

SPEAR PHISHING ATTACK DETECTION

THESIS

David T. Merritt, Captain, USAF

AFIT/GCE/ENG/11-05

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the U.S. government and is not
subject to copyright protection in the United States.

AFIT/GCE/ENG/11-05

SPEAR PHISHING ATTACK DETECTION

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

David T. Merritt, BSCE

Captain, USAF

March 2011

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCE/ENG/11-05

SPEAR PHISHING ATTACK DETECTION

David T. Merritt, BSCE

Captain, USAF

Approved:

 _________________________________ _______________
 Dr. Barry E. Mullins (Chairman) Date

 _________________________________ _______________
 Dr. Richard A. Raines (Member) Date

 _________________________________ _______________
 Mr. William B. Kimball (Member) Date

AFIT/GCE/ENG/11-05

Abstract

This thesis addresses the problem of identifying email spear phishing attacks,

which are indicative of cyber espionage. Spear phishing consists of targeted emails sent

to entice a victim to open a malicious file attachment or click on a malicious link that

leads to a compromise of their computer. Current detection methods fail to detect emails

of this kind consistently.

The SPEar phishing Attack Detection system (SPEAD) is developed to analyze

all incoming emails on a network for the presence of spear phishing attacks. SPEAD

analyzes the following file types: Windows Portable Executable and Common Object

File Format (PE/COFF), Adobe Reader, and Microsoft Excel, Word, and PowerPoint.

SPEAD’s malware detection accuracy is compared against five commercially-available

email anti-virus solutions. Finally, this research quantifies the time required to perform

this detection with email traffic loads emulating an Air Force base network.

Results show that SPEAD outperforms the anti-virus products in PE/COFF

malware detection with an overall accuracy of 99.68% and an accuracy of 98.2% where

new malware is involved. Additionally, SPEAD is comparable to the anti-virus products

when it comes to the detection of new Adobe Reader malware with a rate of 88.79%.

Ultimately, SPEAD demonstrates a strong tendency to focus its detection on new

malware, which is a rare and desirable trait. Finally, after less than 4 minutes of

sustained maximum email throughput, SPEAD’s non-optimized configuration exhibits

one-hour delays in processing files and links.

v

Acknowledgements

 I am truly grateful for my thesis adviser, Dr. Barry Mullins, for his perfect blend

of mentorship, trust, and encouragement. I also thank Bill Kimball for his contagious

enthusiasm for brilliant thinking, Tom Dube for his challenging insights and trustworthy

advice, and Dr. Rick Raines for fostering the environment that allows men like this to be

great at what they do.

 I thank the love of my life, who fully supports the pursuit of my passions and

journeys alongside me with encouragement. Because of her, I have a contentment that

can only come from knowing I’m not alone in my pursuits.

 Ultimately, I thank the Lord for giving me the passions that He has. What a

wonderful feeling to know my deepest desires are put there by Him for my pleasure and

His glory.

 David T. Merritt

vi

Table of Contents

Abstract .. iv

Acknowledgements ... v

Table of Contents ... vi

List of Figures .. ix

List of Tables ... xi

I. Introduction ... 1

II. Literature Review ... 4

2.1 Spear Phishing Defined... 4

2.2 Detecting Phishing Attacks ... 5

2.2.1 Content-Based Filtering ... 5

2.2.2 Application-Based Filtering ... 7

2.2.3 Limitations of Phishing Detection ... 8

2.3 Detecting Malware .. 9

2.3.1 Static Analysis Techniques .. 10

2.3.1.1 Signature-Based Static Analysis 10

2.3.1.2 Anomaly-Based Static Analysis 14

2.3.1.3 Limitations of Static Analysis ... 16

2.3.2 Dynamic Analysis Techniques .. 17

2.3.2.1 Signature-Based Dynamic Analysis 18

2.3.2.2 Anomaly-Based Dynamic Analysis 21

2.3.2.3. Limitations of Dynamic Analysis 22

2.4 Detecting Email-Borne Malicious Code ... 23

2.5 Spear Phishing Detection Framework .. 27

2.5.1 Special Purpose versus General Purpose Systems 28

2.5.2 Combining Dynamic and Static Analysis of Malware 29

vii

2.5.3 Using Malware Type Recognition (MaTR) for Static Analysis 30

2.5.4 Using ESCAPE for Dynamic Analysis .. 31

III. Methodology ... 36

3.1 Problem Definition.. 36

3.2 Goals and Hypotheses ... 37

3.3 Approach ... 38

3.3.1 Experiment #1: Find an Optimal Configuration 43

3.3.2 Experiment #2: Determine SPEAD Detection Accuracy 44

3.3.3 Experiment #3: Determine Commodity A/V Detection Accuracy .. 44

3.3.4 Experiment #4: Characterize SPEAD Latency 45

3.4 System Design .. 45

3.4.1 Email Collection ... 46

3.4.2 Email Processing ... 47

3.4.3 Malware Detection .. 50

3.4.3.1 MaTR’s Role in Malware Detection 51

3.4.3.2 ESCAPE’s Role in Malware Detection 51

3.5 System boundaries .. 53

3.6 System Services .. 54

3.7 Workload... 55

3.8 Performance Metrics ... 56

3.9 System Parameters .. 57

3.10 Factors ... 61

3.11 Evaluation Technique ... 62

3.12 Experimental Design ... 66

3.13 Methodology Summary .. 66

IV. Results and Analysis ... 68

4.1 Results and Analysis of Experiment 1 .. 68

4.2 Results and Analysis of Experiments 2 and 3 ... 70

4.2.1 Validation of SPEAD’s Design .. 70

viii

4.2.2 Comparing File Detection Metrics .. 73

4.2.2.1 PE/COFF Malware Detection Results............................ 75

4.2.2.2 Adobe Reader Malware Detection Results 79

4.2.2.3 Microsoft Excel Malware Detection Results 84

4.2.2.4 Microsoft Word Malware Detection Results 87

4.2.2.5 Microsoft PowerPoint Malware Detection Results 88

4.2.3 Comparing URL Detection Metrics .. 89

4.3 Results and Analysis of Experiment 4 .. 91

4.3.1 File Latency Results and Analysis ... 92

4.3.2 URL Latency Results and Analysis ... 98

4.3.3 Overall Latency Analysis ... 99

4.4 Summary ... 100

V. Conclusions ... 102

5.1 Research Conclusions ... 102

5.1.1 Goals #1 and #2: Construct a spear phishing detection system 102

5.1.2 Goal #3: Compare this system to the current industry standard 103

5.1.3 Goal #4: Characterize the detection latency of this system 104

5.2 Significance of Research... 105

5.3 Recommendations for Future Research .. 106

Bibliography ... 109

ix

List of Figures

Figure Page

1. High-level Flowchart of SPEAD Functionality .. 39

2. Experiments Used to Achieve Research Goals ... 43

3. SPEAD’s Email Collection Flowchart.. 46

4. SPEAD’s Email Processing Flowchart ... 47

5. SPEAD’s Malware Detection Flowchart .. 50

6. Spear Phishing Attack Detection System ... 53

7. Experimental Setup ... 63

8. Results of URL Tests for ESCAPE Wait Times ... 69

9. Collage of Screenshots Showing SPEAD File Processing Validation 71

10. Screenshot of URL Mismatch ... 72

11. Screenshot Showing SPEAD’s URL Processing Validation 73

12. p-Value Interpretation Scale [RaS02] ... 75

13. Comparison of Differences in Means of PE/COFF Detection Accuracies for
SPEAD versus Others ... 76

14. Comparison of Differences in Means of Adobe Reader Novel Malware Detection

Accuracies for SPEAD versus Others... 81

15. Odds Ratios of Novel:Known Adobe Reader Malware Detection 82

16. Odds Ratios of Novel:Known Microsoft Excel Malware Detection 85

17. Odds Ratios of Novel:Known Microsoft Word Malware Detection 88

18. Latency Results for All Files at Each Email Throughput Speed 93

19. Latency Results for Non-PE/COFF Files at Each Email Throughput Speed 94

x

20. Latency Results for PE/COFF Files at Each Email Throughput Speed................ 96

21. Latency Results for URLs at Each Email Throughput Speed 98

xi

List of Tables

Table Page

1. Malicious File and URL Corpus ... 41

2. Non-malicious File and URL Corpus ... 42

3. Four ESCAPE Client Configurations ... 52

4. Email Statistics from One-week Observation of an Air Force Base 56

5. Factor Levels for the Experiments .. 61

6. Results of File Tests for ESCAPE Wait Times .. 69

7. Comparison of Overall Detection Metrics for Files ... 74

8. Example 2x2 Table for SPEAD Detection Metrics .. 74

9. PE/COFF Detection Results for Novel and Known Malware 78

10. Adobe Reader Detection Results for Novel and Known Malware 80

11. Microsoft Excel Detection Results for Novel and Known Malware 84

12. Microsoft Word Detection Results for Novel and Known Malware 87

13. Microsoft PowerPoint Detection Results for Novel and Known Malware 89

14. URL Detection Results for All Platforms ... 90

15. Expected Time to Reach 1 Hour Latency ... 100

I. Introduction

Cyber espionage is responsible for an annual loss of billions of dollars in the

United States alone [Rep09] [Eps08]. Because of the low cost of entry into and the

anonymity afforded by the Internet, any curious or incentivized person can likely gather

important information off private, corporate, or government computer networks [USC08].

Proprietary information from a company's innovative products or research and

development often holds a high monetary value. If that information is about national

defense assets or national strategy decision-making, then the value is arguably

immeasurable.

History has shown that espionage traditionally requires strategically-placed spies

or monitoring devices tailored and molded to the environment in which they operate.

The same is true in the way spies infiltrate computer networks. Inherently, espionage

occurs against a highly targeted victim or group. Some examples of this are the insider

amongst senior leaders of an organization [Mes08], the undercover detective within a

drug cartel, or the classic secret agent planted in a foreign agency. Cyber espionage is no

different in that its success is dependent on how well-tailored it is to its targeted victims.

In recent years, the cyber espionage threat has been widely published and

acknowledged by computer security analysts as wells as the mainstream public [Kei10]

[Zet10] [Mes08] [Hin08] [GET08] [Rep09] [SAN08]. Historically, the most common

method for infiltrating a network is through targeted spear phishing emails with malicious

file attachments or web site links [Kei10][Zet10] [SAN08]. The infamous attacks against

Google and dozens of other corporations in early 2010, dubbed “Operation Aurora”, used

2

targeted spear phishing emails in this manner [Jac10]. Both the emails and attachments

are products of effective social engineering methods that tailor the content to the

recipients of the emails. When an unsuspecting, targeted user opens the attachment or

clicks on the link, the cyber spy establishes a foothold on the computer and affected

network. The spy can then use his specialized malware to search for interesting data on

the victim computer or network and exfiltrate this potentially sensitive data, like source

code or intellectual property, from the victim network to a place of his choosing.

Because spear phishing emails are targeted, tailored to their targets, and relatively

rare when compared to other email-borne malware infection vectors, current technology

does not adequately protect against them. Commodity anti-virus applications generally

focus their detection on the malicious software that is already known to exist. The

objective of this research is to develop an email-based system that integrates automated

malware detection algorithms that provide the capability to detect previously unknown

malware. Such a system can be used to analyze files and web site links within emails,

specifically looking for and recognizing spear phishing emails that commonly use new

malware. This capability significantly limits the primary attack vector for cyber

espionage. This system provides an invaluable risk mitigation and information protection

tool to a person, corporation, or government aiming to protect their trade secrets,

intellectual property, or crown jewels from cyber spies.

This thesis is organized into five chapters. Chapter 2 reviews the relevant

literature, and it concludes with a review of the research related to the system designed in

this thesis. Chapter 3 describes the methodology used to design and evaluate this system.

The results and analysis of the experiments is discussed in detail in Chapter 4. Finally,

3

Chapter 5 concludes this thesis body with a summary of this work, its contributions, and

where this work can be extended for future research.

4

II. Literature Review

his chapter defines spear phishing and discusses the relevant bodies of research

needed to perform spear phishing detection. Section 2.1 introduces and defines

spear phishing. Next, Section 2.2 discusses the relevancy of traditional phishing

detection research. A thorough review of malware detection technologies is provided in

light of static, dynamic, signature-based, and anomaly-based analysis techniques in

Section 2.3. Email-borne malicious code detection algorithms are described in Section

2.4. This chapter concludes with a description of the research ideas used for this thesis in

the context of the spear phishing attack detection framework.

2.1 Spear Phishing Defined

Spear phishing is a phishing attack targeted at a relatively smaller target set, and it

usually uses malicious attachments and web site hyperlinks in the email content. In

addition, the email content is highly customized to the target and would probably mean

almost nothing to an email recipient outside the target group or organization.

Spear phishing emails sent to a handful of selected victims is indicative of cyber

espionage. In addition, if the content of the email is very specific and relevant to the

industry, then this would be a telltale sign of cyber espionage. The same thought process

applies to a compromised web site that hosts information or services that cater to a select

business, organization, or niche market.

One way to differentiate between spear phishing and conventional phishing

attacks are by the level of sophistication of social engineering require by the attacker.

For phishing emails, knowing the demographics, locale, or common financial institutions

T

5

in an area aid an attacker in customizing their phishing attack. However, for spear

phishing attacks, both the emails and attachments/links are the products of very focused

social engineering methods that tailor the content to each individual recipient of the

emails.

Spear phishing attacks are email-borne infection vectors, so there is a relatively

long and arbitrary amount of time from when an email is delivered until the malicious file

or code compromises its target. Also, spear phishing has a different purpose than a worm

or email virus. Its goal is not to indiscriminately spread far and wide but to

surreptitiously establish a foothold into a specific network or system.

2.2 Detecting Phishing Attacks

Identifying phishing attempts is a difficult and unsolved problem due to the

inherent vulnerability residing at the receiving end of phishing emails—a human. The

prevalence of phishing web sites and emails attests to the success phishers are having

with their attempts. When a web site or email emulates a known legitimate site or email,

it is relatively easy to fool most Internet users. While phishing training may help the

human only slightly, significant advancements are made toward effective technical

solutions that are categorized into two groups: content-based filtering and application-

based filtering.

2.2.1 Content-Based Filtering

Content-based filtering refers to statistical analysis, data mining, feature set

selection, machine learning, and/or heuristics-based detection mechanisms applied to

either email content or web site content.

6

Fette et al. establish a machine learning algorithm on a feature set designed to

highlight human-targeted deception behaviors in email [FST07]. Their approach is

named PILFER, and it is a machine learning-based approach to classifying phishing

attempts. PILFER uses data directly present in email as well as data collected from

external sources. This combined approach creates a feature vector, which is used to train

a model for classification. Their feature vector consists of 10 features: Internet Protocol

(IP) addresses within web links, age of linked-to domains, non-matching links, “Here”

links to a non-modal domain (anomalous links to the non-dominate domain present in the

email), HTML (Hyper Text Markup Language) emails, number of links, number of

domains, number of dots (e.g., www.this.is.a.bad.site.com), contains JavaScript, and

output from third party spam filters. PILFER inputs this feature vector into a random

forest as a classifier, where numerous decision tress are created. Preliminary experiments

show a 96% detection rate with only a 0.1% false positive rate over 860 phishing and

6,950 non-phishing emails.

L’Huillier et al. propose an online phishing classification scheme using

adversarial data mining and signaling games in [LWF09]. They implement a game-

theoretic data mining framework that uses dynamic games of incomplete information to

build a classifier to detect phishing attempts. The feature set consists of email content-

based features, of which there are four categories: email structures related to different

email formats, properties of every link in a message, HTML/JavaScript/forms used, and

the SpamAssasin’s output score for the email in question. This work achieves a high

detection accuracy of 99%.

7

Bergholz et al. propose a number of novel features that are tailored to phishing

email detection [BDG+10]. These new features extend the work of L’Hullier et al. by

adding a word list to their basic feature set, and advanced graphical features are added as

well. These graphical features are image distortion (i.e., attempts to defeat character

recognition tools), logo detection (i.e., compared to original logo), and hidden text

salting. Hidden text salting consists of random strings, spacing, coloring, spelling, etc. to

fool automated appliances but remain invisible to humans. These features are passed into

a text classification-based classifier (e.g., random forests or support vector machines).

Experiments with these novel features yield a 99.46% accuracy rate, which is slightly

higher than that reported by L’Hullier et al.

2.2.2 Application-Based Filtering

Application-based filtering refers to a specific method of implementing a phishing

detection or prevention mechanism. This category encompasses email client or web

browser plugins as well as modified email architecture.

Zhang et al. developed an automated test bed for evaluating anti-phishing tools in

[ZEC+07]. They evaluate 10 popular appliance-based anti-phishing tools using 200

phishing URLs (Uniform Resource Locators, or links) from two sources and over 500

legitimate URLs. The results of their evaluation show that only one of the tools could

consistently identify over 90% of phishing URLs. However, this same tool also had a

42% false positive rate. In addition, the authors point out numerous methods to exploit

vulnerabilities in multiple anti-phishing tools that resulted in phishing sites being labeled

as legitimate. Most of the tools use a blacklist of URLs that they would obtain

8

dynamically and frequently. Only one tool uses heuristics-based detection instead of an

explicit blacklist. This tool also has high false positive rates. The major contribution of

this effort is the authors’ conclusion that the success of anti-phishing tools using

blacklists relies on very large amounts of data being collected frequently.

Crain et al. propose a tool to assist users in identifying legitimate emails [COP10].

This tool, called Trusted Email, allows companies to establish keys with their

clients/customers. This key is used to sign and encrypt emails between the legitimate

company and its user. This approach’s strength is that it uses existing technology in a

novel way to dramatically improve email security. A client-based plugin provides

feedback to users when: 1) a key establishment email arrives, 2) a signed email arrives,

and 3) a forged email is detected. A small pilot study shows that all users reject all

emails marked as phishing, and they also accept all emails that are signed. However,

most of them also rejected all unsigned, legitimate emails, which may be a result of the

small group of people and their insight into this research.

2.2.3 Limitations of Phishing Detection

The content filtering techniques focus their detection on anomalous behavior

indicative of phishing. This implies that all phishing attempts use non-standard behavior.

However, spear phishing specifically emulates a valid user behaving in a legitimate

manner and emailing appropriate recipients. Therefore, the content-based filtering

algorithms likely will not recognize legitimate-looking spear phishing emails.

On the other hand, application-based filtering shows promise, but it relies heavily

on the use of blacklists that must be constantly updated. But there is an inherent

9

challenge with this: any new phishing attempts will have to be discovered first before it

can be added to a known bad blacklist. Even heuristic-based detection suffers from

unacceptable false positive rates [ZEC+07]. Therefore, current application-based and

content filtering-based phishing detection techniques likely will not catch spear phishing

attacks, especially ones crafted and targeted for the purpose of cyber espionage.

2.3 Detecting Malware

Malware comes in many forms with many names: virus, Trojan, worm,

downloader, rootkit, keylogger, adware, spyware, and more. For simplicity and

convenience, the root of the name (i.e., “malicious software”) is used to define the

generic use of the term. Any unwanted and malicious program or code running on a

system is referred to as malware.

Malware detection is the implementation of a technique or techniques that attempt

to identify programs or code that behave in a malicious manner contrary to the intended

use of a system. Naturally, detection of unknown malware is the goal, assuming a cyber

spy will use sophisticated, novel malicious programs to establish footholds on a computer

and within a network. A malware detector typically takes two inputs: 1) the program or

code under inspection, and 2) its knowledge of malicious behavior [IdM07]. While there

are a myriad of techniques currently in use operationally and academically that reliably

detect most malware on a system, these techniques can be categorized into three analysis

methods based on how they gather information to detect malware: static, dynamic, or

hybrid [IdM07] [HoB05]. These analysis methods are further broken down into

signature-based and anomaly-based detection, which differ in their manner of

10

categorizing their knowledge of malicious behaviors. All of the following methods of

malware detection focus on Windows Portable Executables due to the overwhelming

prevalence of this type of malware in the wild [VxH10].

2.3.1 Static Analysis Techniques

Static analysis gathers information about malicious behavior using syntactical or

structural properties of the program under inspection [IdM07]. It requires establishing

sets of file features, or feature vectors, based on file content. This file content typically

consists of byte sequences (n-grams), metadata, and/or sequences of instructions and

application programming interface (API) or system calls. One advantage of statically

analyzing code is that, in general, it can be done relatively quickly without the need to

execute the malware. Another advantage is that the program, ideally, can be analyzed

holistically due to the availability of all the malware’s code. Code obfuscation can make

this more difficult, but, more often than not, malware is not obfuscated. Thus, static

analysis can yield insight into how the malware is programmed and not just visible

behavior at runtime.

 2.3.1.1 Signature-Based Static Analysis

Signature-based analysis of malware has historically been a euphemism for

commodity anti-virus products. However, the use of the term in this paper simply means

that the detection algorithm compares a suspect program against known malicious

features. Signature-based analysis includes most of the automated malware detection

mechanisms. This is because most data mining methods use machine learning on feature

sets based on n-grams, strings, instructions/code, file headers, and program structure.

11

Schultz et al. is an early adopter of a data mining technique for malware analysis.

In [SEZS01], they use static analysis-based data mining for detecting new malicious

executables. They use three data mining schemes to identify malicious Windows or MS-

DOS executables: DLL information, strings, and byte sequences (or n-grams). These

schemes differ in their approach to extract feature sets from the executables. These

feature sets were used to train RIPPER (an inductive rule learner), Naive-Bayes, and

Multi Naïve-Bayes (with voting) classifiers. The approach with the best detection

accuracy is the one using the GNU strings program to extract strings as feature sets for a

Naïve Bayes classification algorithm. However, Schultz et al acknowledge that strings

are not robust and can be sufficiently evaded by encrypting the malware.

A similar approach is used by Kolter et al. in [KoM04] and later in [KoM06],

where they used data mining and n-gram analysis to tackle two malware detection issues:

(1) classifying between benign and malicious executables, and (2) categorizing malicious

executables according to their payload. This method uses n-gram analysis to determine

the n-grams with the highest information gain. The top n-grams become the feature sets

which the classifier algorithms use to determine if an executable is malicious. These n-

grams are used to train classifier algorithms based on the following inductive learning

methods: Instance-Based Learner, TFIDF, Naïve-Bayes, support vector machines

(SVMs), decision trees, boosted Naïve-Bayes, boosted SVMs, and boosted decision trees.

The boosted decision tree performs better than the rest of the classifiers. This

methodology has been fielded as an application called MECS, the Malicious Executable

Classification System. One acknowledged limitation to this method is its high

computational overhead when selecting features.

12

Abou-Assaleh et al. continues this work in the area of byte-sequences and data

mining by using a Common N-Gram (CNG) analysis classification method to create

malware profile signatures in [ACK+04] and [ACKS04]. These profile signatures are

class profiles of normalized frequencies of the most frequently-appearing n-grams. The

authors use n-grams between one and 10 bytes in size, and they set lower and upper

bounds on the number of n-grams used to 20 and 5,000, respectively. The experiment in

[ACK+04] achieves an average accuracy of 98%, but it only tested 65 Windows

executables. The experiments in [ACKS04] use almost 800 samples of Windows

executables, but the average detection rate dropped to 91%.

Henchiri and Japkowicz use machine learning and knowledge of malware family

types for feature selection in [HeJ06]. Specifically, they focus on intra-family and inter-

family n-gram thresholds to strategically select or eliminate features for the final feature

selection. This focus on malware family types for feature selection is the first of its kind.

Experiments with 3,000 samples (approximately half of them malicious) and varying

feature sets show a detection accuracy consistently in the mid-90th percentile.

 Sung et al. pioneers the use of sequences of Windows API calls in a signature-

based methodology in [SXC+04]. The authors create a signature-based detection system

called Static Analyzer of Vicious Executables (SAVE) that extracts API sequences from

suspect programs and compares these sequences against a signature database of known

malicious behavior. Each API call is mapped to a global 32-bit integer identification

number. The 16 most significant bits represent the Win32 module, and the 16 least

significant bits represent the API call in this module. An API calling sequence is the

sequence of these 32-bit numbers. The similarity of the API sequence with that of

13

signatures in a database of malicious API sequences is determined. The similarity

between the API sequences under investigation and known malicious sequences is based

on the cosine measure, the extended Jaccard measure, and the Pearson correlation

measure for similarities between sequences. If certain sequences are deemed sufficiently

similar, then the program is labeled as malicious. On only 20 malware samples, this

approach successfully detected all of them. However, an experiment on larger sample

sizes is needed to prove the reliability and robustness of this technique. Also, this

method of malware detection can be evaded by polymorphic and metamorphic malware.

 Ye et al. extend [SXC+04]’s work on API call sequences with their development

of an Intelligent Malware Detection System (IMDS) that uses Objective-Oriented

Association (OOA) mining-based classification in [YWL+07]. This work requires the

development of a Portable Executable parser to construct the API execution sequences.

The authors generate rules based on these API sequences by using their own extension to

the FP-Growth algorithm, called the OOA_Fast_FP-Growth algorithm. They test their

algorithm against nearly 3,000 executables, and IMDS achieves a 93% accuracy rate in

detecting malware. However, because the feature set is based on API sequences, this

technique is limited by the same polymorphic and metamorphic evasion techniques as the

malware detection scheme in [SXC+04].

In [CJS+05], Christodorescu et al. use abstract models, or templates, that describe

the behavior of malicious code. These templates of malware signatures consist of a 3-

tuple of instructions, variables, and symbolic constants. These templates are formed in an

attempt to generalize the signature of an instance of malware while maintaining the

semantics of the malicious code’s behavior. This algorithm successfully detects all

14

variants of certain malware, but the sample size is relatively small. Additionally, this

scheme relies on IDA Pro’s ability to disassemble a binary accurately. Otherwise, the

algorithm’s detection algorithm is significantly hindered.

In [TSF09], Tabish et al. show that malicious and benign files are inherently

different at the byte level. Thus, they use statistical analysis on byte-level content of a

file divided into fix-sized blocks. Then, this approach uses statistical and information-

theoretic features for these blocks to quantify the file content at the byte level. This

scheme is tested against trained classifier models for six common benign file types

(DOC, EXE, JPG, MP3, PDF, and ZIP) and six common malware types (backdoor,

Trojan, virus, worm, constructor, and miscellaneous). The results of these experiments

show a detection accuracy over 90% for all tested malware types. While this scheme also

shows a relatively high accuracy for classifying malware into families, its overall

detection accuracy appears to be no better than most other malware detection methods.

 2.3.1.2 Anomaly-Based Static Analysis

Most static analysis-based malware detection focuses on characterizing the unique

aspects of malicious files. On the other hand, anomaly-based analysis focuses on

characterizing legitimate files and then looks for anomalous file behavior.

In [SWL07], Stolfo et al. focus on a new type of stealthy malware threat called

embedded malware. Their approach uses statistical analysis on byte-level file content to

detect anomalous files segments that may be indicative of embedded malicious code.

This technique attempts to model numerous benign file types to produce a model

revealing what all files of each type should look like. Anomalous and suspicious

15

behavior is indicated by any deviation from these models. Each file type is represented

by a set of statistical n-gram models based on a compact representation of each file type,

called a Fileprint. This detection scheme is put to experiment using three scenarios: 1)

detecting malware embedded in a randomly chosen benign file, 2) distinctly detecting

malware amongst benign executables, and 3) identifying obfuscated, self-encrypted files.

This technique is able to detect between 72% and 95% of malicious code embedded in

PDF files, depending on the location of the embedding. The detection rate for the

malware versus benign executable and self-encrypted files varies widely, which suggests

that the comparison method may have been too weak for reliable malware or malicious

encrypted file detection in general.

In [SKF08], Shafiq et al. enhance the pioneering work of Stolfo et al. by using

statistical anomaly detection to identify embedded malware and locate its position within

an infected file. This technique addresses the issue of commodity anti-virus software's

inability, in general, to detect embedded malware using their signature-based detection

engines. This technique characterizes the statistical properties of a benign file using

Markov n-grams, which are conditional n-gram distributions (as opposed to traditional n-

grams). The authors conclude that a simple n-gram distribution does not yield enough

information to accurately identify embedded malware. This algorithm then uses an

entropy rate to quantify the variations in the Markov n-grams of a benign file that are

caused by embedded malware. The algorithm looks for anomalous entropy rates that do

not fall within the Gaussian distribution of benign entropy rates. While this method does

require a training phase, malware is not required to train this algorithm’s detector,

16

making it a "true" anomaly detector that relies completely on a robust model of benign

behavior.

This approach does have several limitations. While this method of embedded

malware detection outperforms commercial-off-the-shelf (COTS) anti-virus products and

the few other embedded malware detectors, it does so at the cost of a high rate of false

positives. The false positive rates for .doc and .pdf files are high due to the inherent

ubiquity of embedded objects within these file formats. Because of this, the benign

behavior model for these file types take into account entropy rates that are hindered by

numerous perturbations from embedded objects. Also, this method of detection is

vulnerable to a mimicry attack that shapes the embedded malware to have a statistical

distribution similar to "normal" or benign behavior.

 2.3.1.3 Limitations of Static Analysis

There are numerous limitations to static analysis. Investigating a program’s full

functionality may never be possible if there are complex inter-component/system

interactions between the malware and other collaborative code from other programs, as

discussed in [LeM06]. Also, in their work on testing malware detectors, [ChJ04] explain

how code/data obfuscation caused by encryption, packing, polymorphism, and

metamorphism is a significant obstacle to overcome, especially if the static analysis-

based technique is to be automated. COTS anti-virus products are notoriously vulnerable

to these evasion techniques. For example, on-access obfuscation, where instructions are

decrypted only during execution, makes static analysis extremely difficult and time-

consuming [ChJ04].

17

The efforts of Moser, et al. in [MKK07] further address the limits of static

analysis for malware detection. They specifically focus on the viability of evading

semantics-aware detection schemes, where the behavior of the malware is modeled

abstractly to determine whether a specific piece of code exhibits a specific behavior or

function. Moser et al. accomplish this by using a primitive known as an opaque constant,

which refers to a code sequence that loads a constant into a register and whose value

cannot be determined statically. Opaque constants strategically replace certain register

load operations with semantically equivalent instructions, thus generating a code

sequence that always produces the same result. Effectively, control flow can become

scrambled, and data locations and usage can be hidden from static analysis. This

technique is applied to the source code of the target program, which allows much

flexibility in applying these obfuscation transformations. In fact, the authors prove that

the creation of an algorithm to determine the precise result of an opaque constant-

obfuscated code sequence is an NP-hard problem.

2.3.2 Dynamic Analysis Techniques

Detecting malware by analyzing the code during execution is called dynamic

analysis. This run-time analysis technique provides relatively immediate and measurable

empirical evidence of what an unknown binary is doing or trying to accomplish. As a

bonus, dynamic analysis is effective against binaries that obfuscate themselves or are

self-modifying. This is due to the fact that the destiny of all programs is to be run on a

system, so when the program is running, its behavior and subsequent system

modifications can be captured.

18

 2.3.2.1 Signature-Based Dynamic Analysis

Kephart and Arnold pioneered the efforts for automated extraction of malware

signatures in [KeA94]. They developed an effective extraction method for malware

signatures by allowing viruses to infect large numbers of files. With a plethora of various

infected files, they harvest byte sequences in sizes of 12 to 36 bytes. This process yields

a myriad of signatures, and the ones with the lowest estimated false positive probabilities

are selected for the final signature-based detection engine. This methodology was

incorporated into IBM’s AntiVirus product during the 1990s. Arnold and Tesauro

extended this work into a neural network classifier in [ArT00]. They use n-grams and

multiple neural networks in a voting procedure to eliminate false positives and aid in

detecting unknown Win32 viruses.

Lee and Mody successfully automate malware detection using runtime behavioral

data and machine learning in [LeM06]. Their methodology quantifies a file’s runtime

behavior into a form of sequenced events. It normalizes this data for canonical-based

storage in a database. Their scheme constructs classifiers for machine learning with the

stored event sequences as input. They use a technique called Opaque Object to represent

this classification data. This specific approach allows objects to represent data in rich

syntax and semantics. It also yields a similarity distance between any two objects, which

factors into their classification method based on clustering. The authors use a Microsoft-

developed distributed system of virtual machine-based “workers” with kernel mode

monitor agents running on them. As files under investigation are executed, the monitor

agent intercepts and monitors all system calls in kernel mode. The authors acknowledge

19

the limiting factors of lack of code structural information, environment conditions, and

ineffective virtualization as obstacles to accurate malware classification.

Willems et al. takes steps towards automating much of the dynamic analysis

required by advanced, in-depth malware analysis in [WHF07]. They use their own tool

(now a commercial product) called CWSandbox to monitor all malware system calls and

generate a detailed report to simplify a malware analyst’s task. They use API hooking

and dynamic link library (DLL) injection to run CWSandbox as a rootkit, thus evading

detection by sophisticated malware. CWSandbox collects information exposing the

malware’s behavior. This information consists of file modification/creation, Windows

registry changes, DLLs that are loaded, virtual memory footprint, process creation,

network connections, and miscellaneous events pertaining to kernel driver or protected

storage access attempts. This tool is unique in its ability to bridge the gap between

automated, autonomous malware detection and in-depth, human-based analysis.

Unfortunately, it is still a relatively slow method of automating malware detection, with

an effective throughput of only 500 binaries per day per instance of CWSandbox.

Bailey et al. extend Willem et al.’s efforts in fingerprinting malware behavior

using runtime system state changes in [BOA+07]. They execute malware in virtualized

environments to perform causal tracing of system objects created during the malware’s

execution. These system events are exported to a server that builds causal dependency

graphs of these events. This aids in validating that the events being caused by the

malware are not normal system events. This approach goes beyond the capability of

CWSandbox by using classification algorithms to automate detection of malware. The

authors implement a tree structure based on a hierarchical clustering algorithm. An

20

inconsistency measure is calculated for this tree structure to break the tree into

meaningful groups or clusters. These clusters serve as models to measure program

behaviors against.

Ding et al. implement a behavior-based dynamic heuristic analysis approach to

proactively detect unknown malware in [DJB+09]. This approach categorizes behavior

features based on Win32 API calls and their specific parameters. An automatic behavior-

tracing system is developed to collect the behavior features during runtime. The authors

opt for two independent detection models: a statistical detection model and a mixture of

expert (MoE) model. The malware behavior features are broken into six classes of

malicious behaviors related to files, processes, windows operation, networking, registry

settings, and windows services. After comparing the results of malicious and benign

executables in the context of these six classes, a more detailed 35-dimension feature

vector is defined where each dimension accounts for one kind of behavior. This feature

vector is the input to the statistical and MoE models for ultimate classification of

malware. After experiments, the statistical model of malware detection achieves a 96%

true positive detection rate with a nearly 35% false positive rate. The MoE model

achieves a 1% false positive rate, but it can only reach a 75% detection accuracy rate.

Dai et al. takes a different approach to dynamically quantify malware behavior in

[DGL09]. The authors focus their work on feature set selection via static and dynamic

means. This hybrid method of extracting statistical information is relatively rare and,

thus, unique. This comprehensive effort uses multiple data mining approaches: simple

heuristics (PE headers and strings), n-grams, static instruction sequences, and dynamic

instruction sequences. A separate algorithm is used to obtain instruction sequence blocks

21

of significance, and the top instruction associations are selected for the feature set. The

selected feature sets for each data mining approach are utilized for support vector

machine training. The dynamic instruction sequence-based SVM outperformed the other

data mining approaches with a malware detection accuracy of over 91%.

 2.3.2.2 Anomaly-Based Dynamic Analysis

True anomaly-based dynamic analysis is a rare technique for malware detection.

Many methods may claim they are anomaly-based, but for the purpose of this research,

anomaly-based implies a quantification of benign behavior, not a quantification of

heuristic-based malicious behavior. It is difficult to find published work in this area,

which implies that this method of malware detection is still novel, or this method is not a

worthwhile pursuit. However, the idea of quantifying benign program execution at

runtime should be no less daunting than doing it statically. At least one published effort

clearly attempts this task, and another non-published effort successfully achieves this,

which is discussed in Section 2.5.

Apap et al. present a host-based intrusion detection system for Windows that

focuses specifically on registry accesses in [AHH+02]. The Registry is a worthwhile

location to monitor runtime execution of programs. This is because Registry activity

tends to be regular over time, with most programs accessing only at startup/shutdown or

at specific time intervals. Therefore, anomalous and irregular activity may be relatively

easy to identify. Additionally, many malware infections launch programs or change keys

that have not been launched or changed since the operating system had first been

installed. The authors exploit this beneficial scenario by developing a system called

22

RAD (Registry Anomaly Detection) to monitor registry accesses in real-time to detect the

activity of malware. This work is an extension of a network packet header-based

anomaly detector called PHAD (Packet Header Anomaly Detection). The RAD system is

divided into three basic components: an audit sensor, a model generator, and an anomaly

detector. The sensors log registry activity to a database while the model generator reads

this data to determine models of normal registry behavior. Finally, the anomaly detector

uses the model as a point of comparison for all registry accesses to determine their

potentially malicious intent. After training RAD for two days on benign behavior, the

system is put to test. It performs well, achieving a 100% detection rate of malicious

activity in certain scenarios. However, there are many false positives in most scenarios,

and most of these false positives are caused by legitimate processes that did not run

during the two-day training phase. This lack of an exhaustive training phase reveals an

inherent limitation to dynamic analysis-based anomaly detection.

 2.3.2.3. Limitations of Dynamic Analysis

Just as there are limitations to static analysis that are addressed by dynamic

analysis, the opposite is true as well. Dynamic analysis-based malware detection

generally requires orders of magnitude more time to perform than static-based

techniques. Also, the malware has to run for a long enough duration to capture sufficient

malware information, but it also has to be run quickly enough to be scalable. This makes

dynamic analysis vulnerable to intentional or inadvertent time-delayed evasion

techniques. Specifically, when a program under inspection is executed, the monitoring

agent only witnesses a single instance of execution of that program. If malware is

23

programmed to activate at a certain time, dynamic analysis will almost surely miss this

behavior. Bailey et al. draw attention to the fact that anti-VM (virtual machine) evasion

techniques exist [BOA+07]. Finally, malware that depends on user input may not reveal

its full functionality without manual intervention or an advanced clicking emulator to

simulate humanlike mouse clicks.

2.4 Detecting Email-Borne Malicious Code

Detecting malware sent by email can be seen as an extension to the malware

detection problem in general. However, there are some advantages to detecting malware

within special purpose applications. This is further discussed in the next section. It is

important to note that many email-based malware detection solutions do not take

advantage of the special purpose application, and they are simply commodity anti-virus

products that run the same scans with the same signatures used on client-based systems.

While this is convenient and necessary to prevent common, known malware from

infiltrating a network via email, it still lacks the ability to detect most new malware and

0-day attacks. Fortunately, there is work in this area that has set the precedent for

tracking malicious emails.

Shih et al. propose a method of detecting unknown malicious emails [SCY05].

Their method evaluates the malice of an email attachment by focusing solely on the

behavior of the email and not the contents of the attachment itself. This technique

evaluates three classifiers against four versions of commodity anti-virus software. The

three classifiers it uses are the Naïve Bayes, the Bayesian network, and the decision tree

classifiers. Their feature sets consist of 11 email content-based features: mail content

24

type, mail size, MIME (Multipurpose Internet Mail Extensions) format, attachment,

number of attachments, attachment size, script language, subject, carbon copy, and

recipient. All three of these classification approaches outperform the four anti-virus

products in detecting five variants of known malware. However, targeted and tailored

spear phishing emails will likely evade a detection technique that relies on anomalous

email behavior.

Schultz et al. makes a significant contribution to this field of email-borne malware

detection with their seminal work call MEF (Malicious Email Filter) [SEZB01]. MEF is

a tool that detects malicious Windows executables using Procmail and a UNIX mail

server. This tool offers three key contributions: 1) detection of known and unknown

malware attachments, 2) automatic distributed propagation of detection models, and 3)

ability to monitor the propagation of malicious email attachments. This framework uses

a Naïve Bayes classifier to detect malware, and this classifier is generated by a data

mining algorithm trained over a given set of data. MEF has the ability to detect similar

but unknown malware, and its probabilistic classification methods allow the tool to

identify borderline executables, meaning they are on the border of the threshold between

malicious and benign. These borderline cases provide an opportunity for expert analysts

to make a determination. In turn, the detection models can be updated with this valuable

new insight, and MEF can update a central server with the updated detection models for

distribution to other MEF outposts.

MEF also tracks the propagation of email attachments. It stores a unique

identifier (hash) for every email attachment in a database as well as log data pertinent to

each email. The logs of malicious attachments are sent to the central server. Therefore,

25

the central server can use the unique identifier and contextual log data to track the spread

of malicious attachments via email. MEF is tested against a signature-based malware

detection approach that emulates commodity anti-virus software on mail servers. The

data set consists of 4,300 files, 1,000 of which are benign. MEF significantly

outperforms the signature-based approach with an accuracy rate of over 97%. The

experiments do not evaluate MEF’s detection model updating or its malicious attachment

propagation tracking. Additionally, the detection of unknown malware is not thoroughly

evaluated.

Bhattacharyya et al. extends the work of Schultz et al. with their Malicious Email

Tracking (MET) system [BaH02]. MET shifts focus away from the three major

capabilities of MEF and towards a dramatically improved malicious email propagation

tracking capability. MET maintains a database of statistics about the trajectory of email

attachments, and this affords the tool a global perspective on the spread of malicious

software via email (assuming a global MET presence). This database of email

attachment trajectory data also provides the ability to determine all the points of entry of

email-borne malware into a network. Another tangential benefit of this technique is the

ability to reduce the spread of self-replicating malware through email.

MET gathers the core statistics for each email attachment, which consists of the

prevalence of an attachment and its birth rate. Prevalence is the number of times a MET

client observes an attachment, and the birth rate is the average number of copies sent

from the same user. MET has built-in heuristics to determine if an attachment is self-

propagating, and this information can be communicated to a central MET server for

distribution to other MET clients. This is how self-replicating malware can be prevented

26

after the initial infection. The limitation to this approach is obvious: there will be an

initial infection and likely multiple infections before the trajectory data begins to line up

with the classifier model. Also, a targeted spear phishing attack is designed to emulate

legitimate behavior and appropriate recipients. Thus, a detection technique that tracks

email trajectory likely will not recognize anything anomalous in a spear phishing email.

Finally, there is one documented framework for detecting 0-day worms and

viruses in email, as proposed by Sidiroglou et al. in [SIK+05]. This framework is an

email worm vaccine architecture, and it uses the Registry Anomaly Detection (RAD)

mechanism, designed by Apap et al. in [AHH+02], to detect malware in emails. RAD

monitors Windows registry accesses in real-time to detect the activity of malware. The

authors design the system to use a Simple Mail Transfer Protocol (SMTP) proxy between

the Internet and the protected email server. This proxy intercepts all incoming emails,

extracts all attachments, and runs the attachments on a virtual machine that uses RAD to

detect anomalous behavior. Upon detection of a malicious file and therefore malicious

email, the SMTP proxy is notified, and the email message is discarded. Experiments are

run with publicly available attacks delivered via email, and this system achieves a 100%

detection rate with a false positive rate of 5%. However, this anomaly-based dynamic

analysis technique has its drawbacks. Because RAD has to be trained on “normal”

behavior, many false positives are caused by legitimate processes that do not run during

the training phase of RAD. This lack of an exhaustive training phase reveals an inherent

limitation to this method of malware detection in emails. Additionally, these experiments

do not appear to use unknown malware, which leave the claim of detecting 0-day worms

and viruses untested. Finally, not all malicious code alters the Windows registry. This

27

limits the detection footprint of RAD, which limits the scope of detectable malware

offered by this email worm vaccine architecture.

The email-focused malware detection techniques discussed to this point are either

unlikely to detect novel malware in targeted emails due to the difficulty in detecting

malware that leaves such a small network footprint (i.e., it does not spread

indiscriminately like a worm), or their ability to detect unknown malware remains

untested. Also, none of these techniques takes into account the download of malware or

the exploitation of web browsers caused by URLs within emails. This is a significant

drawback to using any of these techniques to detect spear phishing emails that use

malicious URLs.

2.5 Spear Phishing Detection Framework

This section’s purpose is to extend the literature review into the introduction of

the spear phishing detection framework proposed in this research. Special purpose and

general purpose systems are discussed first, followed by the principles behind a malware

detection approach that combines static and dynamic analysis. Finally, the two malware

detection algorithms selected for this research are introduced and discussed.

This research effort attempts to build a spear phishing detection framework that is

implemented at the email server/service level of the network. It uses both dynamic and

static analysis techniques to detect the presence of malicious email attachments,

especially novel/unknown malware.

There are two important questions about this spear phishing detection framework

that need to be answered: 1) Why implement this framework at the server/service level

28

and not as a client-based application? and 2) Why use a dynamic analysis-based approach

when it is notorious for its overhead costs in time and resources? Both of these questions

are answered in the following sections.

2.5.1 Special Purpose versus General Purpose Systems

Client workstations are general purpose computers, thus they have to be able to

handle multiple types of user input, applications, and functionality. Because of this, the

set of all possible actions that a general purpose computer can perform is intractably

large. Essentially, their behavior can be unpredictable. In addition, client-based

computers have to provide virtually instantaneous feedback and response, or real-time

computing, to user inputs. This has become the norm and the expectation from virtually

all computer users. Because of this, dynamic-analysis based malware detection has to

take into account a myriad of possible files, processes, and network connections being

created, modified, and/or terminated. Also, the malware detection product cannot

introduce much latency, or else the enterprise-wide adoption of the product will meet

many obstacles.

 Email servers, on the other hand, are intended to be special purpose computers,

though not quite as special purpose as an embedded system (i.e., cell phone, DVD player,

electronic gadget, etc.). However, in comparison to client workstations, email server

behavior is more predictable, and so is its file, process, and network connection creation,

modification, and/or termination. Even though commercial email server software is

designed to meet the needs of a broad and diverse customer base, it still operates

according to a much more limited baseline behavior than a general purpose system does.

29

 Additionally, latency is not a significant issue. Email delays are acceptable to the point

that they are not surprising, and many times they go unnoticed by the email recipients.

 Therefore, malware detection products have more leeway in time to perform more in-

depth analysis on email.

 In addition, having a malware detection framework at the network boundary

can stop malware at the point of entry into a network instead of waiting to stop it at the

client. In most situations, this is a preferred approach over letting the malware reach its

target before preventing its execution. Typically, there are many network points of entry,

but using email as an attack vector has proven to be effective and reliable for cyber

espionage. Also, it is easier to manage/administrate software at the server/service-level

vice the client/distributed user-level.

2.5.2 Combining Dynamic and Static Analysis of Malware

In almost all related work for malware detection, authors emphasize the need to

augment static analysis with dynamic analysis and vice versa. Hybrid approaches are

somewhat rare, but the benefits of combining both approaches are synergistic. While

static analysis prevails in speed and exhaustive code analysis, it falters in obfuscated code

and embedded malware analysis. While dynamic analysis lacks in analysis speed and

time-delayed evasion, it prevails in determining actual code execution sequences and

functional behavior. Using a spear phishing detection framework that follows a hybrid

approach for malware detection alleviates many of the limitations of static and dynamic

analysis.

30

2.5.3 Using Malware Type Recognition (MaTR) for Static Analysis

A very important piece of a spear phishing prevention framework is its ability to

identify malicious attachments to emails. There are precedents for accomplishing this

using static analysis-based techniques for malware detection. Specifically, the MEF

[SEZB01] and MET [BaH02] tools, in addition to Shih et al.’s work [SCY05],

demonstrate that using signature-based static analysis in combination with email services

is a viable and effective means to detecting email-borne malware.

Malware Type Recognition (MaTR) is a research initiative that extends the

malware detection technologies to include the additional context of malware family types

[DRP+10]. At the time of this thesis research, MaTR prototype version 1.00 is the current

prototype. This prototype implements MaTR’s best-performing pattern recognition

technique and feature sets to perform automated static analysis for malware detection and

malware type classification. The additional context of malware type provides significant

actionable information for network defenders. This situational awareness is vitally

important for identifying cyber espionage through spear phishing-borne malware, second

only to the tool’s fundamental ability to determine malware from non-malware. Also,

this context can be used to prioritize more aggressive dynamic analysis efforts.

In the context of this thesis, MaTR is a signature-based static analysis scheme that

is comparable to Tabish et al.’s work in [TSF09]. Thus, MaTR is one of the only static

analysis-based methods for performing malware type classification as well as having very

high detection rates (>99%). It uses program structures and anomaly features of malware

that are unique to certain classifier models. This method of static analysis is proven to be

very accurate in detecting malware. MaTR uses these feature sets to form classifier

31

models that are used in a two-stage sequence. The first stage is malware detection, and

the second stage is malware classification.

Ultimately, there are three primary reasons to use MaTR as the static analysis-

based malware detection engine for the spear phishing detection framework:

1) Malware type classification makes the output of the product actionable.

2) High true positive and true negative detection rates with very low false

positive and false negative detection rates compared to all other methods

of malware detection.

3) Readily available resources for research associated with MaTR at AFIT.

It is important to note the limitations of MaTR as well. MaTR is prone to the

same static analysis limitations in general. However, many of the detection-evading

techniques are manifested as feature sets of MaTR, thus making it more resilient to these

inherent limitations. Additionally, the MaTR prototype is substantially less accurate in

classifying malware into types than it is in detecting malware from non-malware.

2.5.4 Using ESCAPE for Dynamic Analysis

The ESCAPE platform is a true anomaly-based, dynamic analysis technique

designed to prevent malicious code from executing [Kim10]. The Air Force currently

uses ESCAPE in a web crawling implementation to automate the detection and collection

of malicious code that traverses the Internet. The key to its success lies in its ability to

whitelist, or sign, executable code that is known to be legitimate and subsequently track

and prevent the execution of unknown/unsigned code.

32

ESCAPE is implemented as a device driver at the kernel level of the Windows

XP, Vista, and 7 operating systems. Since a device driver runs at the system level,

ESCAPE runs in Ring 0 and can thus implement kernel hooks as necessary. ESCAPE

hooks the System Service Dispatch Table (SSDT), which is a kernel structure that

contains pointers to addresses for the system services. The SSDT is used to look up the

function that handles a given system call [HoB05]. Specifically, ESCAPE hooks the

NtAllocateVirtualMemory, NtProtectVirtualMemory, NtMapViewOfSection,

NTCreateUserProcess, NtTerminateProcess, and NtSetInformationProcess Windows

system functions. In the SSDT, ESCAPE overwrites the pointers to these functions to

point to its hook function.

Hooking these functions allows ESCAPE to modify the memory protection

characteristics of all pages in memory that are allocated or mapped into [RuS04]. This is

due to the memory page protection argument that is passed to all six of these functions

when they are called. ESCAPE uses these hooks to force every page in memory to be

non-executable, essentially enabling hardware-based Data Execution Prevention for

every page in memory.

ESCAPE also hooks the Interrupt Descriptor Table (IDT), which contains

addresses to the functions that handle each interrupt, in order to hook the Page Fault

Handler [HoB05]. ESCAPE then allows pages in memory to be executed only if it has a

valid cryptographic signature. ESCAPE pre-computes the HMAC (Hash-based Message

Authentication Code) of every executable section within every file image on the system

or application under its protection. This is how ESCAPE whitelists, or signs, executable

code. This technique does assume, however, that the initial HMAC computation for all

33

the executable code is performed on legitimate, known good code. Thus, ESCAPE has

the ability to detect the execution of new, unknown, or unverified code caused by an

attempt to transfer execution flow to an instruction in a page marked as non-executable.

Essentially, ESCAPE uses its kernel access and privileges to protect user-level

applications and processes from memory corruption exploits.

An additional feature ESCAPE offers is the ability to use a list of exceptions for

unsigned, non-whitelisted code that results from legitimate application functionality.

This requires a training period where the protected application is used exhaustively in

order to determine if any unsigned code attempts to run legitimately. If so, the signature

for this code can be added to an exceptions list, thereby reducing the rate of false

positives.

ESCAPE has demonstrated its effectiveness in detecting and preventing malicious

code execution resulting from Internet browsing to malicious web sites. Its first real-

world use is in a virtual environment that spawns numerous web crawlers to visit known

or potentially malicious web sites. As the web crawlers visit sites, ESCAPE detects

unknown and potentially malicious code execution caused by web-borne exploit attempts

against web browsers. Using this code and memory page whitelisting approach,

ESCAPE discovers 0-day exploits as well as known exploits without using signature-

based matching algorithms.

Although its proactive malicious code detection capability is desirable, ESCAPE

is still vulnerable to a return-to-libc attack due to the inherent nature of the attack using

only legitimately executable code. Another potential weakness of ESCAPE’s code

whitelisting technique is manifested when a page in memory is marked as non-executable

34

even though there is legitimate executable code present. This occurs in scenarios where

applications do not use the Windows Data Execution Prevention (DEP) feature [Dat10].

DEP helps to prevent code execution from data pages. Applications like Adobe Reader

or Flash attempt to execute legitimate code from data pages marked as non-executable by

ESCAPE. This scenario results in a false positive detection of malicious code if the

dynamically-created code is not added to ESCAPE’s exceptions list. However, the

versions of ESCAPE for Windows Vista and Windows 7 have greatly diminished the

false positive rate by preventing the most common DEP bypassing techniques.

Additionally, since ESCAPE’s malicious URL detection capability is of interest

to a system focused on spear phishing detection, a discussion on ESCAPE’s malicious

URL detection limitations is prudent. ESCAPE is susceptible to certain web crawler

prevention mechanisms by web sites not wishing to be crawled. For example, a web

page can appear to serve millions of dummy links to fool crawlers into wasting resources

by chasing down each link. This is overcome by setting a link threshold per web page

visited by the crawler. Also, a web page can cause infinite recursion or infinitely nested

links by pointing links to each other. The crawler can avoid this prevention scheme by

setting another threshold on the number of nested links to follow. A third example of an

anti-crawling mechanism is a web page causing a seemingly infinite file load time. The

web server transmits what appears to be an infinite-sized file, which is defeated by setting

a file download timeout on the crawler. Finally, if a malicious URL expects a human

user to click on a link to initiate an exploit attempt, then ESCAPE may not be able to

detect this URL as malicious. The lack of a user agent to click on active content is a

limitation. Additionally, all of these extra thresholds and limitations on the web crawler

35

effectively limit the ultimate capability of the ESCAPE to access and collect information

on as many web pages as possible.

Finally, ESCAPE protects against memory corruption exploits targeting specific

application versions on specific operating systems, which are sensitive to the target

process’s memory address space layout. Memory address space layouts change

depending on the operating system version and application version. An exploit that

works on one operating system and application version may not work on a different

version of the operating system or the application. Because of this, ESCAPE is modified

and tuned for each operating system and each application version it protects.

36

III. Methodology

his chapter presents the methodology to design and evaluate the performance of

the SPEar phishing Attack Detection system (SPEAD). Section 3.1 addresses the

problem definition, and the goals and hypotheses are introduced in Section 3.2. The

approach and experiments to achieve the research goals are outlined in Section 3.3.

Section 3.4 provides details on how SPEAD is designed. The System Boundaries and

System Under Test (SUT) are defined in Section 3.5. The system services and workload

are discussed in Sections 3.6 and 3.7, respectively. Section 3.8 describes the performance

metrics to evaluate SPEAD. The system parameters and factors are discussed in Section

3.9 and 3.10, respectively. A detailed explanation of the evaluation technique follows in

Section 3.11, and the experimental design is highlighted in Section 3.12. Finally, the

chapter is summarized in Section 3.13.

3.1 Problem Definition

 Current malware detection technology does not adequately protect organizations

or individuals from spear phishing emails that use novel, targeted, and tailored email-

borne malware. The most common method of detecting email-borne malware is based on

an adaptation of host-based anti-viral techniques that search for specific signatures as

well as some heuristics of well-known email malware. However, this static signature-

matching technique does not adequately prevent spear phishing attacks, which use novel

malware. An automated email analysis framework that reliably detects novel malware

will significantly limit a primary attack vector for cyber espionage.

T

37

3.2 Goals and Hypotheses

 The objective of this thesis is to develop and evaluate a framework to perform

automated analysis of emails for previously unknown malware in near real time. The

proposed system, SPEAD, identifies email transmissions on a target network, parses the

emails for web site URLs (Uniform Resource Locators) and specific file attachments,

submits these URLs and files to two malware detection engines (i.e., MaTR and

ESCAPE), and stores the malware detection results in a database. Because this research

is sponsored by an Air Force entity, design decisions are made, wherever possible, to

emulate expected behavior on an Air Force base network.

 There are four goals of this research:

1) Construct an email collection and processing system that passively obtains emails,

parses them for URLs and specific file attachments, and inserts URL and file

metadata into a database for automated malware analysis.

2) Modify MaTR’s and ESCAPE’s execution environments to: 1) receive source

URLs and files from a database for analysis, and 2) update the database with the

malware detection results.

3) Collect malware detection metrics from SPEAD and from commercial email anti-

virus products for comparison and evaluation of SPEAD’s effectiveness.

4) Characterize and evaluate the time required (i.e., latency) to perform this

automated analysis of email file attachments and URLs under an approximated

Air Force base’s email traffic throughput.

 It is hypothesized that an email collection system can be constructed that: 1)

combines two malware detection algorithms to simultaneously and synergistically

38

address the other’s weaknesses and limitations, and 2) detects novel email-borne malware

at a higher rate than commodity anti-virus products. In the context of this thesis, novel

malware refers to malware or malicious code that is unknown to the general public and

cannot be found within public forums, databases, or commercial products. Because email

transmissions from client to client generally occur in a timeframe on the order of seconds

to minutes, it is also hypothesized that this system will identify the presence of malicious

emails within one hour, regardless of the sustained email traffic workload.

3.3 Approach

This section provides a cursory look into the design and evaluation approach for

SPEAD and how this approach achieves the four goals of this research. While this

section is focused on the high-level design decisions, a more detailed explanation of

SPEAD’s system design is given in Section 3.4.

The high-level view of SPEAD’s overall functionality is illustrated in Figure 1.

This figure and its explanation summarize how this approach meets the first two research

goals. SPEAD’s functionality is broken down into three phases:

1) Email Collection: emails are passively collected (i.e., out of band) from a base LAN.

2) Email Processing: emails are parsed for specific file attachments and all URLs.

3) Malware Detection: files and URLs are submitted to malware detection engines.

39

Figure 1: High-level Flowchart of SPEAD Functionality

 For email collection, SPEAD collects emails passively as an intentional decision

to make this spear phishing detection framework more viable for wide-scale

implementation. Within the Air Force and other large organizations, there is a general

reluctance to introduce new network infrastructure “inline”, meaning the infrastructure

becomes another device for network traffic to pass through before reaching its intended

destination.

 For email processing, SPEAD focuses on the following file types: Windows

Portable Executable or Common Object File Format (PE/COFF), Adobe Reader, and

Microsoft PowerPoint, Excel, and Word files. These file types are selected for this

research because of their prevalence in email spear phishing attacks [Van08].

 For malware detection, MaTR analyzes PE/COFF files, ESCAPE analyzes the

non-PE/COFF files (i.e., Reader, PowerPoint, Excel, and Word files), and both MaTR

and ESCAPE analyze URLs. MaTR is initially designed to perform batch processing of

PE/COFF files, and it has been extended to perform malware detection on PE/COFF files

downloaded via URLs. ESCAPE is initially implemented to perform a web crawling

40

mission to detect memory corruption exploits against Internet Explorer, but it has been

extended to detect memory corruption exploits against Adobe Reader and Microsoft

PowerPoint, Excel, and Word.

 The approach for achieving the third research goal involves selecting and

installing commodity anti-virus products, obtaining a malicious and non-malicious file

and URL corpus, and sending malicious and non-malicious emails to SPEAD and each of

the selected anti-virus (A/V) products. Because it is impractical to examine all

commercial anti-virus products, five representative commodity anti-virus products are

chosen based on the following criteria:

 The product has a history of performing well according to Virus Bulletin’s

rigorous anti-virus testing [Vir10].

 The product offers a Microsoft Exchange Server component, which

represents a common email server for large enterprises, such as the Air

Force.

 The product is competitively priced, which increases its viability as a

widely scalable solution.

 The five selected products are as follows: AVG Internet Security Business

Edition, BitDefender Security for Windows Servers, G Data MailSecurity, McAfee

GroupShield for Microsoft Exchange, and Microsoft Forefront Protection 2010 for

Exchange Server. Each of these five products is installed on a Microsoft Server 2008 R2

operating system running Exchange Server 2007. Because these anti-virus products

employ static analysis-based malware detection, the choice of underlying operating

system does not affect the product’s malware detection accuracy.

41

 Next, a corpus of malicious files and URLs is acquired from various sources, as

outlined in Table 1. The malicious PE/COFF, Adobe Reader, and Microsoft PowerPoint,

Excel, and Word files are acquired primarily from two sources: the VX Heavens public

malware database and two exceptionally large organizations who wish to remain

anonymous. Additional Adobe Reader malware is obtained from the Offensive

Computing website [Off10] and directly from an industry expert in Adobe Reader

malware analysis [Dix10]. The malware collection acquired from the two large

organizations is labeled as Novel because of the organizations’ focus on protecting

against cyber espionage and their general reluctance to submit all malware to anti-virus

companies. Malware obtained from the public sources are labeled as Known to indicate

that this malware is more likely to be obtained and analyzed by anti-virus companies.

Table 1: Malicious File and URL Corpus
Sample
Type PE/COFF Adobe

Reader
Microsoft

Excel
Microsoft

Word
Microsoft

PowerPoint URLs

Known 2,213 112 8 13 7 1,920
Novel 278 91 21 9 4 0
Total 2,491 203 29 22 11 1,920

 Malicious URLs are acquired from the online Malware Domain List, which

contains almost 60,000 malicious URLs, with the most recent URLs dated 6 January

2011 [Mal11]. Only the URLs submitted since the beginning of December 2010 are used

in this research due to the short lifespan of malicious URLs once they are reported. No

URLs are collected from private sources, so the entire malicious collection is considered

to be known bad.

42

 All malware and malicious URL samples are assumed to be malicious based on

the open-source community’s vetting of the Known malware and URLs as well as the

trusted relationship with the two anonymous organizations. Validating every malicious

file and URL through malware analysis is outside the scope of this research.

 In addition to the malicious corpus of files and URLs, a collection of non-

malicious files and URLs, quantified in Table 2, are acquired from a computer security-

aware graduate student’s computer. The files are reviewed by the student for the purpose

of accounting for their existence. Unfamiliar files are discarded to reduce the likelihood

of malware making its way into the non-malicious file corpus. The URLs, reviewed in a

similar fashion, are obtained from the student’s web browser “bookmarks”.

Table 2: Non-malicious File and URL Corpus

 PE/COFF Adobe
Reader

Microsoft
Excel

Microsoft
Word

Microsoft
PowerPoint URLs

Number of
Samples 1,787 382 100 196 170 188

 Ultimately, the malicious and non-malicious file and URL corpus are inserted into

emails and used in the experiments outlined in the experimental methodology in Figure 2.

Experiment 1 determines the optimal configuration for SPEAD and is detailed in Section

3.3.1. The metrics and data collected from Experiments 2 and 3 are used to achieve the

third research goal of comparing SPEAD’s and the A/V products’ detection performance.

These two experiments are explained in Sections 3.3.2 and 3.3.3. Finally, Section 3.3.4

describes the experiment to achieve the fourth research goal of characterizing SPEAD’s

latency.

43

Figure 2: Experiments Used to Achieve Research Goals

3.3.1 Experiment #1: Find an Optimal Configuration

 The first experiment seeks to determine the optimal configuration for one of

ESCAPE’s configuration parameters. ESCAPE’s malware detection is based on dynamic

analysis, and it must therefore run each file and visit each URL it is analyzing. Chapter

2, Section 2.3.2.3 outlines the limitations of dynamic analysis, one of them being the non-

deterministic nature of deciding how long to wait for a process to finish its execution and

reveal its true intentions. Because of this, wait times of 5, 10, and 20 seconds are

evaluated for malware detection accuracy in three separate tests. A sample set of

malicious files and URLs are selected based on preliminary research, where ESCAPE

detects their exploitation attempts consistently with a wait time of 30 seconds. This

sample set is delivered by email to SPEAD, and the consistency of ESCAPE’s detection

44

accuracy is evaluated for each wait time to determine the optimal configuration for

ESCAPE. These three tests are each repeated three times to ensure the metrics are

accurate to the 95% confidence level.

3.3.2 Experiment #2: Determine SPEAD Detection Accuracy

 The second experiment involves sending malicious and non-malicious emails

through SPEAD in order to determine malware detection accuracy metrics. The

malicious and non-malicious emails use the entire corpus of malicious and non-malicious

files and URLs from Tables 1 and 2. Four tests are performed using varying emails as

input: 1) emails with malicious URLs, 2) emails with malicious files, 3) emails with non-

malicious URLs, and 4) emails with non-malicious files. These four tests are segregated

to simplify the metric collection efforts, and the tests are each repeated three times to

ensure the metrics are accurate at a 95% confidence level. The metrics, explained in

Section 3.8, are used to evaluate SPEAD’s detection performance in comparison with the

commodity A/V products, discussed in the next section. Additionally, the first two

research goals are validated by demonstrating that all the emails sent into SPEAD are

actually received and processed by SPEAD. The list of URLs processed by ESCAPE and

MaTR are compared with the list of URLs from both the malicious and non-malicious

URL corpus. Similarly, the full collection of files processed by ESCAPE and MaTR are

compared with the original corpus of malicious and non-malicious files.

3.3.3 Experiment #3: Determine Commodity A/V Detection Accuracy

 The third experiment involves sending malicious and non-malicious emails

through each of the five commercial anti-virus products in order to determine their

45

malware detection accuracy metrics. Just as in Experiment 2, the malicious and non-

malicious emails use the entire corpus of malicious and non-malicious files and URLs,

and four segregated tests are performed for each A/V product. These four tests are each

repeated three times to ensure the metrics are accurate at a 95% confidence level. The

metrics are used to evaluate the commodity anti-virus products’ detection performance in

comparison with SPEAD’s, thus achieving the third research goal.

3.3.4 Experiment #4: Characterize SPEAD Latency

 The fourth experiment is an abbreviated version of Experiment 2, where a smaller

collection of source emails is used. However, the purpose of this experiment is to

observe the latency of SPEAD, which is the time SPEAD takes to receive an email and

make a determination on the email’s malicious intentions. This latency metric is

collected for three tests using varying speeds of email traffic sent to SPEAD: 1) a

maximum email throughput, 2) an expected email throughput, and 3) a low email

throughput. These email throughputs are the speeds at which emails are sent, and they

are based on an approximated Air Force base’s email traffic throughput. These

throughputs are further explained in Section 3.7. The three tests are each repeated three

times to ensure latency metrics remain precise within a 95% confidence interval. This

experiment seeks to characterize SPEAD’s latency in the context of varying email traffic

loads, thus achieving the fourth goal of this research.

3.4 System Design

 This section delves into the details of the SPEAD system design. It does not

cover the details of the underlying hardware and specific software versions, which are

46

explained in Section 3.11. This section is organized in the context of Figure 1, where

SPEAD’s overall functionality is illustrated in three phases: email collection, email

processing, and malware detection.

3.4.1 Email Collection

 SPEAD’s email collection flowchart is shown in Figure 3, and it consists of an

email server receiving a new incoming email, adding a blind carbon copy recipient to the

list of recipients, and delivering the email to the appropriate recipient’s mailbox.

Figure 3: SPEAD’s Email Collection Flowchart

 The email collection is performed on a Microsoft Exchange 2007 email server

running on a Microsoft Server 2008 R2 (Release 2) operating system. The Exchange

server is configured with the Hub Transport server role, which is the required

configuration to handle all mail flow inside an organization, including email delivery to

recipients’ mailboxes [Hub06]. A transport rule is created on this email server that is

47

applied to all emails processed by this email server. This rule adds a recipient to the

incoming email by blind carbon copying the email to a specified user’s mailbox. The

specified user account belongs to SPEAD, and this effectively copies all incoming emails

to SPEAD’s mailbox.

3.4.2 Email Processing

SPEAD’s email processing flowchart is shown in Figure 4, and it consists of

downloading emails from a server-side mailbox, parsing the emails for URLs or specific

files, and disseminating these URLs, files, and their respective metadata to the malware

detection component.

Figure 4: SPEAD’s Email Processing Flowchart

The email processing is performed by three Microsoft Windows-based programs:

Microsoft Outlook, Visual Basic for Applications (VBA), and Visual Basic scripts

48

(VBscripts). In the context of Figure 3, Outlook downloads the email from SPEAD’s

mailbox on the Exchange server, the Outlook VBA module determines if files or URLs

exist, and the VBscripts extract the files/URLs, inserts appropriate information into a

database, and copies files to a file share. The detailed explanation is as follows:

1) Microsoft Outlook is configured with an Exchange account for its SPEAD

mailbox on the Exchange server. As Outlook downloads new emails from the

Exchange server, an email rule is run against all new emails as they enter the

Inbox, and this rule’s purpose is to run an Outlook VBA module to process

each email.

2) The Outlook VBA module determines if any attachments or URLs exist

within the email. The attachments are easily discovered using VBA’s

MailItem object, which represents an email message in an Inbox folder, and

the Attachments property, which references all attachments for the

specified MailItem object [Mal10]. URLs are discovered using a regular

expression pattern against which all email content is compared.

3) Upon discovering any file attachments or URLs, the VBA program spawns a

VBscript process to handle each file and each URL found in an email. For

example, if five emails are received, each with one file attachment, then five

VBscript processes are started in parallel to handle each file attachment. The

same is true if one email contained five attachments.

4) The purpose of the VBscript process is to insert the appropriate file and URL

information into a MySQL database, which serves as a catalyst to start the

49

malware detection engines. The VBscript behaves according to its input, as

follows:

a. If there is a file, the VBscript determines the file type based on the

file’s binary header information. The script appends the appropriate

file extension to the file name and then moves the file to a remote file

share server. Finally, the VBscript connects to a remote MySQL

database, where it inserts a row containing information pertinent to the

file.

b. If there is a URL, the VBscript connects to a remote MySQL database,

where it inserts a row containing information pertinent to the URL.

5) The VBscript awaits a response from the malware detection engines for the

file or URL in question. The malware detection engines update specific

MySQL columns for each file or URL being analyzed. The script tracks this

progress by polling the database at regular intervals until the appropriate

database columns have been updated for the file or URL row in question.

When the malware detection engines’ responses are detected, the script

performs a final update of its file or URL row before terminating itself. This

final update is the latency, or the time it took the malware detection engines to

provide an answer. Latency is calculated using VBscript’s native timer

function, which is accurate to the second. A timestamp is taken when an

email is received, and another timestamp is taken immediately after a response

is received from the malware detection engines. The difference between these

timestamps is the latency in seconds.

50

3.4.3 Malware Detection

 SPEAD’s malware detection flowchart is shown in Figure 5, and it consists of two

malware detection algorithms, MaTR and ESCAPE, polling a database for files and

URLs to be analyzed and performing malware analysis on these files and URLs.

Figure 5: SPEAD’s Malware Detection Flowchart

 The malware detection is performed by Windows-based MaTR and ESCAPE

clients. In the context of Figure 4, the MaTR client polls the database and performs its

malware detection algorithm when a PE/COFF file or a URL needs to be analyzed.

Similarly, the ESCAPE client polls the database and performs its malware detection

algorithm when a non-PE/COFF file or a URL needs to be analyzed. The database is

updated with the results of MaTR’s and/or ESCAPE’s analysis. The details of MaTR’s

and ESCAPE’s roles in malware detection are given in the following sections.

51

3.4.3.1 MaTR’s Role in Malware Detection

 The MaTR algorithm is implemented as a command line utility running on a

Windows operating system, and it is designed to receive PE/COFF files as input. This

Windows client also runs VBscripts to handle the file/URL input from the database as

well as the analysis results from MaTR, as follows:

1) Multiple MaTR processes are running in parallel on the Windows client to

simultaneously analyze PE/COFF files from email attachments and PE/COFF

files downloaded via URLs. The results of analysis are recorded in a local log

file.

2) Multiple VBscript processes are running in parallel on the Windows client to

simultaneously handle PE/COFF files and URLs from the remote MySQL

database. If a PE/COFF file is being analyzed, the file is first copied to the

local hard drive from the remote file share. If a URL is being analyzed, a file

is downloaded from the URL and its file type is determined. Non-PE/COFF

files are ignored. When MaTR finishes its analysis, these scripts read the

appropriate log file and update the MySQL database with the malware

detection results for the appropriate file or URL.

3.4.3.2 ESCAPE’s Role in Malware Detection

 ESCAPE is implemented as a 32 bit Windows driver installed on four unique

Windows clients, as shown in Table 3. These ESCAPE clients all have Adobe Reader,

Internet Explorer, and Microsoft Office installed in order to analyze the four non-

52

PE/COFF file types. The justification for selecting these specific system parameters is

explained in Section 3.9.

Table 3: Four ESCAPE Client Configurations

Windows
Version

Adobe
Reader
Version

Internet
Explorer
Version

Microsoft
Office

Version
XP SP2 8.0 7.0 2007

Vista (no SP) 8.0 7.0 2007
Vista SP1 9.0 8.0 2007

Windows 7 9.0 8.0 2007

 Furthermore, four copies exist for each of these four configurations. These 16

ESCAPE clients allow for parallel analysis of files and URLs, which is needed to speed

up the inherently slow nature of dynamic malware analysis. The number of ESCAPE

clients can be extended arbitrarily, but 16 clients are selected to adequately demonstrate

scalability of the ESCAPE clients while staying within the limits of the underlying

hardware described in Section 3.11. These ESCAPE clients run Python scripts to handle

the file/URL input from the database as well as the response from ESCAPE, as follows:

1) Eight ESCAPE clients are running Python scripts to poll the remote MySQL

database for non-PE/COFF files to be analyzed. If such a file is ready for

analysis, the Python script copies the file from the remote file share to the

local disk before opening the file. ESCAPE monitors the execution of the

parent application and records its analysis results in a log file. The script

reads the log file and updates the MySQL database with the malware detection

results for the appropriate file.

2) Eight ESCAPE clients are running Python scripts to poll the remote MySQL

database for URLs to be analyzed. If a URL is ready for analysis, the Python

53

script launches Internet Explorer to visit the web page. ESCAPE monitors the

execution of Internet Explorer and records its analysis results in a log file.

The script reads the log file and updates the MySQL database with the

malware detection results for the appropriate URL.

 An additional feature of ESCAPE that is not evaluated in this research effort is its

ability to capture a memory dump of the offending process’s address space when

malicious code is detected. This memory dump is stored on the file share for further

analysis as needed.

3.5 System boundaries

 The System Under Test (SUT) is the SPEar phishing Attack Detection (SPEAD)

system shown in Figure 6. SPEAD consists of the following components: email

collection, email processing, file sharing, malware detection database, and the malware

detection engine. The Component Under Test (CUT) is the malware detection engine,

which consists of two subcomponents: ESCAPE and MaTR.

Figure 6: Spear Phishing Attack Detection System

54

 Workload parameters include emails with malicious and non-malicious file

attachments, emails with malicious and non-malicious URLs, and the email throughput,

which is measured in number of attachments per minute and number of URLs per minute.

The workload parameters are discussed in more detail in Section 3.7. The system

parameters consist of the software used by the email collection, email processing, file

sharing, and malware detection database components. It also includes ESCAPE’s and

MaTR’s configurations. The system parameters are discussed in more detail in Section

3.9. The metrics of the system consist of the true positive malware detection rate, the

false positive malware detection rate, and the latency in determining if an email is

malicious or not. These metrics are clarified in Section 3.8.

 Because Experiment 3 does not use SPEAD, only certain portions of the SUT in

Figure 6 apply, such as the workload and the metrics. Specifically, the true positive and

false positive detection rates, and not the latency, are collected for Experiment 3.

3.6 System Services

SPEAD provides a malicious email detection service for email servers on local

area network gateways to the Internet. The service is successful if the system identifies

an email containing a malicious file attachment or URL within an hour to allow for near

real time mitigation. SPEAD fails if it incorrectly identifies a malicious email as benign

or a benign email as malicious. In addition, failure occurs if SPEAD’s latency is greater

than one hour.

55

3.7 Workload

 The workload submitted to SPEAD consists of emails sent to an email server that

vary in three ways: 1) the presence of a file attachment, 2) the presence of a URL, and 3)

the speed at which the emails are sent. Every email used in the four experiments contains

exactly one file attachment or one URL within the email body. These files and URLs are

pulled from the malicious and non-malicious file and URL corpus.

 The speeds at which the emails are sent (i.e., email throughput), are varied only

for Experiment 4. Experiments 1, 2, and 3 use the maximum email throughput offered by

this experimental setup in order to achieve those experiments with efficient use of time.

Email throughput is varied between low, expected, and maximum throughput for

Experiment 4 by changing the email sending function on the email sending system. The

details of the email sending system are provided in Section 3.11.

 The low and expected email throughputs are based on the email statistics from

Table 4. The statistics are a summary of a one-week observational study of a large Air

Force base’s incoming and outgoing emails. The expected email throughput is an

estimate of the number of emails with attachments or URLs that SPEAD would be

expected to process at a sustained rate at a large Air Force base. This expected

throughput is calculated using the one-day maximums over an 8-hour period to

approximate peak email usage during a typical work day. The expected email throughput

is calculated to be approximately 53 attachments and 1,111 URLs per minute. Because

this expected throughput is an estimate, round numbers are used for clarity and to ease

the configuration of the email sending system. Thus, this experiment uses an expected

email throughput of 60 attachments and 1,000 URLs per minute.

56

Table 4: Email Statistics from One-week Observation of an Air Force Base
 Attachments URLs

7-Day Total 132,656 2,873,076
1-Day Maximum 25,288 533,363

 The low email throughput is based on the overall weekly average, and it is a

conservative estimate of the sustained email throughput for non-peak usage. The low

email throughput is calculated to be approximately 11 attachments and 249 URLs per

minute. Again, more convenient numbers are chosen to aid in configuring the email

sending system. This experiment uses a low throughput of 12 attachments and 240 URLs

per minute.

 The maximum throughput is based on preliminary testing of the email sending

system’s maximum email throughput. This maximum observed throughput is

approximately 232 attachments and 1,422 URLs per minute. This experiment uses an

estimated maximum throughput of 300 attachments and 1,500 URLs per minute.

3.8 Performance Metrics

 System performance is measured in terms of malicious email detection accuracy

rates as well as the latency introduced by SPEAD. The following performance metrics

are defined:

 True Positive Rate: The percentage of malicious emails identified as malicious by

SPEAD. This metric is measured by observing SPEAD’s response to each malicious

email. If every malicious email is identified as such, the true positive rate is 100%. The

false negative rate, which is the percentage of malicious emails identified as legitimate, is

deduced from the true positive rate since the sum of the true positive and false negative

57

rates is 100%. The true positive rate metric is also measured for the five commodity anti-

virus products.

 False Positive Rate: The percentage of non-malicious emails identified as

malicious by SPEAD. This metric is measured by observing SPEAD’s response to each

non-malicious email. If every non-malicious email is detected as malicious, the false

positive rate is 100%. The true negative rate, which is the percentage of non-malicious

emails identified as legitimate, is deduced from the false positive rate since the sum of the

false positive and true negative rates is 100%. The false positive metric is also measured

for the five commodity anti-virus products.

 Latency: The amount of time it takes an email to propagate through SPEAD.

Latency is measured by subtracting the time of the CUT decision determination from the

time when SPEAD received the incoming email at the email collector component, as

discussed in Section 3.4.2. The latency metric characterizes the maximum and average

time delay in SPEAD’s determination of an email’s malicious intent. This metric

determines the success of SPEAD at meeting the secondary experimental goal of

providing a near real time response.

3.9 System Parameters

 System parameters are the properties of SPEAD which, when changed, affect the

performance of the system. Figure 6 lists the system parameters, which are defined as

follows:

 Email Collection Software: The email collection component of SPEAD uses the

Microsoft Exchange 2007 email server running on a Microsoft Server 2008 R2

58

(Release 2) operating system. Server 2008 R2 is Microsoft’s newest server operating

system. Exchange 2007 is selected because of its common use in the Air Force. The

latest version, Exchange 2010, is considered, but a license cannot be obtained in the

timeframe of this research. Regardless, both Exchange 2007 and 2010 have the Hub

Transport Server Role, which is used to set up a Transport Rule to blind carbon copy

the SPEAD mailbox on the server. Other types of email servers are not considered

because of the Air Force-focused nature of this experimental setup. Therefore, this

system parameter is fixed.

 Email Processing Software: The email processing component of SPEAD uses

Microsoft Outlook, VBA programs, and VBscript. Microsoft Outlook is selected as

the email client for SPEAD because it is ubiquitous across the Air Force network as

the email client of choice, and it is assumed that spear phishing attacks against the Air

Force are designed to be successful with Outlook as the email client. VBA and

VBscripts are selected because of their inherent interoperability with Windows

applications such as Outlook. This system parameter is fixed, but the correctness of

the VBA and VBscript code is validated as a part of Experiment 2 because this is

original code created for SPEAD.

 Malware Detection Database Software: The malware detection database component

of SPEAD uses the MySQL database. MySQL is selected because of its proven

capabilities for high availability, high performance, scalability, flexibility, and robust

transactional support [Top10]. MySQL uses the InnoDB storage engine for

transactional support, which allows for unlimited row-level locking [The10]. This

http://dev.mysql.com/doc/refman/5.0/en/innodb-storage-engine.html

59

storage engine is crucial for a multi-user concurrency environment such as SPEAD’s

environment. This system parameter is fixed.

 File Sharing Software: The file sharing component of SPEAD uses the Samba

service installed on the same Linux platform as SPEAD’s malware detection database

component. Samba is an open source software suite that provides file sharing

services to SMB (Server Message Block) clients [Wha10]. SMB is the service

Windows clients use for file sharing. Because the email processing and malware

detection engine components of SPEAD use Windows, Samba is selected. This

system parameter is fixed.

 MaTR Configuration: The CUT uses MaTR as half of its malware detection engine.

MaTR’s malware detection algorithm uses a decision tree classifier model for

malware type classification [DRP+10]. While a different classifier certainly affects

the malware detection accuracy, varying this parameter is outside the scope of this

thesis. The MaTR prototype is used for this SPEAD prototype. Furthermore,

because MaTR analyzes 32 bit Windows Portable Executable and Common Object

File Format (PE/COFF) files, it needs a Windows operating system. Thus, the MaTR

command line utility runs on the Windows 7 operating system. VBscripts are used as

the communication conduit between the MaTR utility and the malware detection

database because VBscripts provide convenient functionality with Windows-based

applications. Thus, this system parameter is fixed.

 ESCAPE Configuration: The CUT uses ESCAPE as half of its malware detection

engine. ESCAPE’s malware detection algorithm is based on dynamic analysis.

Section 3.3.1 describes Experiment 1 and its purpose, which is to establish a

60

sufficient wait time for a process to finish its execution and reveal its true intentions.

Section 4.1 discusses the results of Experiment 1. After Experiment 1, this portion of

the ESCAPE Configuration system parameter is fixed and used for Experiments 2 and

4.

 Table 3 in Section 3.4.3.2 outlines the four configurations used by the ESCAPE

clients. In order to understand why these specific operating system and application

versions are selected, it is important to remember that ESCAPE is modified and tuned for

each operating system and each application version it protects. Thus, it only detects

memory corruption exploits that would have been successful against the operating system

and application version ESCAPE is protecting. The selection of the specific operating

systems and application versions in Table 3 are a result of a balanced look at two

opposing thought processes:

1) When SPEAD operates on a real-world network, the latest operating system

and application versions are likely to be employed. To emulate this reality,

the latest operating system and application versions must be considered for

this research.

2) Because new exploits against the latest operating system (O/S) and application

versions are inherently difficult to obtain due to the fact that they are unknown

until they are known, older operating systems and application versions must

be considered for the sake of experimentation and evaluation of SPEAD’s

effectiveness in a research environment. To this same end, multiple O/S and

application versions must be considered to widen the detection aperture for

ESCAPE.

61

 The latter thought process drives more of the reasoning behind the selection of the

four specific ESCAPE client configurations. The current Adobe Reader version is not

tested due to the difficulty in obtaining exploits against it. Thus, version 8.0 and 9.0 are

selected. Table 3 also shows that Microsoft Windows XP, Vista, and 7 are selected

because of their current and future use in the Air Force [Ken10]. Internet Explorer 7.0

and 8.0 and Microsoft Office 2007 are selected because of their ubiquitous use on the

selected operating systems. All selected operating systems and applications, with the

exception of XP and one of the Vista configurations, are unpatched to allow for as many

application vulnerabilities as possible for the sake of evaluating SPEAD’s

implementation of ESCAPE against obtainable malware. Windows XP requires Service

Pack 2 (SP2) to run Internet Explorer 7.0, and Vista requires SP1 to run Internet Explorer

8.0.

3.10 Factors

 This section describes the factors that are varied during the experiments. Table 5

shows these factors and their associated levels. These factors are selected from the

SUT’s workload and system parameters. Each of the four experiments uses a portion of

these factors and their levels.

Table 5: Factor Levels for the Experiments
Factor Level 1 Level 2 Level 3

Emails with Attachments Malicious Non-malicious
Emails with URLs Malicious Non-malicious
Email Throughput Maximum Expected Low

ESCAPE Configuration Wait 5 sec Wait 10 sec Wait 20 sec

62

 Experiment 1 focuses on ESCAPE’s configuration. Thus, all factors are

controlled at the Level 1 factor level with the exception of the ESCAPE Configuration

system parameter, where all three factor levels are used. Malicious attachments and

URLs are used at a maximum email throughput to measure ESCAPE’s malware detection

configuration in a time-efficient manner.

 Experiments 2 and 3 focus on SPEAD’s and the commercial anti-virus products’

malware detection metrics. Thus, emails with attachments and emails with URLs are

varied according to their factor levels. The email throughput factor is controlled at the

maximum level to complete the experiments in a time-efficient manner. Experiment 2

also uses a controlled ESCAPE Configuration factor level that is determined from

Experiment 1. Experiment 3 does not use the ESCAPE Configuration factor because

SPEAD is not a part of this experiment.

 Experiment 4 focuses on the latency metric of SPEAD across varying email

throughputs. A sample subset of malicious and non-malicious files and URLs is

randomly selected for each of the three email throughput latency tests. The selection of

this sample set is clarified in Section 4.3. Thus, only the email throughput factor is

varied. This experiment uses a controlled ESCAPE Configuration factor level that is

determined from Experiment 1.

3.11 Evaluation Technique

 The experiments use a direct measurement-based evaluation technique to

determine SPEAD’s performance by recording measurements while the system is

operating. There are many reasons to pursue this evaluation technique over simulation-

63

based or analytic modeling-based techniques. Namely, the MaTR and ESCAPE

frameworks are already established and can be integrated into this new system. Also, all

network activity takes place in a controlled laboratory environment. Because the

environment is controlled, the accuracy afforded by this measurement-based evaluation is

high and more realistic than a simulation-based or analytic modeling-based evaluation.

Lastly, the higher cost typically associated with measurement-based evaluations is

fulfilled by sponsor funding for this research effort.

 The experimental setup is illustrated in Figure 7. It shows that the experiments

are initiated from an email sender system. The email sending system crafts and sends one

email at a time to an arbitrary email account on the Microsoft Exchange server. Since

this email server is the email collection component for SPEAD, all emails are copied to

SPEAD’s mailbox on the server. This is required for Experiments 1, 2, and 4.

Figure 7: Experimental Setup

64

 The email server also doubles as the server upon which the commercial anti-virus

products are installed for Experiment 3. Virtual machine snapshots are used to

differentiate between operating configurations for this email server, and additional details

are given in the rest of this section.

 The experiment environment consists of a collection of hardware and software

dedicated to this research effort. The experimental setup consists of the following

components:

 Two Dell PowerEdge R610 servers with 64GB of memory, dual six-core Intel Xeon

processors at 2.93GHz, four Ethernet ports, and 1TB of storage each. These servers

run all of SPEAD’s software for the experiments via virtual machines running on top

of the ESX 4.1 operating system. These servers are referenced below as ESX Server

1 and ESX Server 2 for clarity.

 One email sending system running on an Ubuntu Linux 9.10 (64 bit) virtual machine

image on ESX Server 1. This image has Postfix version 2.6.5 installed, which is an

open source email server package for Linux. Mutt version 1.5.20 is installed as the

email client, which is responsible for sending the email workload for the experiments.

This image is configured with four virtual processors, 16GB of RAM, and one virtual

Ethernet adapter.

 One email collection system running on Microsoft Server 2008 R2 with Exchange

Server 2007 SP1 loaded as a virtual machine image on ESX Server 1. This image has

six snapshots. One snapshot is saved as the baseline email server that SPEAD uses

for its email collection component. Five snapshots are saved for each of the

following five installed anti-virus products: AVG Internet Security Business Edition

65

9.0, BitDefender Security for Windows Servers version 3.0, G Data MailSecurity,

McAfee GroupShield version 7.0.1 for Microsoft Exchange, and Microsoft Forefront

Protection 2010 for Exchange Server. This image is configured with two virtual

processors, 4GB of RAM, and one virtual Ethernet adapter.

 One email processing system running on a Windows 7 (64 bit) virtual machine image

on ESX Server 1. This image has Microsoft Office 2007 installed, the MySQL

Connector/ODBC 5.1.8 driver (Open Database Connectivity), and the following open

source command line utilities: Fourmilab’s MD5 version 2.2 program and the

GnuWin32 File version 5.03 program. This system has the default references for the

Outlook Visual Basic for Applications (VBA) editor in addition to the following:

ActiveX Data Objects 6.0 Library and VBScript Regular Expressions 5.5. This

image is configured with four virtual processors, 16GB of RAM, and one virtual

Ethernet adapter.

 One malware detection database running on an Ubuntu Linux Server 10.04.1 (64 bit)

virtual machine image on ESX Server 1. This image has MySQL 5.1.41 and Samba

3.4.7 services installed. This image is configured with four virtual processors, 30GB

of RAM, and one virtual Ethernet adapter.

 16 ESCAPE clients running various versions of Windows virtual machine images on

ESX Server 2. These images are the four clones of each of the four ESCAPE

configurations outlined in Table 3. The XP images are configured with one processor

and 1GB of RAM while the others have 2GB of RAM. All 16 images have PyWin32

version 2.6 installed, which is a Python Win32 extension for Windows. Each image

has one virtual Ethernet adapter connected to the Internet.

66

 One MaTR client running on a Windows 7 (64 bit) virtual machine image on ESX

Server 2. This image uses two virtual processors, 4GB of RAM, and one virtual

Ethernet adapter.

3.12 Experimental Design

 The four experiments each use a partial-factorial design with factors and levels

selected from Table 5. There are a total of 90 tests required to accomplish all four

experiments. These tests are calculated as follows:

 Experiment 1 3 ESCAPE configurations * 3 repetitions = 9

 Experiment 2 2 email types * 2 levels * 3 repetitions = 12

 Experiment 3 2 email types * 2 levels * 5 A/V products * 3 repetitions = 60

 Experiment 4 3 email throughput levels * 3 repetitions = 9

 Each experiment is replicated three times to confirm the resulting metrics at a

95% confidence level.

3.13 Methodology Summary

 This chapter discusses the methodology used to evaluate the performance of an

email spear phishing detection system. The four goals of this research or introduced, and

the approach and experiments to accomplish these goals are described. The system’s

design, boundaries, services, workload, and parameters are provided in detail.

Performance is evaluated using a measurement-based technique and is based on three

performance metrics: true positive rate, false negative rate, and latency. A partial-

factorial experimental design is replicated three times for each experiment for a total of

67

90 tests. Analysis of the results of these tests is used to evaluate the impact of varying

the workload and system parameters on overall system performance.

68

IV. Results and Analysis

his chapter presents and analyzes the experimental results from the four

experiments. First, the results of Experiment 1 are explained in Section 4.1.

Next, Section 4.2 provides an analysis of the metrics collected from Experiments 2 and 3

to characterize SPEAD’s effectiveness. Section 4.3 quantifies SPEAD’s latency

performance using Experiment 4 results. Finally, the chapter is concluded and

summarized in Section 4.4.

4.1 Results and Analysis of Experiment 1

 This experiment’s purpose is to vary ESCAPE’s configuration across three tests

to determine which configuration is optimal for accurate malware detection and speed of

analysis in terms of only the wait time factor. The time ESCAPE waits for a process to

execute or a web site to load is varied between 5, 10, and 20 seconds. A sample set of 15

malicious files and 10 URLs is selected based on preliminary tests, which show

consistent ESCAPE responses for these files and URLs. These files and URLs are sent to

SPEAD from the email sending system at the maximum throughput. It is important to

note that many malicious web sites do not attempt to exploit the same IP (Internet

Protocol) address multiple times in a short timeframe to keep automated malware

collection devices from collecting their malware. Because of this possibility, this test is

repeated two more times on different days to reduce the likelihood of skewed results.

 The file results of this experiment are shown in Table 6. The analysis for

ESCAPE’s file wait time configuration is straightforward. With the exception of the 5-

second wait time in Test 1, all other tests and configurations correctly detect all 15 files

T

69

as malicious. Because the 20-second wait time offers no apparent benefit, the 10-second

wait time is chosen for ESCAPE’s file wait time for SPEAD.

Table 6: Results of File Tests for ESCAPE Wait Times

 The URL results for this experiment are illustrated in Figure 8. The 10-second

wait time shows the outright best or tied for best performance in all three tests, with a

maximum of seven out of the ten malicious URLs detected correctly. It is noteworthy

that the 5-second wait time detected one more malicious URL than the 20-second wait

time in Test 1, which is counterintuitive. This may be a manifestation of a few of the

web sites withholding their exploits after seeing the same IP address twice in a short

period.

Figure 8: Results of URL Tests for ESCAPE Wait Times

Wait Time Test 1 Test 2 Test 3
5 sec 12 15 15
10 sec 15 15 15
20 sec 15 15 15

Files Detected as Malicious

70

 Because of the results of Experiment 1, ESCAPE’s wait time for files and URLs

is configured for 10 seconds. This SPEAD system parameter is fixed for the remaining

experiments, and it represents an optimal wait time configuration only. Other

fundamental aspects of ESCAPE’s execution environment are not evaluated for optimal

configuration, and this is the subject of future work.

4.2 Results and Analysis of Experiments 2 and 3

 This section first discusses the validation of SPEAD’s design. Then, the file-

based detection metrics are analyzed. This section is concluded with an analysis of the

URL detection metrics.

4.2.1 Validation of SPEAD’s Design

 As discussed in Section 3.3.2, the files and URLs processed by MaTR and

ESCAPE during Experiment 2 are compared with the original files and URLs from the

corpus. Figure 9 shows a collage of screenshots illustrating the validation technique used

for the files. SPEAD stores all of these files on the file share on the malware detection

database for processing by ESCAPE and MaTR. The Linux program md5deep is used to

calculate the MD5 (Message-Digest Algorithm 5) hashes of the file corpus on the email

sending system. These unique hashes are compared to the MD5 hashes of all the

analyzed files stored on the file share. Figure 9 also shows two red underlined Linux

commands. The -x <comparison file> option for md5deep tells the program to

compare every newly calculated hash to the list of hashes in the comparison file and

output any non-matches. This command results in no non-matches. Conversely, the –m

<comparison file> option tells md5deep to output all matches, of which there are

71

exactly 5,391. This is the total number of files in the file corpus. The red rectangles in

Figure 9 verify that all 5,391 files are processed from the email sending system to the

email processing system and, ultimately, to the malware detection database.

Figure 9: Collage of Screenshots Showing SPEAD File Processing Validation

 This MD5 calculation and comparison is made after each of the three iterations of

Experiment 2, and the MD5 hash values for the files match every time. This is

conclusive evidence that SPEAD correctly recognizes and parses file attachments from

emails, validating this portion of the original code written for the email processing

component of SPEAD.

 The URLs are validated in a similar fashion, but Figure 10 shows a URL that

SPEAD processed that it is not intended to analyze. The MD5 hash calculated for the list

of all malicious and non-malicious URLs from the URL corpus do not match the hash of

the list of URLs in the database. Thus, the application Notepad++, a source code editor

and Notepad replacement, is used to perform a visual comparison of the list of URLs sent

and the list in the database. There is only one discrepancy, shown in Figure 10 with the

72

red minus sign next to it. This URL is from the collection of clean URLs, which has been

exported into a file from a graduate student’s web browser bookmarks. The email

sending system uses this file of exported bookmarks in its original format (i.e., URLs are

tagged with metadata). Because of this, the following bookmark is processed:

<DT><A HREF=“[intended URL]” ADD_DATE="1292535624"
ICON=" <snipped> Ff"
>About.com: http://www.state.ma.us/dor

The yellow highlight shows a text description for this bookmark that contains a URL

within it.

Figure 10: Screenshot of URL Mismatch

 This URL is removed from the list in order to perform another MD5 hash

comparison, shown in Figure 11. The hashes for the two lists match, which validate that

only one URL is mismatched. This URL mismatch appears to be inconsequential

considering it is SPEAD’s purpose to recognize web site links within emails. Further

73

testing with real-world emails may reveal flaws in SPEAD’s URL processing algorithm,

if any. This is discussed as an area for future research in Section 5.3.

Figure 11: Screenshot Showing SPEAD’s URL Processing Validation

 The results of this experiment provide convincing evidence that SPEAD correctly

recognizes and parses file attachments and URLs from emails, validating the original

code written for the email processing component of SPEAD.

4.2.2 Comparing File Detection Metrics

 This section contains the true and false positive detection metrics and the analysis

of these metrics for SPEAD and the five commodity anti-virus (A/V) products. The

overall file detection metrics for SPEAD and the five A/V products are shown in Table 7.

These metrics are the mean detection accuracies across three tests for each platform. The

green highlights indicate which system had the highest true positive detection rate for

each file type. The yellow highlights indicate which systems detected false positives,

meaning the systems label a file as malicious when it is not malicious. Section 4.2.2.1

discusses the PE/COFF metrics, followed by Sections 4.2.2.2 – 4.2.2.5, which analyze the

non-PE/COFF metrics.

74

Table 7: Comparison of Overall Detection Metrics for Files

 The detection metrics are further organized into 2x2 tables of counts of total

malware detected and not detected in each test, as shown in the example in Table 8. This

allows for Fisher’s Exact Test (FET) to be used to calculate p-values for the difference in

sample proportions. FET is the “gold standard” of testing tools for 2x2 tables because of

its calculation of a p-value that requires no approximation [RaS02]. Furthermore, FET is

appropriate for any sample size and for the test of equal population odds. Both of these

facts are relevant to the analysis in this chapter due to the relatively small sample sizes of

Microsoft Excel, PowerPoint, and Word malware as well as the use of the odds ratio to

compare novel and known malware detection rates. The R statistical application [Rpr11]

is used to calculate the FET p-values for this thesis chapter.

Table 8: Example 2x2 Table for SPEAD Detection Metrics

 The p-value of any particular test is the measure of the credibility of the null

hypothesis, which is the hypothesis that the means of the data being tested are equal. If

True +
Rate
(%)

False +
Rate
(%)

True +
Rate
(%)

False +
Rate
(%)

True +
Rate
(%)

False +
Rate
(%)

True +
Rate
(%)

False +
Rate
(%)

True +
Rate
(%)

False +
Rate
(%)

SPEAD 99.68 0.39 68.35 0.96 67.82 0.67 13.64 0.00 0.00 0.00
Forefront 95.06 0.36 87.19 0.00 100.00 1.00 95.45 0.00 81.82 0.00

G Data 94.82 0.00 75.37 0.00 51.72 0.00 81.82 0.00 81.82 0.00
BitDefender 93.06 0.00 84.73 0.00 17.24 0.00 31.82 0.00 81.82 0.00

McAfee 90.29 0.00 42.89 0.00 79.31 0.00 68.18 0.00 54.55 0.00
AVG 93.59 0.00 65.02 0.00 20.69 0.00 45.45 0.00 54.55 0.00

Excel Word PowerPoint

System

PE/COFF Reader

Malware Detected Not

Known 2,210 3
Novel 273 5

SPEAD Detecting PE/COFF Malware

75

two data sets are truly equal, the null hypothesis is confirmed. The p-value is the

probability that random sampling of the data population distribution could achieve the

same result reported in the test. Thus, Figure 12 is a guide for interpreting p-values. A

very small p-value, such as 0.005, is usually an indicator that there is strong evidence for

the null hypothesis being incorrect. This means the probability that random sampling

could achieve the same result is very small, and it is convincing evidence the test result is

not due to chance (i.e., the two data sets’ means are different). FET uses a two-sided p-

value, which allows for the difference in means to be positive or negative. Thus, all p-

values reported in this chapter for tests of equal population odds are two-sided.

Figure 12: p-Value Interpretation Scale [RaS02]

4.2.2.1 PE/COFF Malware Detection Results

 As shown in Table 7, SPEAD’s PE/COFF true positive detection rate is clearly

the highest, thanks to MaTR’s remarkable PE/COFF malware detection algorithm.

Because Table 7 reports the mean detection accuracies across three tests, it is important

to determine if SPEAD’s PE/COFF detection accuracy is truly different from the other

platforms’. Tukey’s HSD (Honest Significant Difference) Method is used to test all

possible pairwise differences in means to determine if at least one of these differences is

significantly different from zero at a 95% confidence level. Figure 13 illustrates this

76

comparison. The six systems are labeled 1 through 6, with SPEAD being 1. Visual

inspection, highlighted by the red box, shows that SPEAD’s mean detection accuracy

compared to the others’ is significantly different from zero (i.e., dashed vertical line).

The p-values for each of SPEAD’s comparisons is too small to be reported by R, which is

conclusive evidence that SPEAD’s higher-performing PE/COFF true positive detection

accuracy is not the same (i.e., it is different) at a statistically significant level.

Figure 13: Comparison of Differences in Means of PE/COFF Detection Accuracies for

SPEAD versus Others

 In terms of the false positive metric, most of the systems do not have any trouble

correctly labeling the non-malicious files across all files types in the corpus. Only

SPEAD and Forefront record any false positives. This is understandable for malware

detection algorithms that attain significantly high true positive rates. It appears that

SPEAD’s and Forefront’s detection algorithms seek to encompass more generic

77

heuristics of malicious PE/COFF files, as indicated by their achieving the highest true

positive rates for PE/COFF files.

 Naturally, there is value in quantifying the significance of the difference between

SPEAD’s and the others’ true positive detection rates. Thus, a comparison of the

statistical odds of detection between SPEAD and the next best performer, Forefront,

reveals that SPEAD’s performance may be preferable. The odds for SPEAD correctly

detecting a malicious PE/COFF file is 310.4:1. This is calculated by dividing the number

of malicious PE/COFF files not detected (8) by the number correctly detected (2,483).

Forefront’s odds for correctly detecting a malicious PE/COFF file are 19.3:1. Thus, the

odds of SPEAD correctly detecting a malicious PE/COFF file are 16.1 times as large as

the odds for Forefront correctly making the same determination, with a 95% confidence

interval of 7.87 to 33.03. Also, Fisher’s Exact Test (FET) for the difference in sample

proportions results in a two-sided p-value less than 2.2e-16, providing strong evidence

that SPEAD’s and Forefront’s true positive detection proportions are different (i.e., the

ratio is not 1:1) at a statistically significant level.

 The same odds ratio comparison is used to determine that SPEAD is 1.2 times

more likely to detect a non-malicious file as malicious when compared to Forefront, with

a confidence interval of 0.39 to 3.48 and a FET p-value of 1. This very high p-value

indicates a high probability that the difference between SPEAD’s and Forefront’s false

positive rates can be attributable to chance. Therefore, the evidence strongly supports the

notion that SPEAD’s overall PE/COFF detection performance may be preferable when

compared to Forefront’s when a similar malware population is evaluated.

78

 Even though SPEAD performs PE/COFF malware detection well, the overall

detection metrics from Table 7 do not bode well for SPEAD’s direct comparison against

the five commodity A/V products. A cursory visual inspection of these metrics show that

SPEAD ranks fourth, third, sixth, and sixth out of the six systems in terms of true positive

rates, respectively, for Adobe Reader, Microsoft Excel, Word, and PowerPoint files. This

cursory analysis leads to the conclusion that SPEAD may underperform if it is used as an

anti-virus replacement for email servers.

 However, the focus of this research is on spear phishing detection, which greatly

depends on the system’s ability to detect novel malware. Because of this research focus,

additional analysis is needed in terms of novel malware detection versus known malware

detection.

 Table 9 summarizes the PE/COFF malware detection metrics in the context of

novel and known malware. As discussed in Chapter 3, Section 3.2, the term novel

malware refers to malware or malicious code that is unknown to the general public and

cannot be found within public forums, databases, or commercial products. The malicious

file corpus has been segregated according to Table 1.

Table 9: PE/COFF Detection Results for Novel and Known Malware

Novel
Detection
Accuracy

(%)

Known
Detection
Accuracy

(%)

False
Positive

Rate
(%)

SPEAD 98.20 99.86 0.39
Forefront 56.47 99.91 0.36
G Data 53.96 99.95 0.00
BitDefender 42.09 99.46 0.00
McAfee 27.70 98.15 0.00
AVG 46.04 99.56 0.00

PE/COFF

System

79

 The odds of SPEAD detecting novel PE/COFF malware is 42.1 times as large as

the odds of Forefront, the next best performer, detecting the same. This is with a 95%

confidence interval of 16.84 to 105.14 and a FET two-sided p-value less than 2.2e-16,

which is conclusive evidence to support this large discrepancy in odds. The relatively

wide range of the confidence interval for the odds ratio is the result of a large standard

error. The standard error for an odds ratio is calculated by taking the square root of the

sum of the reciprocals of the four cell counts in a 2x2 table [RaS02], like that shown in

Table 8. SPEAD detects 273 of the 278 novel PE/COFF malware samples, leaving only

5 undetected. This small count (5) causes the standard error to be large because its

reciprocal is used. In summary, SPEAD’s detection accuracy for novel PE/COFF

malware is significantly higher than the commodity anti-virus products in this

experiment. This characteristic is very conducive to SPEAD’s mission of detecting novel

malware in email spear phishing attacks.

4.2.2.2 Adobe Reader Malware Detection Results

 Table 10 summarizes the Adobe Reader malware detection metrics in the context

of known and novel malware. Superficial analysis of SPEAD’s novel malware detection

rate indicates it is comparable to the commodity A/V products’ rates, with less than two

percentage points separating the top four performers.

80

Table 10: Adobe Reader Detection Results for Novel and Known Malware

 To confirm this cursory analysis, a more in-depth analysis of the differences in

means for the novel malware detection accuracies is shown in Figure 14. Tukey’s HSD

Method to test the differences in means is used to illustrate this point at a 95% confidence

level. The pairwise comparisons indicate that the differences in means for SPEAD –

Forefront, SPEAD – G Data, and SPEAD – BitDefender are not significantly different

from zero because their confidence intervals include zero, and the p-values for each

comparison are greater than 0.999. This means SPEAD’s, Forefront’s, G Data’s, and

BitDefender’s novel Adobe Reader malware detection accuracies are very similar at a

statistically significant level. This is confirmation that SPEAD’s novel Adobe Reader

malware detection rate is comparable to the best of the commodity A/V products in this

experiment.

Novel
Detection
Accuracy

(%)

Known
Detection
Accuracy

(%)

False
Positive

Rate
(%)

SPEAD 88.79 51.74 0.96
Forefront 90.11 84.82 0.00
G Data 89.01 64.29 0.00
BitDefender 89.01 81.25 0.00
McAfee 41.76 43.75 0.00
AVG 72.16 59.45 0.00

Adobe Reader

System

81

Figure 14: Comparison of Differences in Means of Adobe Reader Novel Malware

Detection Accuracies for SPEAD versus Others

 Furthermore, this data is viewed from one more angle. A close examination of

Table 10 reveals a large discrepancy between SPEAD’s novel and its known malware

detection accuracies in comparison to the A/V systems’ discrepancies. This fact has

profound effects on the significance of ESCAPE’s role in helping SPEAD detect novel

Adobe Reader malware. The analysis is framed in this context: when a detection system

detects Adobe Reader malware, what are the odds that the malware is novel?

 The answer to this question is determined in the same way the PE/COFF data is

analyzed to determine the odds ratio between two detection systems. Figure 15 illustrates

the odds ratio for each detection system, and they are reported with 95% confidence

intervals. The odds ratios are in terms of the odds of detection being of novel malware.

82

In other words, when SPEAD detects Adobe Reader malware, the odds of the malware

being novel in nature is 7.54 times as large as the odds of it being known malware with a

95% confidence interval of 3.55 to 16.03 and a FET two-sided p-value of 8.78e-09. This

p-value is the FET probability for the odds ratio being equal to 1, which is a test to see if

the two populations are statistically the same. SPEAD’s odds ratio and associated p-

value provide conclusive evidence that its malware detection accuracy is statistically

different between the novel and known malware populations. Even though SPEAD’s

odds ratio is 1.68 times higher than the next best, G Data, their confidence intervals do

overlap. This fact is noteworthy, and it reduces but does not eliminate the significance of

SPEAD’s higher odds in detecting novel malware over known malware.

Figure 15: Odds Ratios of Novel:Known Adobe Reader Malware Detection

83

 Therefore, this analysis leads to the conclusion that SPEAD is comparable to the

best-performing commodity A/V products in terms of novel Adobe Reader malware

detection outright, but when SPEAD detects malware, the odds of it being novel malware

is higher. This is a highly desirable attribute in a spear phishing attack detection

platform.

 One reason for ESCAPE’s success in detecting the novel nature of Adobe Reader

malware in this experiment could be dependent upon the nature of the malware

populations used in the malicious file corpus. The Adobe Reader malware labeled as

novel is the malware collected from the two large, anonymous organizations. It is

possible that the Adobe Reader malware used in attacks against these organizations use

memory corruption exploitation techniques more often than the population of Adobe

Reader malware outside these two organizations. It is also possible that Adobe Reader

malware used in attacks against large organizations, in general, use memory corruption

exploits more often.

 Another reason for ESCAPE’s successful focus on novel malware is because it is

unencumbered by the need to detect all known malware. This is unlike the A/V products,

whose commercial viability primarily hinges on its ability to detect as much malware as

possible.

 In terms of false positives, a reason for ESCAPE’s false positives is due to its lack

of appropriate exceptions. ESCAPE uses exceptions to handle legitimate application

functionality that is not knowable when ESCAPE creates its database of signed code. It

is possible the false positive Reader files attempt to use Reader functionality for which an

exception has not been created for ESCAPE. Thus, ESCAPE detects this functionality as

84

anomalous and therefore malicious. This may also be true with the operating system and

its need to run legitimate code that is unknown to ESCAPE. If this occurs while a file is

being analyzed, ESCAPE will record this anomalous code execution attempt in its log

file. The Python script may incorrectly attribute the anomaly to the file being analyzed,

thus causing a false positive. Because SPEAD’s false positive rate is still significantly

low, it may not detract from SPEAD’s ability to detect novel Reader malware at a high

rate. An experiment with additional Adobe Reader files or on a real-world network may

help characterize the significance, if any, of false positives for this file type.

4.2.2.3 Microsoft Excel Malware Detection Results

 Table 11 summarizes the Microsoft Excel malware detection metrics in the

context of novel and known malware. SPEAD’s novel malware detection accuracy

appears to be significantly higher than all but Forefront’s. The Excel sample size is very

small compared to the PE/COFF and Adobe Reader malware sample sizes. With only 29

samples, Forefront’s metrics appear anomalous, but they are impressive nonetheless. A

more sophisticated analysis of the odds ratios is used again to draw conclusions about the

likelihood of Excel malware detection being of novel malware.

Table 11: Microsoft Excel Detection Results for Novel and Known Malware

Novel
Detection
Accuracy

(%)

Known
Detection
Accuracy

(%)

False
Positive

Rate
(%)

SPEAD 90.48 8.33 0.67
Forefront 100.00 100.00 1.00
G Data 38.10 87.50 0.00
BitDefender 19.05 12.50 0.00
McAfee 76.19 87.50 0.00
AVG 0.00 75.00 0.00

System

Microsoft Excel

85

 The odds ratios for each detection system, in terms of the odds of detection being

of novel Excel malware, are shown in Figure 16. Note that Forefront’s odds ratio is only

1:1 even though it detects 100% of known and novel malware. This is not an anomalous

result indicative of a failure in the odds ratio technique. In fact, the odds ratio for

Forefront makes the point that when even though Forefront may detect all novel Excel

malware, an analyst who needs to know if the malware is novel will do just as well

flipping a coin to make that determination. The fact that Forefront’s detection is

exceptional is still a significantly valuable characteristic of a spear phishing detection

platform, but so is a platform’s ability to tell an analyst the probability that the malware is

novel.

Figure 16: Odds Ratios of Novel:Known Microsoft Excel Malware Detection

86

 When SPEAD detects Excel malware, the odds of the malware being novel in

nature are 66.5 times as large as the odds of it being known malware with a 95%

confidence interval of 5.18 to 853.49 and a FET two-sided p-value of 0.00017. Again,

this p-value is the FET probability for the odds ratio being equal to 1, which is a test to

see if the two populations are statistically the same. SPEAD’s odds ratio and associated

p-value provide conclusive evidence that its malware detection accuracy is statistically

different between the novel and known malware populations. The wide confidence

interval is again indicative of the small cell counts in the Excel detection 2x2 table, where

1 out of 8 known malware and 19 out of 21 novel malware are detected. This leaves two

of the cells with counts of 1 and 2 for known malware detected and novel malware

undetected, respectively. This causes a large standard error, and it can be mitigated with

a larger sample size and, presumably, higher cell counts for the 2x2 table.

 This analysis leads to the conclusion that SPEAD outperforms the other

commodity A/V products, except Forefront, in terms of novel Microsoft Excel malware

detection. Furthermore, the odds of malware detection being attributed to novel malware

are extremely high only when SPEAD detects it. The strength of this conclusion is

difficult to determine, however, because of the small sample size of Excel malware.

Additional samples of known and novel malware are needed to be able to infer SPEAD’s

detection accuracy to a wider population.

 Concerning false positives, the same reasoning applies here as it does in Section

4.2.2.3. ESCAPE may not be tuned appropriately to know all of Microsoft Excel’s

functionality.

87

4.2.2.4 Microsoft Word Malware Detection Results

 Table 12 summarizes the Microsoft Word malware detection metrics in the

context of novel and known malware. SPEAD’s novel malware detection accuracy is

clearly less than comparable to the commodity A/V detection rates. With only 22

samples, conclusions that can be drawn from this analysis are not strong. Still, the odds

ratios are used to draw conclusions about the tendencies of Word malware detection

being of novel malware.

Table 12: Microsoft Word Detection Results for Novel and Known Malware

 The odds ratios for each detection system, in terms of the odds of detection being

of novel Word malware, are shown in Figure 17. When SPEAD detects Word malware,

the odds of the malware being novel in nature are 3.43 times as large as the odds of it

being known malware with a 95% confidence interval of 0.26 to 45.03 and a FET two-

sided p-value of 0.54416. This p-value suggests that any discrepancy between the

observed odds ratio (3.43) and an odds ratio of 1 is likely due to chance. This is also true

for BitDefender, which has the next highest odds ratio (2.67) and a p-value of 0.37616.

Novel
Detection
Accuracy

(%)

Known
Detection
Accuracy

(%)

False
Positive

Rate
(%)

SPEAD 22.22 7.69 0.00
Forefront 88.89 100.00 0.00
G Data 66.67 92.31 0.00
BitDefender 66.67 23.08 0.00
McAfee 22.22 100.00 0.00
AVG 11.11 69.23 0.00

System

Microsoft Word

88

Figure 17: Odds Ratios of Novel:Known Microsoft Word Malware Detection

 Even though SPEAD shows a tendency to focus its detection on novel Word

malware, its significance is diminished in light of SPEAD’s inaccuracy in detecting

malicious Word files in this sample set (only 3 out of 22 detected overall) and the high

probability of this favorable odds ratio being due to chance. Additional samples of

known and novel malware are needed to characterize SPEAD’s detection capabilities

more accurately.

4.2.2.5 Microsoft PowerPoint Malware Detection Results

 Table 13 summarizes the Microsoft PowerPoint malware detection metrics in the

context of novel and known malware. SPEAD’s lack of detecting any malicious samples

in this small sample leads to an inconclusive analysis. With only 11 samples, conclusions

that can be drawn from this analysis are weak. However, the detection rates by the

89

commodity A/V systems are moderate enough to suggest that these are, in fact, samples

of malicious PowerPoint files. One reason for SPEAD’s lack of detection could be due to

PowerPoint-based attacks not relying on memory corruption exploits. If this is generally

true, ESCAPE is not an ideal malware detection engine for PowerPoint malware.

However, additional samples of known and novel PowerPoint malware are needed to

characterize SPEAD’s detection capabilities more accurately.

Table 13: Microsoft PowerPoint Detection Results for Novel and Known Malware

4.2.3 Comparing URL Detection Metrics

 The detection of malicious URLs is a difficult problem to solve due to the fleeting

nature of web-based exploits and how long they are viable and accessible before being

taken down. Table 14 is a good illustration of the fact that the approach to detecting

malicious URLs varies widely. Even though G Data achieves the highest detection

accuracy (29.69%), it also demonstrates the highest false positive rate (25.97%) by far.

This suggests G Data’s detection algorithm or content filtering is, perhaps, overly generic

in its detection. While this is good for malicious detection rates, it also causes G Data to

label numerous URLs as malicious even though they are not. McAfee clearly displays

Novel
Detection
Accuracy

(%)

Known
Detection
Accuracy

(%)

False
Positive

Rate
(%)

SPEAD 0.00 0.00 0.00
Forefront 50.00 100.00 0.00
G Data 75.00 85.71 0.00
BitDefender 75.00 85.71 0.00
McAfee 50.00 57.14 0.00
AVG 25.00 71.43 0.00

System

Microsoft PowerPoint

90

the best balance of detection accuracy (25.26%, second highest) with a relatively low

false positive rate (1.06%).

Table 14: URL Detection Results for All Platforms

 There are two important discussion items that are not readily apparent by looking

at only the detection metrics:

1) Malware or malicious code must be actively hosted from a web site for ESCAPE

to detect it. This is a fundamental design feature of ESCAPE, but it makes testing

and comparison difficult to do with certainty. Theoretically, the longer a URL is

known to be malicious, the more likely A/V products and content filtering engines

are to detect it. Conversely, the longer a URL is known to be malicious, the more

likely it is to terminate or limit its active malware hosting due to the ever-

increasing attention the web site receives from those who are not its intended

victims. This means ESCAPE will not detect the malicious web site where a

commodity A/V product might through the use of a known bad list. Many of the

malicious URLs used in this experiment are more than a month old, which is not

an ideal testing scenario where the focus is on novel malicious code exploits.

Detection
Accuracy

(%)

False
Positive

Rate
(%)

SPEAD 2.92 0.71
Forefront 0.94 0.00
G Data 29.69 25.97
BitDefender 0.00 0.00
McAfee 25.16 1.06
AVG 0.24 0.00

System

URLs

91

2) Out of the 56 URLs detected in each of the three tests, 35 of them are due to the

download of a PE/COFF file that is deemed to be malicious by MaTR. These

malicious PE/COFF files are saved on the file share. This fact alone provides a

malware or network intrusion analyst a tangible and significant value that

commodity A/V does not. Additionally, the fact that ESCAPE detects a URL as

malicious is a strong indicator that the web site is actively exploiting victims at

the time the email is received that contained the URL. This immediate feedback,

proven by dynamic analysis, is valuable information for an analyst. Therefore,

SPEAD provides two capabilities that the other A/V products do not: malicious

PE/COFF file downloads and immediate confirmation of active and current

malicious websites.

 The reasons for false positives in this experiment are the same reasons already

discussed in Sections 4.2.2.2 and 4.2.2.3. There may be Internet Explorer functionality of

which ESCAPE is not aware. Full feature testing may reduce the false positive rate, and

it is a consideration for future research.

4.3 Results and Analysis of Experiment 4

 The results of this experiment are used to characterize SPEAD’s latency, which is

the time it takes SPEAD to receive an email and to make a determination whether the

email is malicious or not. It is important to note that SPEAD’s malware detection rates

are not being evaluated in this experiment. This is because MaTR’s and ESCAPE’s

execution environments already process at their maximum configured speeds when a

92

queue exists for files or URLs waiting to be analyzed. Thus, a larger queue does not

affect their detection capabilities.

 This experiment uses three sizes of file and URL sample sets based on the email

throughput being tested. The appropriate number of files and URLs are selected to allow

for a one-minute duration of emails being sent:

 12 files and 240 URLs are selected for the low throughput of 12

attachments/minute and 240 URLs /min

 60 files and 1,000 URLs are selected for the expected throughput of 60

attachments/minute and 1,000 URLs /min

 300 files and 1,500 URLs are selected for the max throughput of 232

attachments/minute and 1,422 URLs /min

These samples are randomly selected from the malicious and non-malicious PE/COFF

files, non-PE/COFF files, and URLs. Each file type is as equally represented as possible

based on the sample size. The file latency results are analyzed first, followed by the URL

latency results.

4.3.1 File Latency Results and Analysis

 The test for each throughput speed is repeated twice for a total of three tests at

each throughput speed. The average latency results for each throughput are calculated,

and the file results are displayed in Figure 18. These plots show a linear growth trend

after an initial slow-growth period, especially when the sample size is large as it is in the

maximum throughput test. These initial slow-growth trends are due to the rapid static

analysis responses offered by MaTR for the PE/COFF files.

93

Figure 18: Latency Results for All Files at Each Email Throughput Speed

 In order to quantify SPEAD’s file processing latency more accurately, the file

results are segregated into PE/COFF and non-PE/COFF latency responses. Figure 19

shows the plots of the non-PE/COFF latency results. A linear trend line and associated

R2 statistic are calculated and displayed on each plot. The R2 statistic represents the

percentage of the total system response variation that is explained by the explanatory

variable [RaS02], which, in the case of a simple linear regression, is the slope of the line.

The high R2 statistic supports the linear trend line for the expected (98.03%) and

maximum (99.56%) email throughput plots. Because the linear trend line (in red) for the

low throughput plot appears not to fit well (R2 = 83.97%), an exponential model (in

green) is offered as a better fit (R2 = 94.19%) for the small sample size. Based on these

plots, the following qualitative observations are made:

94

Figure 19: Latency Results for Non-PE/COFF Files at Each Email Throughput Speed

 A perfectly horizontal line means new files received by SPEAD would always

have the same expected wait time regardless of the current queue of files to be

processed. Because these lines show a linear growth, this means there is an

increase in latency for each new file received by SPEAD. This demonstrates,

essentially, a queuing delay within SPEAD. Analogous to a queuing delay in

network routers when packets arrive faster than the router can process them,

SPEAD experiences a queuing delay when emails arrive at a rate faster than they

are processed. This queue consists of the unanalyzed files and URLs in the

malware detection database.

 The slopes of the trend lines translate to the expected increase in wait time, and

these increases in latency are estimated to be 7.68 seconds, 8.85 seconds, and 9.04

95

seconds for each new file introduced in a low, expected, and maximum

throughput environment, respectively. The exponential model can also be used as

an estimator of the expected file latency at low email throughputs, but its equation

is not as intuitive as the linear equation for the purpose of cursory estimation of

latencies. Additionally, because the expected and maximum throughput models

are distinctly linear with larger samples sizes, it is reasonable to assume the low

throughput model is truly linear. The small sample size (8 files) may not be

sufficient to produce a strong linear trend over time.

 The plots of the PE/COFF file latency results are shown in Figure 20. The low

and expected throughput’s linear trend lines both show a predominately horizontal tilt,

indicating a nearly ideal growth in wait time, or lack thereof. The maximum throughput

plot shows both an exponential and linear growth trend for comparison. The following

qualitative observations are made:

 The R2 statistic (78.5%) for the low throughput is counterintuitive. Judging by

the difficulty in differentiating the linear trend line from the data’s plotted line, it

appears as though the R2 statistic should be closer to 100%. The R2 statistic is

somewhat lower in this case because there is very little total variation in latency

across these four files. The linear equation explains 78.5% of this small total

variation, which results in a very good-fitting model without a R2 of 100%.

 The expected increase in latency for each new PE/COFF file received by SPEAD

is 0.07 seconds for the low and expected workloads.

96

Figure 20: Latency Results for PE/COFF Files at Each Email Throughput Speed

 By visual inspection of the maximum throughput plot, the exponential trend line

appears to be the better fit. The expected increase in latency for each new

PE/COFF file received by SPEAD is 5.64e0.0178 seconds, or about 0.25 seconds if

the growth is linear, for the maximum throughput. There appears to be a

saturation point somewhere between the expected and maximum throughput

speeds where the latency growth begins to increase above the 0.07/file linear rate.

 If the latency growth is truly linear for the maximum throughput environment,

then there are several possible reasons to explain why the plot appears to be

exponential:

a) The VBscript responsible for calculating the latency metric polls the

database every five seconds. With enough samples over time, the average

97

relative growth in latency between samples (i.e., the slope of the line)

covers up the effect of this polling interval on the observed latency.

However, at the start of an experiment, no latency less than five seconds is

possible because the script will not poll for responses until the five-second

mark. Because of this, the first 14 samples at the start of the maximum

throughput test all have latencies in the six-second range, giving the plot

the appearance of exponential growth as samples 15 and beyond resume a

linear growth in latency.

b) There is a mix of malicious and non-malicious PE/COFF files in the

sample set for the maximum throughput tests. MaTR’s analysis time may

be sensitive to files that are malicious due to the extra traversing of the

decision tree needed to classify the malware’s type as backdoor, Trojan,

worm, etc. If this is the case, then a run of consecutive malicious

PE/COFF files may slightly skew the latency growth trend line.

Coincidentally, the last 19 files analyzed in the maximum throughput

scenario are all classified as malicious, which may have an additive effect

on the latency growth trend and give it the appearance of an exponential

turn upwards on the graph towards the latter samples.

c) The underlying ESX server may be reaching a processing speed limit due

to the immediate influx of processing needed for 17 virtual images (1

MaTR and 16 ESCAPE) to analyze files and URLs at the maximum

throughput rate. This may cause noticeable increases in latency for

98

relatively small growth trends like that shown by the rapid PE/COFF file

processing.

4.3.2 URL Latency Results and Analysis

 The URL latency plots are averages of three tests, just as the file latency plots are.

These plots are displayed in Figure 21. Linear trend lines and R2 statistics are added to

these plots as well as the linear equation used to formulate the trend line. These linear

trend lines fit the plots very well in all three test scenarios with R2 statistics over 99% in

each plot. Thus, a direct comparison of the slopes of the equations can be made. The

expected increases in latency for a new URL received by SPEAD are 3.78 seconds, 3.90

seconds, and 4.04 seconds, respectively, for the low, expected, and maximum throughput

conditions.

Figure 21: Latency Results for URLs at Each Email Throughput Speed

99

 It is noteworthy that there is only a 0.12 second latency increase going from the

low to the expected throughput, but there is a 0.14 second latency increase going from the

expected to the maximum throughput. This is despite the growth in URLs with the

former (760 URL increase) being much greater than the growth in URLs with the latter

(500 URL increase). This indicates a saturation point for URL processing at throughputs

somewhere between 1,000 and 1,500 URLs per minute.

4.3.3 Overall Latency Analysis

 SPEAD’s non-PE/COFF file processing does no better than a latency increase of

about 7.7 seconds per additional file received even at the low email throughput.

Compared to the best URL processing latency of about a 3.8 second increase per

additional URL, it is noteworthy that the non-PE/COFF file processing latency grows at

approximately twice the rate. This may be due to the file-based applications needing

more processing bandwidth or more memory than Internet Explorer, thus requiring a little

more time to open each file and also to terminate the application upon analysis

completion.

 SPEAD’s PE/COFF file processing is significantly faster than its non-PE/COFF

file and URL processing. The evidence strongly supports the notion that static analysis is

much quicker than dynamic analysis. SPEAD appears to be able to handle much higher

email throughput rates of PE/COFF files.

 Finally, the data is viewed in the context of the research hypothesis that SPEAD

can operate under any sustained traffic workload and still detect novel malware in one

hour or less. Table 15 is the summary of this data. These calculations assume the email

100

throughput workload is constant, but traffic that is bursty would have some idle time to

allow SPEAD an opportunity to continue processing queued files and URLs without

introducing new items. For PE/COFF inputs, SPEAD can handle a sustained maximum

workload for over an hour before the latency reaches one hour per item. For non-

PE/COFF files, even a low, sustained throughput workload pushes SPEAD’s latency per

file to the one hour mark before 40 minutes. The URL input is slightly better, lasting

until almost 80 minutes at a low workload before SPEAD’s latency reaches one hour per

URL. This analysis supports a conclusion that the research hypothesis concerning

SPEAD’s latency is not correct. It is important to note that the point of this experiment is

to quantify SPEAD’s non-optimal runtime performance configuration for future

comparison in case SPEAD’s performance is enhanced for optimal runtime speeds.

Table 15: Expected Time to Reach 1 Hour Latency

4.4 Summary

 This chapter presents and analyzes the data collected from the four experiments

undertaken by this research. The results of Experiment 1 are discussed, and the analysis

conclusions are used to configure ESCAPE for optimal malware detection accuracy with

a consideration for speed. The results of Experiments 2 and 3 are analyzed, and many

conclusions are made. Namely, the original code for SPEAD is validated, and SPEAD

PE/COFF 0.07 50704.23 4225.35 0.07 50704.23 845.07 0.25 14693.88 63.34
Non-PE/COFF 7.68 468.75 39.06 8.85 406.78 6.78 9.04 398.23 1.72

URL 3.78 952.38 79.37 3.90 923.08 15.38 4.04 891.09 3.84

Input Type

Expected Throughput

Latency
Growth

Rate
(seconds)

of Items
until 1
Hour

Latency

Time to
Reach 1

Hour
Latency

(minutes)

Max Throughput

Latency
Growth

Rate
(seconds)

of Items
until 1
Hour

Latency

Time to
Reach 1

Hour
Latency

(minutes)

of Items
until 1
Hour

Latency

Latency
Growth

Rate
(seconds)

Time to
Reach 1

Hour
Latency

(minutes)

Low Throughput

101

proves to be a viable option as a complementary email-based malware detection

framework that focuses primarily on novel malware, especially PE/COFF, Adobe Reader,

and Microsoft Excel malware. Furthermore, SPEAD’s URL detection metrics and

unique detection capabilities are discussed and quantified. Finally, SPEAD’s latency

results are presented and analyzed in order to characterize SPEAD’s performance in

terms of the research hypothesis.

102

V. Conclusions

his chapter summarizes the overall conclusions drawn from this research.

Section 5.1 compares the four research goals with the experimental results to

determine if the research goals and hypotheses are met. The significance of this research

is outlined in Section 5.2. Finally, suggestions for future work to extend this research are

provided in Section 5.3.

5.1 Research Conclusions

5.1.1 Goals #1 and #2: Construct a spear phishing detection system

The first goal of this research is to construct an email collection and processing

system to obtain emails, parse them for files and Uniform Resource Locators (URLs),

and insert appropriate information into a database for automated malware analysis. The

second research goal is to modify the execution environment of two malware detection

algorithms, ESCAPE and MaTR (Malware Type Recognition), to interact with this

database for file/URL download and the upload of detection results. Original code is

written to create a framework that accomplishes these first two goals. This framework is

called the SPEar phishing Attack Detection system (SPEAD). Experiment 1 is used to

optimize ESCAPE’s analysis wait time to 10 seconds. The results of Experiment 2 are

used to verify that all files and all URLs are successfully processed and inserted into the

database. This validates the correctness and effectiveness of the original code. Thus, the

first two research goals are achieved.

T

103

5.1.2 Goal #3: Compare this system to the current industry standard

The third goal of this research is to collect malware detection metrics for SPEAD

and commodity anti-virus products to determine SPEAD’s effectiveness in detecting

novel email-borne malware. Experiments 2 and 3 provide ample metrics and data to

perform a comparison. In comparison to the commercial products, SPEAD is the best

performer for the overall detection of all malicious Portable Executable and Common

Object File Format (PE/COFF) files (99.68% true positive rate, 0.39% false positive rate)

as well as novel PE/COFF malware (98.2% true positive rate).

SPEAD’s performance is also statistically comparable to the anti-virus products in

terms of the detection of novel Adobe Reader malware with a 88.79% true positive rate

and the fact that the pairwise differences in means between SPEAD and the other three

top performers is not significantly different from zero (two-sided p-values greater than

0.999 for each pairwise comparison).

 Furthermore, SPEAD demonstrates unique advantages in terms of its statistically

strong tendency to focus its detection on novel malware only. Specifically, the odds of a

SPEAD malware detection being attributed to novel malware are as follows:

 For PE/COFF files, 42.1:1 odds in favor of SPEAD detecting novel PE/COFF

malware over the next best-performing anti-virus product (95% confidence

interval is 16.84 to 105.14 with two-sided p-value less than 2.2e-16).

 For Adobe Reader files, 7.54:1 odds that when SPEAD detects Reader malware,

the malware is novel (95% confidence interval is 3.55 to 16.03 with two-sided p-

value of 8.78e-9). The next best performer is G Data with 4.5:1 odds (95%

confidence interval of 2.10 to 9.64 with two-sided p-value of 3.82e-5).

104

 For Microsoft Excel files, 66.5:1 odds that when SPEAD detects Excel malware,

the malware is novel (95% confidence interval is 5.88 to 853.49 with two-sided p-

value of 0.00017). The next best performer is BitDefender with 1.65:1 odds (95%

confidence interval of 0.16 to 17.47 with two-sided p-value of 1).

Additionally, SPEAD offers two unique benefits from analysis of email-borne

URLs: 1) automated PE/COFF malware download from malicious URLs (35 downloads

during Experiment 2, and 2) near real time confirmation of active malicious web sites (56

sites detected as malicious). The hypothesis that two malware detection algorithms can

co-exist in an email context while outperforming commodity anti-virus products is

mostly confirmed. Full confirmation is lacking due to SPEAD’s lack of effectiveness in

detecting novel Microsoft Word and PowerPoint malware at a sufficient rate with this

limited sample set. Even though the hypothesis is not fully confirmed, the third research

goal is still achieved, which aimed to quantify SPEAD’s effectiveness in relation to

commodity A/V solutions.

5.1.3 Goal #4: Characterize the detection latency of this system

The fourth goal of this research is to characterize SPEAD detection latency while

using an approximated Air Force base’s email traffic workload. It is important to note

that SPEAD does not have an optimal runtime performance configuration. This research

goal simply aims to take a snapshot of SPEAD’s latency characteristics as a gauge for

future work in this area, if necessary. Experiment 4 performs the necessary tests to

quantify SPEAD’s latencies in varying email traffic workloads. SPEAD’s latencies in

105

the worst case scenario (i.e., email throughput of 300 files/minute and 1,500

URLs/minute) are as follows:

 For PE/COFF files, analysis is expected to cause one-hour latencies in about

63.34 minutes.

 For non-PE/COFF files, analysis is expected to cause one-hour latencies in

about 1.72 minutes.

 For URLs, analysis is expected to cause one-hour latencies in about 3.84

minutes.

While the fourth research goal is achieved, the hypothesis that SPEAD can

effectively detect malware under any sustained workload within one hour is not

confirmed.

5.2 Significance of Research

This research provides the Air Force and other large organizations with the

capability for fully automated detection of email spear phishing attacks indicative of

cyber espionage. No other public framework or product exists that combines malware

detection algorithms for the sole purpose of autonomously identifying previously

unknown malicious software and malicious web site links delivered through emails.

SPEAD can be implemented in a plug-and-play manner for any network

enterprise employing Microsoft Exchange as its email service or that can provide emails

to a Microsoft Outlook email client. Its passive network presence and near real time

detection provide network security analysts with the unique benefit of immediate cyber

espionage situational awareness. Additionally, SPEAD is a good complement to

106

traditional anti-virus and anti-spam solutions because of its unique ability to identify the

novel malware attacks many anti-virus solutions and anti-spam engines struggle to find in

email attachments and URLs.

5.3 Recommendations for Future Research

A myriad of extensions to this research are viable. [MeM11] proposes an

automated framework for the detection of cyber espionage events on a network, and

SPEAD’s spear phishing detection capabilities can be implemented within such a

framework.

SPEAD can also be extended to include an inline network configuration, where

SPEAD’s capabilities are enhanced for automated prevention of novel email attacks.

This requires an optimization study to determine the appropriate configuration and

coding improvements to decrease SPEAD’s latency under varying workloads. Included

in this optimization study could be the addition of more ESCAPE and MaTR virtual

clients to maximize parallel processing.

Since SPEAD is a framework for integrating malware detection algorithms, this

research can be extended to include other cutting edge detection algorithms. Additional

testing could include scenarios where SPEAD’s malware detection algorithms are

complemented by varying anti-virus products to determine the best complementary

configuration for both known and novel malware detection.

An observational study using SPEAD on an operational network would

undoubtedly test SPEAD’s detection of truly novel and previously unknown email-based

107

attacks. This study would also validate SPEAD’s URL parsing effectiveness with real-

world emails and URLs.

Additionally, the following specific enhancements can be coded, tested, and

evaluated:

 Check all incoming URLs against a known good whitelist and known bad

blacklist to reduce the amount of unnecessary URL analysis

 Public Key Infrastructure validation: compare the sender of digitally signed

and/or encrypted emails with what is represented in the signature or public key

 Parse emails for archive file formats such as .zip and .rar files; automatically

decompress these files for analysis

 Parse files for embedded documents (i.e., .pdf embedded in a Word document)

 Create a software agent to click on, open, or download items within documents or

on web sites for more in-depth dynamic analysis

 Configure SPEAD to revert ESCAPE clients to snapshots every time a malicious

file/URL is detected

 Configure SPEAD to implement prioritization of analysis; evaluate the

performance improvement of SPEAD malware detection algorithms re-scanning

old file/URLs during idle time

 Create original exploits for each file type for testing SPEAD’s novel malware

detection; same can be applied to web-based attack vectors

 Capture ESCAPE’s detection metrics with enough granularity to compare

malware detections on Windows XP to those on Windows Vista and/or Windows

108

7 to determine the effectiveness of Windows native memory corruption protection

mechanisms

 Perform full feature testing of ESCAPE-protected applications to reduce the false

positive detection rate

 Evaluate all ESCAPE configuration factors to determine an optimal configuration

for speed of detection without sacrificing accuracy

 Use obfuscated, packed, or compressed malware to evaluate detection limitations

of SPEAD versus commodity anti-virus

109

Bibliography

[ACK+04]

[ACKS04]

[AHH+02]

[ArT00]

[BaH02]

[BDG+10]

[Ber09]

[BOA+07]

[ChJ04]

[CJS+05]

T. Abou-Assaleh, N. Cercone, V. Keselj and R. Sweidan. “Detection of New
Malicious Code Using N-grams Signatures,” Proceeding of the 2nd Annual
Conference on Privacy, Security, and Trust. pp. 193-196, 2004.

T. Abou-Assaleh, N. Cercone, V. Keselj and R. Sweidan. “N-gram-based
detection of new malicious code,” Proceedings of the 28th Annual
International Computer Software and Applications Conference - Workshops
and Fast Abstracts (COMPSAC ’04). Vol. 2, pp. 41-42, Washington, D.C.:
IEEE Computer Society, 2004.

F. Apap, A. Honig, S. Hershkop, E. Eskin and S. Stolfo. “Detecting malicious
software by monitoring anomalous Windows registry accesses,” Recent
Advances in Intrusion Detection: Lecture Notes in Computer Science. Vol.
2516, pp. 36-53, Berlin: Springer, 2002.

W. Arnold and G. Tesauro. “Automatically generated Win32 heuristic virus
detection,” Virus Bulletin Conference. pp. 51-60, 2000.

M. Bhattacharyya and S. Hershkop. “MET: An experimental system for
Malicious Email Tracking,” Proceedings of the 2002 Workshop on New
Security Paradigms. pp. 3-10, New York: ACM, 2002.

A. Bergholz, J. De Beer, S. Glahn, M. F. Moens, G. Paaß and S. Strobel. “New
filtering approaches for phishing email,” Journal of Computer Security. Vol.
18, No. 1, pp. 7-35, 2010.

A. Bergholz. “AntiPhish: Lessons Learnt,” Proceedings of the ACM SIGKDD
Workshop on CyberSecurity and Intelligence Informatics. New York: ACM,
2009.

M. Bailey, J. Oberheide, J. Andersen, Z. Mao, F. Jahanian and J. Nazario.
“Automated classification and analysis of internet malware,” Proceedings of
the 10th International Conference on Recent Advances in Intrusion Detection.
Berlin: Springer-Verlag, pp.178-197, 2007.

M. Christodorescu and S. Jha. “Testing malware detectors,” Proceedings of the
2004 ACM SIGSOFT International Symposium on Software Testing and
Analysis. pp. 34-44, New York: ACM, 2004.

M. Christodorescu, S. Jha, S. Seshia, D. Song and R. Bryant. “Semantics-aware
Malware Detection,” Proceedings of the IEEE Symposium on Security and
Privacy. pp. 32-46, 2005.

110

[CKO+08]

[COP10]

[Dat10]

[DGL09]

[Dix10]

[DJB+09]

[DRP+10]

[Eps08]

[FST07]

[GET08]

Y. Choi, I. Kim, J. Oh and J. Ryou. “PE file header analysis-based packed PE
file detection technique (PHAD),” Proceedings of the International Symposium
on Computer Science and its Applications. pp. 28-31, Washington, D.C.: IEEE
Computer Society, 2008.

J. Crain, L. Opyrchal and A. Prakash. “Fighting phishing with trusted email,”
Proceedings of the 2010 International Conference on Availability, Reliability
and Security. pp. 462-467, 2010.

“Data Execution Prevention,” Retrieved 6 June 2010 from
http://support.microsoft.com/kb/875352.

J. Dai, R. Guha and J. Lee. “Feature Set in Data Mining Techniques for
Unknown Virus Detection—Comparison Study,” Proceedings of the 5th Annual
Workshop on Cyber Security and Information Intelligence Research: Cyber
Security and Information Intelligence Challenges and Strategies. No. 56, New
York: ACM, 2009.

B. Dixon. Malware Analyst and Creator of blog.9bplus.com. Personal
Correspondence. 17 December 2010.

J. Ding, J. Jin, P. Bouvry, Y. Hu and H. Guan. “Behavior-based Proactive
Detection of Unknown Malicious Codes,” 4th International Conference on
Internet Monitoring and Protection. pp. 72-77, Washington, D.C.: IEEE
Computer Society, 2009.

T. Dube, R. Raines, G. Peterson, K. Bauer, M. Grimalia, and S. Rogers.
“Malware Type Recognition and Cyber Situational Awareness,” 2nd IEEE
International Conference on Social Computing (SocialCom 2010). pp. 938-
943, 2010.

K. Epstein. “U.S. Is Losing Global Cyber War, Commission Says,”
BusinessWeek. 7 December 2008. Retrieved on 23 January 2010
from:http://www.businessweek.com/bwdaily/dnflash/content/dec2008/db20081
27_817606.htm?chan=top+news_top+news+index+-+temp_ dialogue+
with+readers.

I. Fette, N. Sadeh and A. Tomasic. “Learning to detect phishing emails,”
Proceedings of the 16th International Conference on World Wide Web. pp.
649-656, New York: ACM, 2007.

B. Grow, K. Epstein and C. Tschang. “The New E-spionage Threat,”
BusinessWeek. 10 April 2008. Retrieved on 23 January 2010 from:
http://www.businessweek.com/magazine/content/08_16/b4080032218430.htm.

111

[HeJ06]

[Hin08]

[HoB05]

[Hub06]

[IdM07]

[Jac10]

[KeA94]

[Kei10]

[Ken10]

[Kim10]

O. Henchiri and N. Japkowicz. “A feature selection and evaluation scheme for
computer virus detection,” Proceedings of the Sixth International Conference
on Data Mining. pp. 891-895, Washington, D.C.: IEEE Computer Society,
2006.

M. Hines. “Cyber-espionage Moves into B2B,” InfoWorld. 15 January 2008.
Retrieved on 10 June 2010 from: http://www.infoworld.com/t/business/cyber-
espionage-moves-b2b-546.

G. Hoglund and J. Butler. Rootkits: Subverting the Windows Kernel. Addison-
Wesley Professional, 2005.

“Hub Transport Server Role: Overview,” 14 September 2006. Retrieved on 5
January 2010 from: http://technet.microsoft.com/en-
us/library/bb123494(EXCHG.80).aspx.

N. Idika and A.P. Mathur. “A Survey of Malware Detection Techniques,”
Purdue University, 2007.

K. Jackson. “Spear-phishing attacks out of China targeted source code,
intellectual property,” 13 January 2010. Retrieved on 21 November 2010 from:
http://www.darkreading.com/database-security/167901020/security/attacks-
breaches/222300840/index.html

O. Kephart and W. C. Arnold. “Automatic extraction of computer virus
signatures,” Proceedings of the 4th Virus Bulletin International Conference.
pp. 178-184, 1994.

G. Keizer. “Google hackers behind Adobe Reader PDF zero-day bug,
Symantec warns,” 15 September 2010. Retrieved on 21 November 2010 from:
http://news.techworld.com/security/3239606/google-hackers-behind-adobe-
reader-pdf-zero-day-bug-symantec-warns/

H. Kenyon. ”Air Force starts long trek to Windows 7,” 4 November 2010.
Retrieved on 13 October 2010 from:
http://defensesystems.com/articles/2010/11/04/air-force-begins-transition-to-
windows-7.aspx.

W. Kimball, Faculty Research Assistant, Center for Cyberspace Research, Air
Force Institute of Technology. “ESCAPE Vista and Win7: An Autonomic and
Cryptographic Kernel Software Protection System.” Written Instruction
Manual for the Use of ESCAPE. Air Force Institute of Technology, Wright-
Patterson AFB, OH. Written in 2010.

http://defensesystems.com/articles/2010/11/04/air-force-begins-transition-to-windows-7.aspx
http://defensesystems.com/articles/2010/11/04/air-force-begins-transition-to-windows-7.aspx

112

[KoM04]

[KoM06]

[LeM06]

[LWF09]

[Mal10]

[Mal11]

[MeM11]

[Mes08]

[MKK07]

[Off10]

[RaS02]

[Rep09]

J. Z. Kolter and M. A. Maloof. “Learning to detect malicious executables in the
wild,” Proceedings of the Tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. pp. 479-478, New York: ACM, 2004.

J. Z. Kolter and M. A. Maloof. “Learning to detect and classify malicious
executables in the Wild,” The Journal of Machine Learning Research. Vol. 6,
pp. 2721-2744, 2006.

T. Lee and J. J. Mody. “Behavioral classification,” 2006 EICAR Conference.
2006.

G. L'Huillier, R. Weber and N. Figueroa. “Online phishing classification using
adversarial data mining and signaling games,” ACM SIGKDD Explorations
Newsletter. Vol. 11, No. 2, pp. 92-99, New York: ACM, 2009.

“MailItem Object.” Retrieved on 25 June 2010 from:
http://msdn.microsoft.com/enus/library/aa210946(v=office.11).aspx.

“Malware Domain List: Downloadable Lists,” Retrieved on 10 January 2011
from: http://www.malwaredomainlist.com/forums/index.php?topic=3270.0.

D. Merritt and B. Mullins. “Identifying Cyber Espionage: Towards a Synthesis
Approach,” pending publication in Proceedings of the 6th International
Conference on Information Warfare and Security. 2011.

E. Messmer. “Cyber espionage seen as growing threat to business,
government,” Network World. 17 January 2008. Retrieved on 10 June 2010
from: http://www.networkworld.com/news/2008/011708-cyberespionage.html.

A. Moser, C. Kruegel and E. Kirda. “Limits of Static Analysis for Malware
Detection,” 23rd Annual Computer Security Applications Conference (ACSAC
2007). pp. 421-430, 2007.

“Offensive Computing: Malware Search,” Retrieved on 20 December 2010
from: http://www.offensivecomputing.net.

F. L. Ramsey and D. W. Schafer, “The Statistical Sleuth : A Course in
Methods of Data Analysis, 2nd Edition,” Publisher: Brooks/Cole Cengage
Learning, ISBN-10:0534386709, pp. 47, 221, 543, and 552-565, 2002.

“Report: Data-stealing Malware Leads to Rise in Cybercrime, Cyberterrorism,”
DarkReading. 29 June 2009. Retrieved on 10 June 2010 from:
http://www.darkreading.com/insiderthreat/security/cybercrime/ showArticle.
jhtml?articleID=218101832.

113

[Rpr11]

[RuS04]

[SAN08]

[SCY05]

[SEZB01]

[SEZS01]

[SHW+03]

[SIK+05]

[SKF08]

[SWL07]

[SWL08]

R Project for Statistical Computing, Retrieved 10 January 2011 from
http://www.r-project.org.

M. E. Russinovich and D. A. Solomon. Microsoft Windows Internals, Fourth
Edition: Microsoft Windows Server(TM) 2003, Windows XP, and Windows
2000 (Pro-Developer). Microsoft Press, Redmond, WA, USA, 2004.

SANS Institute. “Top Ten Cyber Security Menaces for 2008,” Retrieved on 10
June 2010 from: http://www.sans.org/2008menaces/.

D. H. Shih, H. S. Chiang and C. D. Yen. “Classification methods in the
detection of new malicious emails,” Information Sciences. Vol. 171, pp. 241-
261, 2005.

M. G. Schultz, E. Eskin, E. Zadok, M. Bhattacharyya and S. J. Stolfo. “MEF:
Malicious Email Filter: A UNIX mail filter that detects malicious windows
executables,” Proceedings USENIX Annual Technical Conference: FREENIX
Track. pp. 245-252, Berkely, CA: USENIX Association, 2001.

M. G. Schultz, E. Eskin, F. Zadok and S. J. Stolfo. “Data mining methods for
detection of new malicious executables,” Proceedings of the 2001 IEEE
Symposium on Security and Privacy. pp. 38-49, Washington, D.C.: IEEE
Computer Society, 2001.

S. Stolfo, S. Hershkop, K. Wang, O. Nimeskern and C. W. Hu. “Behavior
profiling of email,” Proceedings of the 1st NSF/NIJ Conference on Intelligence
and Security Informatics. pp. 74-90, Berlin: Springer-Verlag, 2003.

S. Sidiroglou, J. Ioannidis, A. D. Keromytis and S. J. Stolfo. “An email worm
vaccine architecture,” Information Security Practice and Experience: Lecture
Notes in Computer Science. Vol. 3439, pp. 97-108, Berlin: Springer, 2005.

M. Shafiq, S. Khayam and M. Farooq. “Embedded malware detection using
Markov n-grams,” Proceedings of the 5th International Conference on
Detection of Intrusions and Malware, and Vulnerability Assessment. pp. 88-
107, Berlin: Springer-Verlag, 2008.

S. J. Stolfo, K. Wang and W. J. Li. “Towards Stealthy Malware Detection,”
Malware Detection: Advances in Information Security. Vol. 27, pp. 231-249,
Springer U.S., 2007.

M. Siddiqui, M. C. Wang and J. Lee. “A survey of data mining techniques for
malware detection using file features,” Proceedings of the 46th Annual
Southeast Regional Conference on XX. pp. 509-510, New York: ACM, 2008.

114

[SXC+04]

[The10]

[Top10]

[TSF09]

[USC08]

[Van08]

[Vir10]

[VxH10]

[Wha10]

[WHF07]

[YWL+07]

[ZEC+07]

[Zet10]

A. Sung, J. Xu, P. Chavez and S. Mukkamala. “Static Analyzer of Vicious
Executables (SAVE),” Proceedings of the 20th Annual Computer Security
Applications Conference. pp. 326-334, Washington, D.C.: IEEE Computer
Society, 2004.

“The InnoDB Storage Engine,” Retrieved on 25 September 2010 from:
http://dev.mysql.com/doc/refman/5.0/en/innodb-storage-engine.html.

“Top Reasons to Use MySQL,” Retrieved on 25 September 2010 from:
http://www.mysql.com/why-mysql/topreasons.html.

S. M. Tabish, M. Z. Shafiq and M. Farooq. “Malware detection using statistical
analysis of byte-level file content,” Proceedings of the ACM SIGKDD
Workshop on CyberSecurity and Intelligence Informatics. pp. 23-31, New
York: ACM, 2009.

U.S.-China Economic and Security Review Commission, 110th Congress, 2nd
Session. 2008 Report to Congress. Washington, D.C.: GPO, 2008.

M. Van Horenbeeck. “Overview of cyber attacks against Tibetan
communities,” 24 March 2008. Retrieved on 20 December 2009 from:
http://isc.sans.edu/diary.html?storyid=4177.

“Virus Bulletin VB100 Archive,” Retrieved on 20 May 2010 from:
http://www.virusbtn.com/vb100/archive/results?display=platforms.

“VX Heavens,” Retrieved on 20 May 2010 from: http://vx.netlux.org/vl.php.

“What is Samba?,” Retrieved on 26 September 2010 from:
http://www.samba.org/samba/what_is_samba.html.

C. Willems, T. Holz and F. Freiling. “CWSandbox: Towards Automated
Dynamic Binary Analysis,” IEEE Security and Privacy. Vol. 5, No. 2, pp. 32-
39, 2007.

Y. Ye, D. Wang, T. Li and D. Ye. “IMDS: Intelligent malware detection
system,: Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. pp. 1043-1047, New York: ACM,
2007.

Y. Zhang, S. Egelman, L. Cranor and J. Hong. “Phinding phish: Evaluating
anti-phishing tools,” Proceedings of the 14th Annual Network and Distributed
System Security Symposium (NDSS 2007). 2007.

K. Zetter “Google hack attack was ultra sophisticated, new details show,” 14

http://dev.mysql.com/doc/refman/5.0/en/innodb-storage-engine.html
http://www.mysql.com/why-mysql/topreasons.html
http://www.samba.org/samba/what_is_samba.html

115

January 2010. Retrieved on 21 November 2010 from:
http://www.wired.com/threatlevel/2010/01/operation-aurora/.

http://www.wired.com/threatlevel/2010/01/operation-aurora/

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

24-03-2011
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

Sep 2009 – Mar 2011
4. TITLE AND SUBTITLE

Spear Phishing Attack Detection

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

David T. Merritt, Capt, USAF

5d. PROJECT NUMBER
ENG 10-391

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

AFIT/GCE/ENG/11-05

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Robert Kaufman
318 Information Operations Group/DD
688th Information Operations Wing (AFSPC)
102 Hall Blvd, Suite 311, San Antonio, TX 78243-7078
(210) 925-4425
Robert.Kaufman@us.af.mil

10. SPONSOR/MONITOR’S
ACRONYM(S)

318th IOG/DD (688th IOW)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. This material is declared a work of the U.S. Government and is not subject to
copyright protection in the United States.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This thesis addresses the problem of identifying email spear phishing attacks, which are indicative of cyber espionage. Spear phishing consists of targeted
emails sent to entice a victim to open a malicious file attachment or click on a malicious link that leads to a compromise of their computer. Current detection
methods fail to detect emails of this kind consistently. The SPEar phishing Attack Detection system (SPEAD) is developed to analyze all incoming emails on
a network for the presence of spear phishing attacks. SPEAD analyzes the following file types: Windows Portable Executable and Common Object File
Format (PE/COFF), Adobe Reader, and Microsoft Excel, Word, and PowerPoint. SPEAD’s malware detection accuracy is compared against five
commercially-available email anti-virus solutions. Finally, this research quantifies the time required to perform this detection with email traffic loads
emulating an Air Force base network. Results show that SPEAD outperforms the anti-virus products in PE/COFF malware detection with an overall accuracy
of 99.68% and an accuracy of 98.2% where new malware is involved. Additionally, SPEAD is comparable to the anti-virus products when it comes to the
detection of new Adobe Reader malware with a rate of 88.79%. Ultimately, SPEAD demonstrates a strong tendency to focus its detection on new malware,
which is a rare and desirable trait. Finally, after less than 4 minutes of sustained maximum email throughput, SPEAD’s non-optimized configuration exhibits
one-hour delays in processing files and links.
15. SUBJECT TERMS

spear phishing, cyber espionage, malware analysis, malware detection, static analysis, dynamic analysis, email malware

16. SECURITY CLASSIFICATION
OF:

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

128

19a. NAME OF RESPONSIBLE PERSON
Dr. Barry E. Mullins, ENG

REPORT
U

ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
(937) 255-3636 x7979; Barry.Mullins@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18

	AFIT-GCE-ENG-11-05.pdf

