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About the project…

• Objective – Measure the accuracy and 
soundness of static analysis tools for C, 
C++, and Java source code



Challenges with “real” source

• Difficult to…
– Determine correctness of individual findings
– Identify errors not found by tools
– Find real code that represents a very broad 

range of targeted code constructs



Artificial Test Cases

• Each test case consists of code that 
exhibits a coding flaw and one or more 
safe ways of doing the same thing

• Locations of all errors are documented



Test Suite

• Test case development was subject to 
constraints of time and money
– Test cases only used functions available in 

the standard language libraries for the 
underlying platforms

– Very few C++ object-oriented and STL 
features were used



Example Test Case
void CWE134_Uncontrolled_Format_String__scanf_to_printf_01_bad()

{

char buf[SRC_NO_NTZ_SZ + 1];

if (scanf(FMT_STR, buf) == 1)

{

/* FLAW: buf (obtained from scanf) is passed as the

format string to printf */

printf(buf);

}

}



Example Test Case (cont’d)

static void good1() {
/* FIX: Use a static string for a format string */
printf(“good1\n”)

}
static void good2() {

/* FIX: Use a variable derived from a static string 
for a format string */

char * s = “good2”;
printf(s);

}
static void good3() {

char buf[SRC_NO_NTZ_SZ + 1];
if (scanf(FMT_STR, buf) == 1)
{

/* FIX: Use %s as a format string and 
pass buf as an argument */

printf(“%s”, buf);
}

}



Breadth of Analysis

• Goal: Identify the variety of flaw types and 
code features that a tool targets
– Useful in selecting complementary tools
– Supplements product documentation which 

may be written for a different purpose
• Method: Use very simple code 

constructions that vary the data sources, 
data sinks, and/or the library functions that 
implement a feature



Breadth of Analysis (cont’d)
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Depth of Analysis

• Goal: Identify the extent to which a tool 
explores more complex data and control 
flows

• Method: Generate test cases from 
templates that represent different degrees 
of complexity



Size of Test Case Suite

# Test Cases # CWEs Covered

C/C++ “Breadth” 210 103

“Depth” 201 10

All C/C++ 411 103

Java “Breadth” 177 112

“Depth” 183 11

All Java 360 112

All 771 175



Tools Evaluated

Tool C/C++ Java
Coverity Prevent 4.3 √ √

FindBugs 1.3.7 √

Fortify SCA 5.2 √ √

GrammaTech Code Sonar 3.2 √

Klocwork Insight 8.1 √ √

Ounce Labs Ounce 6 √ √

PMD 4.2.5 √



Evaluation Results



Java “Breadth” Test Case Coverage



Examples of Missed Test Cases 
(Java)

• CWE 369-Divide by zero
• CWE 482-Comparing instead of assigning
• CWE 484-Omitted break statement in 

switch
• CWE 606-Unchecked input for loop 

condition
• CWE 674-Uncontrolled recursion



C/C++ “Breadth” Test Case 
Coverage



Examples of Missed Test Cases 
(C/C++)

• CWE 190-Integer overflow or wraparound
• CWE 248-Uncaught exception
• CWE 374-Mutable objects passed by 

reference
• CWE 397-Declaration of throws for 

generic exception
• CWE 588-Attempt to access child of a 

non-structure pointer
• CWE 674-Uncontrolled recursion



Missed Test Case

• CWE 190-Integer overflow or wraparound 
(in C)

void CWE190_Integer_Overflow__multiply_int_01_bad()

{

int a, b, c;

a = INT_MAX / 2;

b = rand();

/* FLAW: a * b may exceed INT_MAX and overflow */

c = a * b;

printIntLine(c);

}



CWE 190 in real code:
CVE-2009-0583

• Original release date: March 23, 2009
• Overview

– Multiple integer overflows in the International 
Color Consortium (ICC) Format library, allow 
attackers to cause a denial of service or 
possibly execute arbitrary code…

Source: National Vulnerability Database, http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-0583



CWE 190 in real code:
CVE-2009-0583 – The Flaw

…

icmFileMem_read (…, size_t size, size_t count)

{

…

size_t len;

len = size * count;

…

}



CWE 190 in real code:
CVE-2009-0583 – The Fix

…

icmFileMem_read (…, size_t size, size_t count)

{

…

if (count > 0 && size > SIZE_MAX / count)

return 0;

size_t len;

len = size * count;

…

}
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