implementations should &° 6\
match the spec i.e.
P Encryptlon 1 (Update, Ok) (Encryption
o Not crash Updating J L Initialized

o Return expected values u u

e Often not the case! (Update, Ok) (*, BufferTooSmall)
(Init, OperationActive) (Init, OpeationActive)

|galois| 5

e A platform independent API standard for interacting with cryptographic tokens
such as hardware security modules (HSMs) and smart cards

e Functionality:
o Store cryptographic tokens on devices
o Generate cryptographic keys and random numbers
o Encrypt, decrypt, hash, sign and verify data

o Wrap and unwrap keys

|galois| 6

e Keys hold cryptographic data and properties, which include:
o Key type (e.g. AES)
o Key class (e.g. private key, public key, secret key)
o Storage characteristics (e.g. does it persist on the device)
o Supported operation types (e.g. encryption, decryption, etc...)

o User defined labels

|galois| 7

e Each cryptographic operation is parameterized by a mechanism that
describes the underlying algorithms used in the cryptographic operation

e Example: AES-CBC for encryption and decryption describes:
o The algorithm (AES) and mode (CBC)

o Parameters to the algorithm (such as an initialization vector)

|galois| 8

e ~350 pages of specification (~150 base spec, ~200 key/mechanism spec)
e ~50 function specifications
e ~45 cryptographic algorithms

e ~90 error codes

— size makes it challenging to formally verify code.

|galois| 9

e \Write a strict formal model of the API - values and transitions
e Synthesize a test set by exploring the model
e Use formal techniques to ensure a high level of coverage

e Test the implementation library, add tests to CI

— Achieve a high level of API confidence.

|galo1’s| 10

PKCS11 Testing in Detail

C_Encryptinit

CK_DEFINE_FUNCTION(CK_RV, C_EncryptInit)(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey

);

C_Encryptlnit initializes an encryption operation. hSession is the session's handle; pMechanism points to the encryption mechanism; hKey is the handle of the encryption key.
The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key supports encryption, MUST be CK_TRUE.

After calling C_Encryptinit, the application can either call C_Encrypt to encrypt data in a single part; or call C_EncryptUpdate zero or more times, followed by C_EncryptFinal, to encrypt data in multiple parts. The encryption operation is active
until the application uses a call to C_Encrypt or C_EncryptFinal to actually obtain the final piece of ciphertext. To process additional data (in single or multiple parts), the application MUST call C_EncryptInit again.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_EncryptFinal.

CK_DEFINE_FUNCTION(CK_RV, C_EncryptInit) (Function name and
CK_SESSION_HANDLE hSession, return type
CK_MECHANISM_PTR pMechanism,

Argument types and
CK_OBJECT_HANDLE hKey

order

|galo1’s| 12

C_Encryptinit

CK_DEFINE_FUNCTION(CK_RV, C_EncryptInit)(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey
);
C_Encryptlnit initializes an encryption operation. hSession is the session's handle; pMechanism points to the encryption mechanism; hKey is the handle of the encryption key.

The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key supports encryption, MUST be CK_TRUE.

After calling C_Encryptinit, the application can either call C_Encrypt to encrypt data in a single part; or call C_EncryptUpdate zero or more times, followed by C_EncryptFinal, to encrypt data in multiple parts. The encryption operation Is active
until the application uses a call to C_Encrypt or C_EncryptFinal to actually obtain the final piece of ciphertext. To process additional data (in single or multiple parts), the application MUST call C_EncryptInit again.

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_EncryptFinal.

Informal Description: C_Encryptinit initializes an encryption operation. hSession
is the session’s handle; pMechanism points to the encryption mechanism; hKey is
the handle of the encryption key

|galo1’s| 13

* C_Encryptinit

CK_DEFINE_FUNCTION(CK_RV, C_EncryptInit)(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey

)i

C_Encryptlnit initializes an encryption operation. hSession is the session's handle; pMechanism points to the encryption mechanism; hKey is the handle of the encryption key.

After calling C_Encryptinit, the application can either call C_Encrypt to encrypt data in a single part; or call C_EncryptUpdate zero or more times, followed by C_EncryptFinal, to encrypt data in multiple parts. The encryption operation is active
until the application uses a call to C_Encrypt or C_EncryptFinal to actually obtain the final piece of ciphertext. To process additional data (in single or multiple parts), the application MUST call C_EncryptInit again.

comein ey RO T T reR e 2 v =241 02 g 1 =410 PR32 g 7 A 1) 4 (A 5 N g S0 Lea B e e PO R TORCTON A ORI CENCRAL ERROR,
_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Example: see C_EncryptFinal.

Rewmva .
CKR_KEY.

Stateful Behavior: After calling C_Encryptlnit, the application can either call
C_Encrypt to encrypt data in a single part; or call C_EncryptUpdate zero or more
times, followed by C_EncryptFinal, to encrypt data in multiple parts

|galois| »

C_Encryptinit

CK_DEFINE_FUNCTION(CK_RV, C_EncryptInit)(
CK_SESSION_HANDLE hSession,
CK_MECHANISM_PTR pMechanism,
CK_OBJECT_HANDLE hKey

)i

C_Encryptlnit initializes an encryption operation. hSession is the session's handle; pMechanism points to the encryption mechanism; hKey is the handle of the encryption key.

The CKA_ENCRYPT attribute of the encryption key, which indicates whether the key supports encryption, MUST be CK_TRUE.
After calllng C Encryptlmt the appllcatlon can either call C Encrypt to encrypt data ina smgle part; or callC Encrythpdate zero or more tlmes followed by C EncryptFlnaI to encrypt data in multlple parts The encryption operation is active

Return values: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR, CKR_DEVICE_MEMORY, CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED, CKR_FUNCTION_FAILED, CKR_GENERAL_ERROR, CKR_HOST_MEMORY,
CKR_KEY_FUNCTION_NOT_PERMITTED, CKR_KEY_HANDLE_INVALID, CKR_KEY_SIZE_RANGE, CKR_KEY_TYPE_INCONSISTENT, CKR_MECHANISM_INVALID, CKR_MECHANISM_PARAM_INVALID, CKR_OK,
CKR_OPERATION_ACTIVE, CKR_PIN_EXPIRED, CKR_SESSION_CLOSED, CKR_SESSION_HANDLE_INVALID, CKR_USER_NOT_LOGGED_IN.

Error Handling: CKR_CRYPTOKI_NOT_INITIALIZED, CKR_DEVICE_ERROR,
CKR_DEVICE_REMOVED, CKR_FUNCTION_CANCELED ... (20 Returns in
total)

|galois| 15

Returns codes are organized by section,
where a section’s order in the document
defines a precedence on the return codes
it contains

Each section also defines a order on the
return codes within in.

o In some sections, this is a total order
according to order of appearance

o In some sections, this is a partial order
where all returns are unordered unless
explicitly stated

|galois|

<

??

HHHH

5.1.1 Universal Cryptoki function return values

Any Cryptoki function can return any of the following values:
CKR_GENERAL_ERROR: Some horrible, unrecoverable error has occurred. In the worst case, it is possible that the
CKR_HOST_MEMORY: The computer that the Cryptoki library is running on has insufficient memory to perform the re

CKR_FUNCTION_FAILED: The requested function could not be performed, but detailed information about why not is |
although the function call failed, the situation is not necessarily totally hopeless, as it is likely to be when CKR_GENEF

CKR_OK: The function CKR_OK is not quite a “universal” return value; in particule
The relative priorities of these errors are in the order listed above, e.g., if either of CKR_GENERAL_ERROR or CKR_HOS

5.1.2 Cryptoki function return values for functions that use a session handle

Any Cryptoki function that takes a session handle as one of its arguments (i.e., any Cryptoki function except for C_lnitialize
CKR_SESSION_HANDLE_INVALID: The specified session handle was invalid at the time that the function was invoke
CKR_DEVICE_REMOVED: The token was removed from its slot during the execution of the function.

CKR_SESSION_CLOSED: The session was closed during the execution of the function. Note that, as stated in [PKC
CKR_SESSION_CLOSED. An example of multiple threads a session is where oni

The relative priorities of these errors are in the order listed above, e.g., if either of CKR_SESSION_HANDLE_INVALID or (
In practice, it is often not crucial (or possible) for a Cryptoki library to be able to make a distinction between a token being 1

5.1.3 Cryptoki function return values for functions that use a token

Any Cryptoki function that uses a particular token (i.e., any Cryptoki function except for C_Initialize, C_Finalize, C_Getinf
CKR_DEVICE_MEMORY: The token does not have sufficient memory to perform the requested function.

- CKR_DEVICE_ERROR: Some problem has occurred with the token and/or slot. This error code can be returned by
- CKR_TOKEN_NOT_PRESENT: The token was not present in its slot af the time that the function was invoked.
CKR_DEVICE_REMOVED: The token was removed from its slot during the execution of the function.

The relative priorities of these errors are in the order listed above, e.g., if either of CKR_DEVICE_MEMORY or CKR_DEVI

In practice, it is often not critical (or possible) for a Cryptoki library to be able to make a distinction between a token being 1

5.1.4 Special return value for application-supplied callbacks

There is a special-purpose return value which is not returned by any function in the actual Cryptoki API, but which may be
CKR_CANCEL: When a function executing in serial with an application decides to give the application a chance to do

5.1.5 Special return values for mutex-handling functions
There are two other special-purpose return values which are not returned by any actual Cryptoki functions. These values |

<: CKR_MUTEX_BAD: This error code can be retuned by mutex-handling functions that are passed a bad mutex object

CKR_MUTEX_NOT_LOCKED: This error code can be returned by mutex-unlocking functions. It indicates that the mu

5.1.6 All other Cryptoki function return values

Descriptions of the other Cryptoki function return values follow. Except as mentioned in the descriptions of particular error
CKR_ACTION_PROHIBITED: This value can only be returned by C_CopyObiject, C_SetAttributeValue and C_Destro
CKR_ARGUMENTS_BAD: This is a rather generic error code which indicates that the arguments supplied to the Cryp
CKR_ATTRIBUTE_READ ONLY: An attempt was made to set a value for an attribute which may not be set by the apj

e Behavior is underspecified

o Possible return codes may not be listed
o Extra return codes may be listed
o Not all return codes are described

e Return code precedences are not concisely and uniformly described

e The description of stateful behavior is imprecise and scattered across the
document

— Need a formal description of the API!

|galois| 17

e Cryptographic algorithms
e Error conditions associated with each function

e Stateful behavior that defines how functions interact

|galo1’s| 18

e Specified using Cryptol, a domain specific language for cryptography

e Cryptol specifications are executable programs that closely resemble their
mathematical definitions

e \We have specified the following algorithms

AES

Triple DES
ECDSA
RSA

SHA

O O O O O

|galo1’s| 19

e \What error conditions are possible and how are they triggered?

o \We describe errors as constraints over function arguments and the
(model of) the system state

o Return code precedence complicates constraints, all conditions of higher
priority errors must not be true

o SMT solvers are used to synthesize the necessary system state and
function inputs that generate a particular error

|galois|

20

(*; BUffe

I
(Init, op, 00Smayy)

erationActive)

Encryption
Initialized

(Update, Ok)
J (Update, Ok)
nit, OperationActive)

Encryption
Unlnitialized

Encryption
Updating

Transitions = (Function Name, Return Code)

|galois| 21

incrementalStateTransition
incrementalStateTransition

incrementalStateTransition
incrementalStateTransition
incrementalStateTransition
incrementalStateTransition

incrementalStateTransition
incrementalStateTransition
incrementalStateTransition
incrementalStateTransition

|galois|

UnInit
UnInit

Initialized
Initialized
Initialized
Initialized

Updating
Updating
Updating
Updating

C_EncryptInit

C_EncryptUpdate
C_EncryptInit
C_EncryptUpdate

C_EncryptUpdate
C_EncryptInit
C_EncryptFinal

Initialized
UnInit

Initialized
Initialized
Updating
UnInit

Updating
Updating
UnInit
UnInit

22

Cryptol

Return Code
" Algorithm Specs

Constraints

Eunction: E Test Vectors
uncton:
Args: A, ..., A
Return: RV 98 A4 N |
I
State W (W C Tests
Machine > Transition > F(A,, ..., A))

_ Processor -
Description = -

T RV —

|galois| o5

e Generated tests that exercised every Encryption - 442 tests
f [f
software tnggered return code for every Decryption - 438 tests
stateful operation
Digest - 182 tests
e Explored every path through the finite g
state machines as well as all meaningful Sign - 128 tests

iti f different path
compositions of different paths Verify - 150 tests

e Over 1,500 test cases in total Sign Recover - 30 tests
Verify Recover - 30 tests

Session Management - 42 tests

|galo1’s| 24

e Tested against OpenCryptoki and
pre-release Amazon CloudHSM CloudHSM

e Bugs fixed before production:

Library Segfaults

o Library segmentation faults

o Invalid state machines
State machine errors
o Improper return codes

o Missing null pointer handling Improper return codes

o Lossy object copies

|galois| o

Spec OpenCryptoki

Encryption Encryption
Unlnitialized Unlinitialized ~
& \% & \@
> 7 > %
N Q &
NS % &
/ \ /
Encryption W (Update, Ok) (Encryption Encryption W (*, Ok)
Updating J L Initialized Updatlng L Initialized
(Update, Ok) (*, BufferTooSmall) (Update, Ok) (Init, OpeationActive)
(Init, OperationActive) (Init, OpeationActive) (Init, OperationActive)

|galois| o

Spec

Encryption
Uninitialized

N
&

/ \

Encryption W (Update, Ok) (Encryption
Updating J L Initialized

())

—

(Update, Ok) (*, BufferTooSmall)
(Init, OpeationActive)

(Init, OperationActive)

|galois|

CloudHSM
Encryption
Uninitialized

<

\
A
NS %
/ \

) * OK) (.
Encryption | C, Encryption
Updating ., Initialized
“/ (Init, Ok)

(Update, Ok) (*, BufferTooSmall)
(Init, OpeationActive)

27

e Categorization of failures by type and severity
e Test case reproducibility

e Speed

e Metrics

e Configurability

|galois| o8

e The test suite is deployed in Amazon’s CI/CD pipeline.

o Test suite and specification compliance is continuously maintained

o Searchable metrics are published with each run

o Detailed logs capturing all object instantiations, function calls and return values are captured

o Over 10,000 tests execute in less than 30 minutes

|galois|

29

Thank you!

| galois|

