
SPEAR: A FRAMEWORK FOR SPECIFYING AND
ANALYZING REQUIREMENTS

Approved for public release; distribution is unlimited.
Case Number 88ABW-2014-1944, 24 April 2014.

Requirements are the main vehicle through which we describe the desired
behaviors of complex, critical systems that we build.

Why Formalize and Analyze
Requirements?

Modern systems are increasingly complex, generating thousands of
requirements. They are difficult to interpret, and the ambiguous nature of
natural language leads to errors.

Background

Expresses requirements as relations between monitored (inputs) and
controlled (locals, outputs) variables. System assumptions or environmental
constraints are also captured.

Features include:
• Expressing requirements in a tabular format that can be used to check for

completeness.
• A simulator to test and exercise the specification.
• Translating the specification to the SPIN model checker for formal analysis

of invariant properties.
• Translation to PVS theorem prover for analysis using Timed Automata

theories.
• Source code generation
• Test case generation

SCR Tool

The Requirements Analysis Tool (RAT) accepts a set of requirements R
expressed in PSL and performs the following analyses:
• Checks if R is strict (unexpected behaviors are ruled out) by proving that

a set of assertions A (properties that are expected to hold on the
behaviors described by R) is logically entailed by R.

• Checks if R is permissive (interesting or intended behaviors are allowed
to happen) by checking if a set of possibilities P are compatible with R.

• Checks if R is realizable.

Features:
• Uses BDD-based model checking (NuSMV) to perform analyses.
• Requirements are specified using PSL.

RAT

Kansas State Specification
Patterns
Kansas State University developed formalisms for commonly used design
patterns. Each pattern is the result of pairing a scope and predicate to
express a temporal relationship between conditions/events in a system.

Representing Requirements for
Analysis
Each requirement is provided as a pattern. We translate these patterns into
Lustre synchronous observers. These observers were proven equivalent to
the published LTL formulas using model checking. Shown below are two
synchronous observers that capture the before/always pattern and the
after/precedes pattern. The green states denote accepting states, the red
states failed states, and the grey states are non-accepting.

Handling Liveness
Our chosen analysis tool, JKind, cannot check liveness properties. Some
scope/predicate pairings represent a liveness condition. These pairings are:

• global/exists
• global/responds
• after(until)/exists
• after(until)/responds

In these cases, JKind is not able to reason about the pattern. We handle this
restriction by bounding the infinite nature of a liveness pattern, turning it
into a safety property that is checkable.

Microwave Oven
To make the concepts concrete, consider the example of a microwave oven.
It has a start and clear button, number keys, and can be energized (cooking)
or de-energized.

Domain Specific Language
SpeAR specifications are captured in a Domain Specific Language (DSL) that
requires an explicit interface, assumptions, and requirements definitions.
The structure of the DSL can be used to check common mistakes, such as
references to undefined signals, units disagreement, and improper usage of
variables. It also provides support for compositional specifications.

How the analysis in SpeAR
works
The intersection of the set of traces that each of our requirements accept
defines the set of traces our system accepts.

If a property P accepts the set of traces that our system accepts, then our
system satisfies P.

Analysis Results
Analysis results are provided to the user in a graphical interface. Each property
is shown to either accept all traces that the requirements and assumptions
accept, or a trace that it doesn’t accept is given. In this case the user can use
this information to understand the discrepancy.

Download SpeAR, it’s open
source!

http://www.github.com/afifarek/spear
Check out the releases tab, or build from
source using Eclipse.

SpeAR is a functional requirements development framework with the following
features:
• A set of frequently used specification patterns that can be translated into

formal notations.
• A domain specific language for specifications that addresses system (and

subsystem) interfaces, assumptions, and behaviors.
• Constraint-based analysis of these formal representations against a set of

properties that validate the requirements set.

What is SpeAR?

What isn’t SpeAR?
Using SpeAR successfully will require the user to develop their specifications
at a high level of abstraction.
• Characterizing a system in a high level of detail (such as precise timing

mechanisms) is not supported by the supported formalisms.
• Analysis depends on model checking so there is an inherent scalability

limitation.

Contact

Lucas Wagner
lgwagner@rockwellcollins.com

Aaron Fifarek
aaron.fifarek@linquest.com

Dan DaCosta
dacosta@cs.umn.edu

Kerianne Gross
kerianne.gross@us.af.mil

