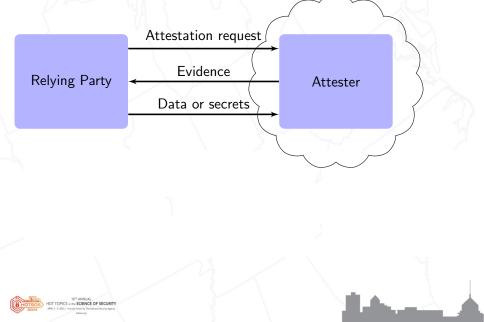
# SoK: Attestation in Confidential Computing


Muhammad Usama Sardar<sup>1</sup> Thomas Fossati<sup>2</sup> Simon Frost<sup>2</sup>

<sup>1</sup>TU Dresden

<sup>2</sup>Arm Ltd.

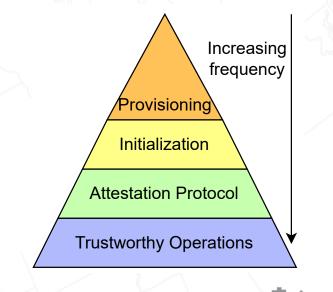


# Attestation in Confidential Computing



## Contributions

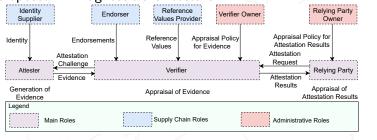
Holistic view of attestation


TEE-agnostic attestation architecture

Mappings to attestation architecture

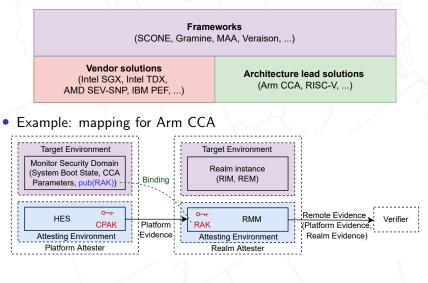
Formal specs




Holistic View of Attestation






#### Attestation Architecture

- Limitations of IETF RATS standard
  - Local attestation out of scope (cannot express Intel's attestation mechanisms)
  - Cannot express anonymous attestation (Intel EPID)
  - Various ambiguities, e.g., role vs. entity
- Errata submitted for RATS
- Our proposed TEE-agnostic architecture





### Groups for Mappings



HOT TOPICS in the SCIENCE OF SECURITY APRIL 1-5, 2023 | Virtualy house on i de la della d

## Formal Analysis in ProVerif

- Assumptions
  - Verifier has preconfigured pub(CPAK) for signature verification
  - Secure channel between HES and RMM to transport the RAK key pair
- Integrity of Platform and Realm Evidence

```
query data: bitstring;
event (accepted(data)) ==> inj-event (sent(data)).
```

(1

• For further details and security issues found, please see the draft



