
Source Code Analysis
Tool Evaluation

Source Code Analysis
Tool Evaluation

By Jaime Merced
Center for Assured Software

National Security Agency

By Jaime Merced
Center for Assured Software

National Security Agency

Outline

• Overview of the project
• Description of the test suite
• Evaluation results

About the project…

• Objective – Measure the accuracy and
soundness of static analysis tools for C,
C++, and Java source code

Challenges with “real” source

• Difficult to…
– Determine correctness of individual findings
– Identify errors not found by tools
– Find real code that represents a very broad

range of targeted code constructs

Artificial Test Cases

• Each test case consists of code that
exhibits a coding flaw and one or more
safe ways of doing the same thing

• Locations of all errors are documented

Test Suite

• Test case development was subject to
constraints of time and money
– Test cases only used functions available in

the standard language libraries for the
underlying platforms

– Very few C++ object-oriented and STL
features were used

Example Test Case
void CWE134_Uncontrolled_Format_String__scanf_to_printf_01_bad()

{

char buf[SRC_NO_NTZ_SZ + 1];

if (scanf(FMT_STR, buf) == 1)

{

/* FLAW: buf (obtained from scanf) is passed as the

format string to printf */

printf(buf);

}

}

Example Test Case (cont’d)

static void good1() {
/* FIX: Use a static string for a format string */
printf(“good1\n”)

}
static void good2() {

/* FIX: Use a variable derived from a static string
for a format string */

char * s = “good2”;
printf(s);

}
static void good3() {

char buf[SRC_NO_NTZ_SZ + 1];
if (scanf(FMT_STR, buf) == 1)
{

/* FIX: Use %s as a format string and
pass buf as an argument */

printf(“%s”, buf);
}

}

Breadth of Analysis

• Goal: Identify the variety of flaw types and
code features that a tool targets
– Useful in selecting complementary tools
– Supplements product documentation which

may be written for a different purpose
• Method: Use very simple code

constructions that vary the data sources,
data sinks, and/or the library functions that
implement a feature

Breadth of Analysis (cont’d)

cin

printf

read

printf

getc

printf

scanf

syslog

scanf

fprintf

scanf

sprintf

scanf

vprintf

scanf

printf

scanf

vfprintf

scanf

vsprintf

scanf

snprintf

scanf

vsnprintf

fscanf

printf

gets

printf

fgets

printf

Depth of Analysis

• Goal: Identify the extent to which a tool
explores more complex data and control
flows

• Method: Generate test cases from
templates that represent different degrees
of complexity

Size of Test Case Suite

Test Cases # CWEs Covered

C/C++ “Breadth” 210 103

“Depth” 201 10

All C/C++ 411 103

Java “Breadth” 177 112

“Depth” 183 11

All Java 360 112

All 771 175

Tools Evaluated

Tool C/C++ Java
Coverity Prevent 4.3 √ √

FindBugs 1.3.7 √

Fortify SCA 5.2 √ √

GrammaTech Code Sonar 3.2 √

Klocwork Insight 8.1 √ √

Ounce Labs Ounce 6 √ √

PMD 4.2.5 √

Evaluation Results

Java “Breadth” Test Case Coverage

Examples of Missed Test Cases
(Java)

• CWE 369-Divide by zero
• CWE 482-Comparing instead of assigning
• CWE 484-Omitted break statement in

switch
• CWE 606-Unchecked input for loop

condition
• CWE 674-Uncontrolled recursion

C/C++ “Breadth” Test Case
Coverage

Examples of Missed Test Cases
(C/C++)

• CWE 190-Integer overflow or wraparound
• CWE 248-Uncaught exception
• CWE 374-Mutable objects passed by

reference
• CWE 397-Declaration of throws for

generic exception
• CWE 588-Attempt to access child of a

non-structure pointer
• CWE 674-Uncontrolled recursion

Missed Test Case

• CWE 190-Integer overflow or wraparound
(in C)

void CWE190_Integer_Overflow__multiply_int_01_bad()

{

int a, b, c;

a = INT_MAX / 2;

b = rand();

/* FLAW: a * b may exceed INT_MAX and overflow */

c = a * b;

printIntLine(c);

}

CWE 190 in real code:
CVE-2009-0583

• Original release date: March 23, 2009
• Overview

– Multiple integer overflows in the International
Color Consortium (ICC) Format library, allow
attackers to cause a denial of service or
possibly execute arbitrary code…

Source: National Vulnerability Database, http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2009-0583

CWE 190 in real code:
CVE-2009-0583 – The Flaw

…

icmFileMem_read (…, size_t size, size_t count)

{

…

size_t len;

len = size * count;

…

}

CWE 190 in real code:
CVE-2009-0583 – The Fix

…

icmFileMem_read (…, size_t size, size_t count)

{

…

if (count > 0 && size > SIZE_MAX / count)

return 0;

size_t len;

len = size * count;

…

}

Questions?

Jaime Merced
Center for Assured Software

National Security Agency

Source Code Analysis Tool
Evaluation

