
Simplifying Software-Defined Network
Optimization Using SOL

Victor Heorhiadi Michael K. Reiter Vyas Sekar
UNC Chapel Hill UNC Chapel Hill Carnegie Mellon University

Overview: SDN

2

Control Platform (e.g., ONOS, OpenDaylight)

SDN applications

Network data Network routes

A A A A A A A

Data plane

SDN Application Classes and Features

3

C
la

ss
es

Traffic engineering

SWAN (2013)
B4 (2013)

Service chaining

SIMPLE (2013)
Panopticon (2014)

Topology reconfiguration

ElasticTree (2010)
Response (2011)

Offloading

APLOMB (2012)
SNIPS (2014)

Dynamic service chaining

Bohatei (2015)
FlowTags (2013)

Network function virtualization

E2 (2015)
Slick (2015)

Fe
at

ur
es

Composition

Corybantic (2013)
FlowVisor (2009)

Fault tolerance

FatTire (2013) …

Current Process

Take theory &
optimization

courses
Formulate the

problem
Solve with a

solver

Not fast
enough
• NP hard?

Develop
heuristicParse solutionDeploy

4

SDN applications

Control Platform (e.g., ONOS, OpenDaylight)

Network data Network routesOptimization layer

• No custom heuristics
• Focus on high-level

network goals
• Rapid prototyping
• App = 20 lines of

code

Our Vision

5

A A A A A A A

Challenge: Generality + Efficiency

Approach Generality Efficiency

Frameworks ✓ ✗
Custom solutions ✗ ✓
SOL ✓ ✓

SO
L

A
PI

SOL: SDN Optimization Layer

7

Logically centralized

Diverse set

SOL Optimization solver
(e.g., CPLEX)

Control Platform (e.g., ONOS, OpenDaylight)

SDN applications

Network data Network routes

A A A A A A A

Insight: Path Abstraction

• Problems are recast to be path-based

• Policies are path predicates

8

Path-based Recasting: MaxFlow
Edge-based Path-based

9

𝑓𝑓𝑝𝑝𝑝

𝑓𝑓𝑝𝑝𝑝

𝑓𝑓𝑝𝑝𝑝𝑝

𝑓𝑓𝑒𝑒𝑝
𝑓𝑓𝑒𝑒𝑒

𝑓𝑓𝑒𝑒𝑝

𝑓𝑓𝑒𝑒𝑒
𝑓𝑓𝑒𝑒𝑒
𝑓𝑓𝑒𝑒𝑒

𝑓𝑓𝑒𝑒𝑒

𝑓𝑓𝑒𝑒𝑒

…

𝑓𝑓: amount of flow

𝑓𝑓𝑒𝑒𝑝 = 𝑓𝑓𝑒𝑒𝑒 + 𝑓𝑓𝑒𝑒𝑒
∑𝑖𝑖=𝑝𝑝𝑝 𝑓𝑓𝑝𝑝𝑖𝑖 = demand

Policies as Path Predicates

10

Valid paths:
• N1-N4-N5
• N1-N3-N4-N5
Invalid paths:
• N1-N3-N5

N1→N5
Web, 100 Mbps
FW→Proxy

Generality

Path Challenge

11

Exponential number of paths

Large optimization size

Long run time = Bad efficiency

SOL Process

12

Path generation Path
selection Optimization Rule

generation

1. Enumerate all simple paths
2. Keep valid paths

(according to a predicate)
Offline step

Pick a subset of paths

This acts as a heuristic

1. Model resource usage
and constraints

2. Solve

Use a controller to
configure data plane paths

Efficiency

Implementation

• Python library; interfaces with CPLEX solver and ONOS controller

• Prototyped applications

• MaxFlow, Traffic engineering, latency minimization

• ElasticTree (Heller et al.), Panopticon (Levin et al.), SIMPLE (Qazi et al.)

13

Example: MaxFlow

1. opt, pptc = initOptimization(topo, trafficClasses, nullPredicate, 'shortest', 5)

2. opt.allocateFlow(pptc)

3. linkcapfunc = lambda link, tc, path, resource: tc.volBytes

4. opt.capLinks(pptc, 'bandwidth', linkConstrCaps, linkcapfunc)

5. opt.maxFlow(pptc)

6. opt.solve()

14

Topology input Path generation + selection

Traffic flows
Resource
consumption

Global goal (objective function)

Example: Traffic Engineering

1. opt, pptc = initOptimization(topo, trafficClasses, nullPredicate, 'shortest', 5)

2. opt.allocateFlow(pptc)

3. linkcapfunc = lambda link, tc, path, resource: tc.volBytes

4. opt.capLinks(pptc, 'bandwidth', linkConstrCaps, linkcapfunc)

5. opt.routeAll(pptc)

6. opt.minLinkLoad('bandwidth')

7. opt.solve()

15

Route all traffic
Minimize bandwidth load

Key Questions

• Does it reduce development effort for more complex applications?

• Is it faster than the original optimization?

• Is it any worse than optimal?

16

Development Effort

Application SOL lines of code Estimated improvement
ElasticTree (Heller et al.) 16 21.8×
Panoption (Levin et al.) 13 25.7×
SIMPLE (Qazi et al.) 21 18.6×

17

Optimization Runtime

18

Log Scale

Shaded: No solution
by the original within

30 minutes

Topology (number of switches)

• Orders of magnitude
faster

• Less than 1% away
from optimal

Runtime as Function of Number of Paths

19

Mininet Tests

20

Setup:
• Traffic engineering

application
• Mininet + ONOS

Time to deploy

Topology (number of switches)

0 → functioning network
in 15 seconds

“Mindiff ” Across Optimizations

• Minimize network churn

• Minimize reconfiguration time

• Application agnostic

21

Original

Re-optimization

Re-optimization with mindiff

Results: Reconfiguration

22

Lower is better

Traffic engineering application; Change in traffic demands triggers re-computation

Summary

• Getting SDN benefits requires a lot of optimization knowledge

• SOL lowers barrier of entry for developers

• Leverages the path abstraction: generation + selection

• Efficient: deploy in seconds!

• Code available at https://github.com/progwriter/SOL
23

Thank you!

Questions?

24

	Simplifying Software-Defined Network Optimization Using SOL�
	Overview: SDN
	SDN Application Classes and Features
	Current Process
	Our Vision
	Challenge: Generality + Efficiency
	SOL: SDN Optimization Layer
	Insight: Path Abstraction
	Path-based Recasting: MaxFlow
	Policies as Path Predicates
	Path Challenge
	SOL Process
	Implementation
	Example: MaxFlow
	Example: Traffic Engineering
	Key Questions
	Development Effort
	Optimization Runtime
	Runtime as Function of Number of Paths
	Mininet Tests
	“Mindiff” Across Optimizations
	Results: Reconfiguration
	Summary
	Thank you!��Questions?

