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Abstract 
 

This thesis addresses the problem of identifying email spear phishing attacks, 

which are indicative of cyber espionage.  Spear phishing consists of targeted emails sent 

to entice a victim to open a malicious file attachment or click on a malicious link that 

leads to a compromise of their computer.  Current detection methods fail to detect emails 

of this kind consistently.   

The SPEar phishing Attack Detection system (SPEAD) is developed to analyze 

all incoming emails on a network for the presence of spear phishing attacks.  SPEAD 

analyzes the following file types: Windows Portable Executable and Common Object 

File Format (PE/COFF), Adobe Reader, and Microsoft Excel, Word, and PowerPoint.  

SPEAD’s  malware   detection   accuracy   is   compared   against   five   commercially-available 

email anti-virus solutions.  Finally, this research quantifies the time required to perform 

this detection with email traffic loads emulating an Air Force base network. 

Results show that SPEAD outperforms the anti-virus products in PE/COFF 

malware detection with an overall accuracy of 99.68% and an accuracy of 98.2% where 

new malware is involved.  Additionally, SPEAD is comparable to the anti-virus products 

when it comes to the detection of new Adobe Reader malware with a rate of 88.79%.  

Ultimately, SPEAD demonstrates a strong tendency to focus its detection on new 

malware, which is a rare and desirable trait.  Finally, after less than 4 minutes of 

sustained maximum email throughput, SPEAD’s   non-optimized configuration exhibits 

one-hour delays in processing files and links.   
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I.   Introduction 
 
 

Cyber espionage is responsible for an annual loss of billions of dollars in the 

United States alone [Rep09] [Eps08].  Because of the low cost of entry into and the 

anonymity afforded by the Internet, any curious or incentivized person can likely gather 

important information off private, corporate, or government computer networks [USC08].  

Proprietary information from a company's innovative products or research and 

development often holds a high monetary value.  If that information is about national 

defense assets or national strategy decision-making, then the value is arguably 

immeasurable. 

History has shown that espionage traditionally requires strategically-placed spies 

or monitoring devices tailored and molded to the environment in which they operate.  

The same is true in the way spies infiltrate computer networks.  Inherently, espionage 

occurs against a highly targeted victim or group.  Some examples of this are the insider 

amongst senior leaders of an organization [Mes08], the undercover detective within a 

drug cartel, or the classic secret agent planted in a foreign agency.  Cyber espionage is no 

different in that its success is dependent on how well-tailored it is to its targeted victims.     

In recent years, the cyber espionage threat has been widely published and 

acknowledged by computer security analysts as wells as the mainstream public [Kei10] 

[Zet10] [Mes08] [Hin08] [GET08] [Rep09] [SAN08].  Historically, the most common 

method for infiltrating a network is through targeted spear phishing emails with malicious 

file attachments or web site links [Kei10][Zet10] [SAN08].  The infamous attacks against 

Google  and  dozens  of  other  corporations  in  early  2010,  dubbed  “Operation  Aurora”,  used  
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targeted spear phishing emails in this manner [Jac10].  Both the emails and attachments 

are products of effective social engineering methods that tailor the content to the 

recipients of the emails.  When an unsuspecting, targeted user opens the attachment or 

clicks on the link, the cyber spy establishes a foothold on the computer and affected 

network.  The spy can then use his specialized malware to search for interesting data on 

the victim computer or network and exfiltrate this potentially sensitive data, like source 

code or intellectual property, from the victim network to a place of his choosing. 

Because spear phishing emails are targeted, tailored to their targets, and relatively 

rare when compared to other email-borne malware infection vectors, current technology 

does not adequately protect against them.  Commodity anti-virus applications generally 

focus their detection on the malicious software that is already known to exist.  The 

objective of this research is to develop an email-based system that integrates automated 

malware detection algorithms that provide the capability to detect previously unknown 

malware.  Such a system can be used to analyze files and web site links within emails, 

specifically looking for and recognizing spear phishing emails that commonly use new 

malware.  This capability significantly limits the primary attack vector for cyber 

espionage.  This system provides an invaluable risk mitigation and information protection 

tool to a person, corporation, or government aiming to protect their trade secrets, 

intellectual property, or crown jewels from cyber spies.   

This thesis is organized into five chapters.  Chapter 2 reviews the relevant 

literature, and it concludes with a review of the research related to the system designed in 

this thesis.  Chapter 3 describes the methodology used to design and evaluate this system.  

The results and analysis of the experiments is discussed in detail in Chapter 4.  Finally, 
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Chapter 5 concludes this thesis body with a summary of this work, its contributions, and 

where this work can be extended for future research. 
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II.   Literature Review 
 

his chapter defines spear phishing and discusses the relevant bodies of research 

needed to perform spear phishing detection.  Section 2.1 introduces and defines 

spear phishing.  Next, Section 2.2 discusses the relevancy of traditional phishing 

detection research.  A thorough review of malware detection technologies is provided in 

light of static, dynamic, signature-based, and anomaly-based analysis techniques in 

Section 2.3.  Email-borne malicious code detection algorithms are described in Section 

2.4.  This chapter concludes with a description of the research ideas used for this thesis in 

the context of the spear phishing attack detection framework. 

2.1   Spear Phishing Defined 

Spear phishing is a phishing attack targeted at a relatively smaller target set, and it 

usually uses malicious attachments and web site hyperlinks in the email content.  In 

addition, the email content is highly customized to the target and would probably mean 

almost nothing to an email recipient outside the target group or organization. 

Spear phishing emails sent to a handful of selected victims is indicative of cyber 

espionage.  In addition, if the content of the email is very specific and relevant to the 

industry, then this would be a telltale sign of cyber espionage.  The same thought process 

applies to a compromised web site that hosts information or services that cater to a select 

business, organization, or niche market.   

One way to differentiate between spear phishing and conventional phishing 

attacks are by the level of sophistication of social engineering require by the attacker.  

For phishing emails, knowing the demographics, locale, or common financial institutions 

T 
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in an area aid an attacker in customizing their phishing attack.  However, for spear 

phishing attacks, both the emails and attachments/links are the products of very focused 

social engineering methods that tailor the content to each individual recipient of the 

emails. 

Spear phishing attacks are email-borne infection vectors, so there is a relatively 

long and arbitrary amount of time from when an email is delivered until the malicious file 

or code compromises its target.  Also, spear phishing has a different purpose than a worm 

or email virus.  Its goal is not to indiscriminately spread far and wide but to 

surreptitiously establish a foothold into a specific network or system. 

2.2   Detecting Phishing Attacks 

Identifying phishing attempts is a difficult and unsolved problem due to the 

inherent vulnerability residing at the receiving end of phishing emails—a human.  The 

prevalence of phishing web sites and emails attests to the success phishers are having 

with their attempts.  When a web site or email emulates a known legitimate site or email, 

it is relatively easy to fool most Internet users.  While phishing training may help the 

human only slightly, significant advancements are made toward effective technical 

solutions that are categorized into two groups: content-based filtering and application-

based filtering. 

2.2.1   Content-Based Filtering 

Content-based filtering refers to statistical analysis, data mining, feature set 

selection, machine learning, and/or heuristics-based detection mechanisms applied to 

either email content or web site content.   



 

6 

 

Fette et al. establish a machine learning algorithm on a feature set designed to 

highlight human-targeted deception behaviors in email [FST07].  Their approach is 

named PILFER, and it is a machine learning-based approach to classifying phishing 

attempts.  PILFER uses data directly present in email as well as data collected from 

external sources.  This combined approach creates a feature vector, which is used to train 

a model for classification.  Their feature vector consists of 10 features: Internet Protocol 

(IP) addresses within web links, age of linked-to domains, non-matching links,   “Here”  

links to a non-modal domain (anomalous links to the non-dominate domain present in the 

email), HTML (Hyper Text Markup Language) emails, number of links, number of 

domains, number of dots (e.g., www.this.is.a.bad.site.com), contains JavaScript, and 

output from third party spam filters.  PILFER inputs this feature vector into a random 

forest as a classifier, where numerous decision tress are created.  Preliminary experiments 

show a 96% detection rate with only a 0.1% false positive rate over 860 phishing and 

6,950 non-phishing emails. 

L’Huillier   et   al.   propose an online phishing classification scheme using 

adversarial data mining and signaling games in [LWF09].  They implement a game-

theoretic data mining framework that uses dynamic games of incomplete information to 

build a classifier to detect phishing attempts.  The feature set consists of email content-

based features, of which there are four categories: email structures related to different 

email formats, properties of every link in a message, HTML/JavaScript/forms used, and 

the   SpamAssasin’s   output   score   for   the   email   in   question.      This  work   achieves   a   high  

detection accuracy of 99%. 
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Bergholz et al. propose a number of novel features that are tailored to phishing 

email detection [BDG+10].     These  new   features   extend   the  work  of  L’Hullier   et   al.   by  

adding a word list to their basic feature set, and advanced graphical features are added as 

well.  These graphical features are image distortion (i.e., attempts to defeat character 

recognition tools), logo detection (i.e., compared to original logo), and hidden text 

salting.  Hidden text salting consists of random strings, spacing, coloring, spelling, etc. to 

fool automated appliances but remain invisible to humans.  These features are passed into 

a text classification-based classifier (e.g., random forests or support vector machines).  

Experiments with these novel features yield a 99.46% accuracy rate, which is slightly 

higher  than  that  reported  by  L’Hullier  et  al. 

2.2.2   Application-Based Filtering 

Application-based filtering refers to a specific method of implementing a phishing 

detection or prevention mechanism.  This category encompasses email client or web 

browser plugins as well as modified email architecture. 

Zhang et al. developed an automated test bed for evaluating anti-phishing tools in 

[ZEC+07].  They evaluate 10 popular appliance-based anti-phishing tools using 200 

phishing URLs (Uniform Resource Locators, or links) from two sources and over 500 

legitimate URLs.  The results of their evaluation show that only one of the tools could 

consistently identify over 90% of phishing URLs.  However, this same tool also had a 

42% false positive rate.  In addition, the authors point out numerous methods to exploit 

vulnerabilities in multiple anti-phishing tools that resulted in phishing sites being labeled 

as legitimate.  Most of the tools use a blacklist of URLs that they would obtain 



 

8 

 

dynamically and frequently.  Only one tool uses heuristics-based detection instead of an 

explicit blacklist.  This tool also has high false positive rates.  The major contribution of 

this   effort   is   the   authors’   conclusion   that   the   success   of   anti-phishing tools using 

blacklists relies on very large amounts of data being collected frequently. 

Crain et al. propose a tool to assist users in identifying legitimate emails [COP10].  

This tool, called Trusted Email, allows companies to establish keys with their 

clients/customers.  This key is used to sign and encrypt emails between the legitimate 

company  and   its  user.     This  approach’s   strength   is   that   it  uses  existing   technology   in  a  

novel way to dramatically improve email security.  A client-based plugin provides 

feedback to users when: 1) a key establishment email arrives, 2) a signed email arrives, 

and 3) a forged email is detected.  A small pilot study shows that all users reject all 

emails marked as phishing, and they also accept all emails that are signed.  However, 

most of them also rejected all unsigned, legitimate emails, which may be a result of the 

small group of people and their insight into this research. 

2.2.3   Limitations of Phishing Detection 

The content filtering techniques focus their detection on anomalous behavior 

indicative of phishing.  This implies that all phishing attempts use non-standard behavior.  

However, spear phishing specifically emulates a valid user behaving in a legitimate 

manner and emailing appropriate recipients.  Therefore, the content-based filtering 

algorithms likely will not recognize legitimate-looking spear phishing emails. 

On the other hand, application-based filtering shows promise, but it relies heavily 

on the use of blacklists that must be constantly updated.  But there is an inherent 
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challenge with this: any new phishing attempts will have to be discovered first before it 

can be added to a known bad blacklist.  Even heuristic-based detection suffers from 

unacceptable false positive rates [ZEC+07].  Therefore, current application-based and 

content filtering-based phishing detection techniques likely will not catch spear phishing 

attacks, especially ones crafted and targeted for the purpose of cyber espionage. 

2.3   Detecting Malware 

Malware comes in many forms with many names: virus, Trojan, worm, 

downloader, rootkit, keylogger, adware, spyware, and more.  For simplicity and 

convenience, the root of the name (i.e.,   “malicious   software”) is used to define the 

generic use of the term.  Any unwanted and malicious program or code running on a 

system is referred to as malware.   

Malware detection is the implementation of a technique or techniques that attempt 

to identify programs or code that behave in a malicious manner contrary to the intended 

use of a system.  Naturally, detection of unknown malware is the goal, assuming a cyber 

spy will use sophisticated, novel malicious programs to establish footholds on a computer 

and within a network.  A malware detector typically takes two inputs: 1) the program or 

code under inspection, and 2) its knowledge of malicious behavior [IdM07].  While there 

are a myriad of techniques currently in use operationally and academically that reliably 

detect most malware on a system, these techniques can be categorized into three analysis 

methods based on how they gather information to detect malware: static, dynamic, or 

hybrid [IdM07] [HoB05].  These analysis methods are further broken down into 

signature-based and anomaly-based detection, which differ in their manner of 
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categorizing their knowledge of malicious behaviors.  All of the following methods of 

malware detection focus on Windows Portable Executables due to the overwhelming 

prevalence of this type of malware in the wild [VxH10]. 

2.3.1   Static Analysis Techniques 

Static analysis gathers information about malicious behavior using syntactical or 

structural properties of the program under inspection [IdM07].  It requires establishing 

sets of file features, or feature vectors, based on file content.  This file content typically 

consists of byte sequences (n-grams), metadata, and/or sequences of instructions and 

application programming interface (API) or system calls.  One advantage of statically 

analyzing code is that, in general, it can be done relatively quickly without the need to 

execute the malware.  Another advantage is that the program, ideally, can be analyzed 

holistically due to the availability  of  all  the  malware’s  code.    Code obfuscation can make 

this more difficult, but, more often than not, malware is not obfuscated.  Thus, static 

analysis can yield insight into how the malware is programmed and not just visible 

behavior at runtime.   

 2.3.1.1   Signature-Based Static Analysis 

Signature-based analysis of malware has historically been a euphemism for 

commodity anti-virus products.  However, the use of the term in this paper simply means 

that the detection algorithm compares a suspect program against known malicious 

features.  Signature-based analysis includes most of the automated malware detection 

mechanisms.  This is because most data mining methods use machine learning on feature 

sets based on n-grams, strings, instructions/code, file headers, and program structure.   
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Schultz et al. is an early adopter of a data mining technique for malware analysis.  

In [SEZS01], they use static analysis-based data mining for detecting new malicious 

executables.  They use three data mining schemes to identify malicious Windows or MS-

DOS executables: DLL information, strings, and byte sequences (or n-grams).  These 

schemes differ in their approach to extract feature sets from the executables.  These 

feature sets were used to train RIPPER (an inductive rule learner), Naive-Bayes, and 

Multi Naïve-Bayes (with voting) classifiers.  The approach with the best detection 

accuracy is the one using the GNU strings program to extract strings as feature sets for a 

Naïve Bayes classification algorithm.  However, Schultz et al acknowledge that strings 

are not robust and can be sufficiently evaded by encrypting the malware. 

A similar approach is used by Kolter et al. in [KoM04] and later in [KoM06], 

where they used data mining and n-gram analysis to tackle two malware detection issues: 

(1) classifying between benign and malicious executables, and (2) categorizing malicious 

executables according to their payload.  This method uses n-gram analysis to determine 

the n-grams with the highest information gain.  The top n-grams become the feature sets 

which the classifier algorithms use to determine if an executable is malicious.  These n-

grams are used to train classifier algorithms based on the following inductive learning 

methods: Instance-Based Learner, TFIDF, Naïve-Bayes, support vector machines 

(SVMs), decision trees, boosted Naïve-Bayes, boosted SVMs, and boosted decision trees.  

The boosted decision tree performs better than the rest of the classifiers.  This 

methodology has been fielded as an application called MECS, the Malicious Executable 

Classification System.  One acknowledged limitation to this method is its high 

computational overhead when selecting features. 
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Abou-Assaleh et al. continues this work in the area of byte-sequences and data 

mining by using a Common N-Gram (CNG) analysis classification method to create 

malware profile signatures in [ACK+04] and [ACKS04].  These profile signatures are 

class profiles of normalized frequencies of the most frequently-appearing n-grams.  The 

authors use n-grams between one and 10 bytes in size, and they set lower and upper 

bounds on the number of n-grams used to 20 and 5,000, respectively.  The experiment in 

[ACK+04] achieves an average accuracy of 98%, but it only tested 65 Windows 

executables.  The experiments in [ACKS04] use almost 800 samples of Windows 

executables, but the average detection rate dropped to 91%. 

Henchiri and Japkowicz use machine learning and knowledge of malware family 

types for feature selection in [HeJ06].  Specifically, they focus on intra-family and inter-

family n-gram thresholds to strategically select or eliminate features for the final feature 

selection.  This focus on malware family types for feature selection is the first of its kind.  

Experiments with 3,000 samples (approximately half of them malicious) and varying 

feature sets show a detection accuracy consistently in the mid-90th percentile. 

 Sung et al. pioneers the use of sequences of Windows API calls in a signature-

based methodology in [SXC+04].  The authors create a signature-based detection system 

called Static Analyzer of Vicious Executables (SAVE) that extracts API sequences from 

suspect programs and compares these sequences against a signature database of known 

malicious behavior.  Each API call is mapped to a global 32-bit integer identification 

number.  The 16 most significant bits represent the Win32 module, and the 16 least 

significant bits represent the API call in this module.  An API calling sequence is the 

sequence of these 32-bit numbers.  The similarity of the API sequence with that of 
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signatures in a database of malicious API sequences is determined.  The similarity 

between the API sequences under investigation and known malicious sequences is based 

on the cosine measure, the extended Jaccard measure, and the Pearson correlation 

measure for similarities between sequences.  If certain sequences are deemed sufficiently 

similar, then the program is labeled as malicious.  On only 20 malware samples, this 

approach successfully detected all of them.  However, an experiment on larger sample 

sizes is needed to prove the reliability and robustness of this technique.  Also, this 

method of malware detection can be evaded by polymorphic and metamorphic malware. 

 Ye et al. extend [SXC+04]’s work on API call sequences with their development 

of an Intelligent Malware Detection System (IMDS) that uses Objective-Oriented 

Association (OOA) mining-based classification in [YWL+07].  This work requires the 

development of a Portable Executable parser to construct the API execution sequences.  

The authors generate rules based on these API sequences by using their own extension to 

the FP-Growth algorithm, called the OOA_Fast_FP-Growth algorithm.  They test their 

algorithm against nearly 3,000 executables, and IMDS achieves a 93% accuracy rate in 

detecting malware.  However, because the feature set is based on API sequences, this 

technique is limited by the same polymorphic and metamorphic evasion techniques as the 

malware detection scheme in [SXC+04]. 

In [CJS+05], Christodorescu et al. use abstract models, or templates, that describe 

the behavior of malicious code.  These templates of malware signatures consist of a 3-

tuple of instructions, variables, and symbolic constants.  These templates are formed in an 

attempt to generalize the signature of an instance of malware while maintaining the 

semantics   of   the   malicious   code’s   behavior.      This   algorithm   successfully   detects all 
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variants of certain malware, but the sample size is relatively small.  Additionally, this 

scheme   relies  on   IDA  Pro’s   ability   to  disassemble  a  binary   accurately.     Otherwise,   the  

algorithm’s  detection  algorithm  is  significantly  hindered. 

In [TSF09], Tabish et al. show that malicious and benign files are inherently 

different at the byte level.  Thus, they use statistical analysis on byte-level content of a 

file divided into fix-sized blocks.  Then, this approach uses statistical and information-

theoretic features for these blocks to quantify the file content at the byte level.  This 

scheme is tested against trained classifier models for six common benign file types 

(DOC, EXE, JPG, MP3, PDF, and ZIP) and six common malware types (backdoor, 

Trojan, virus, worm, constructor, and miscellaneous).  The results of these experiments 

show a detection accuracy over 90% for all tested malware types.  While this scheme also 

shows a relatively high accuracy for classifying malware into families, its overall 

detection accuracy appears to be no better than most other malware detection methods.   

 2.3.1.2   Anomaly-Based Static Analysis 

Most static analysis-based malware detection focuses on characterizing the unique 

aspects of malicious files.  On the other hand, anomaly-based analysis focuses on 

characterizing legitimate files and then looks for anomalous file behavior. 

In [SWL07], Stolfo et al. focus on a new type of stealthy malware threat called 

embedded malware.  Their approach uses statistical analysis on byte-level file content to 

detect anomalous files segments that may be indicative of embedded malicious code.  

This technique attempts to model numerous benign file types to produce a model 

revealing what all files of each type should look like.  Anomalous and suspicious 
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behavior is indicated by any deviation from these models.  Each file type is represented 

by a set of statistical n-gram models based on a compact representation of each file type, 

called a Fileprint.  This detection scheme is put to experiment using three scenarios: 1) 

detecting malware embedded in a randomly chosen benign file, 2) distinctly detecting 

malware amongst benign executables, and 3) identifying obfuscated, self-encrypted files.  

This technique is able to detect between 72% and 95% of malicious code embedded in 

PDF files, depending on the location of the embedding.  The detection rate for the 

malware versus benign executable and self-encrypted files varies widely, which suggests 

that the comparison method may have been too weak for reliable malware or malicious 

encrypted file detection in general. 

In [SKF08], Shafiq et al. enhance the pioneering work of Stolfo et al. by using 

statistical anomaly detection to identify embedded malware and locate its position within 

an infected file.  This technique addresses the issue of commodity anti-virus software's 

inability, in general, to detect embedded malware using their signature-based detection 

engines.  This technique characterizes the statistical properties of a benign file using 

Markov n-grams, which are conditional n-gram distributions (as opposed to traditional n-

grams).  The authors conclude that a simple n-gram distribution does not yield enough 

information to accurately identify embedded malware.  This algorithm then uses an 

entropy rate to quantify the variations in the Markov n-grams of a benign file that are 

caused by embedded malware.  The algorithm looks for anomalous entropy rates that do 

not fall within the Gaussian distribution of benign entropy rates.  While this method does 

require a training phase, malware is not required to train this algorithm’s   detector, 
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making it a "true" anomaly detector that relies completely on a robust model of benign 

behavior. 

This approach does have several limitations.  While this method of embedded 

malware detection outperforms commercial-off-the-shelf (COTS) anti-virus products and 

the few other embedded malware detectors, it does so at the cost of a high rate of false 

positives.  The false positive rates for .doc and .pdf files are high due to the inherent 

ubiquity of embedded objects within these file formats.  Because of this, the benign 

behavior model for these file types take into account entropy rates that are hindered by 

numerous perturbations from embedded objects.  Also, this method of detection is 

vulnerable to a mimicry attack that shapes the embedded malware to have a statistical 

distribution similar to "normal" or benign behavior. 

 2.3.1.3   Limitations of Static Analysis 

There  are  numerous  limitations  to  static  analysis.      Investigating  a  program’s  full  

functionality may never be possible if there are complex inter-component/system 

interactions between the malware and other collaborative code from other programs, as 

discussed in [LeM06].  Also, in their work on testing malware detectors, [ChJ04] explain 

how code/data obfuscation caused by encryption, packing, polymorphism, and 

metamorphism is a significant obstacle to overcome, especially if the static analysis-

based technique is to be automated.  COTS anti-virus products are notoriously vulnerable 

to these evasion techniques.  For example, on-access obfuscation, where instructions are 

decrypted only during execution, makes static analysis extremely difficult and time-

consuming [ChJ04].   
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The efforts of Moser, et al. in [MKK07] further address the limits of static 

analysis for malware detection.  They specifically focus on the viability of evading 

semantics-aware detection schemes, where the behavior of the malware is modeled 

abstractly to determine whether a specific piece of code exhibits a specific behavior or 

function.  Moser et al. accomplish this by using a primitive known as an opaque constant, 

which refers to a code sequence that loads a constant into a register and whose value 

cannot be determined statically.  Opaque constants strategically replace certain register 

load operations with semantically equivalent instructions, thus generating a code 

sequence that always produces the same result.  Effectively, control flow can become 

scrambled, and data locations and usage can be hidden from static analysis.  This 

technique is applied to the source code of the target program, which allows much 

flexibility in applying these obfuscation transformations.  In fact, the authors prove that 

the creation of an algorithm to determine the precise result of an opaque constant-

obfuscated code sequence is an NP-hard problem. 

2.3.2   Dynamic Analysis Techniques 

Detecting malware by analyzing the code during execution is called dynamic 

analysis.  This run-time analysis technique provides relatively immediate and measurable 

empirical evidence of what an unknown binary is doing or trying to accomplish.  As a 

bonus, dynamic analysis is effective against binaries that obfuscate themselves or are 

self-modifying.  This is due to the fact that the destiny of all programs is to be run on a 

system, so when the program is running, its behavior and subsequent system 

modifications can be captured.   
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 2.3.2.1   Signature-Based Dynamic Analysis 

Kephart and Arnold pioneered the efforts for automated extraction of malware 

signatures in [KeA94].  They developed an effective extraction method for malware 

signatures by allowing viruses to infect large numbers of files.  With a plethora of various 

infected files, they harvest byte sequences in sizes of 12 to 36 bytes.  This process yields 

a myriad of signatures, and the ones with the lowest estimated false positive probabilities 

are selected for the final signature-based detection engine.  This methodology was 

incorporated   into   IBM’s   AntiVirus   product   during   the   1990s.      Arnold   and   Tesauro  

extended this work into a neural network classifier in [ArT00].  They use n-grams and 

multiple neural networks in a voting procedure to eliminate false positives and aid in 

detecting unknown Win32 viruses. 

Lee and Mody successfully automate malware detection using runtime behavioral 

data and machine learning in [LeM06].     Their  methodology  quantifies   a   file’s   runtime  

behavior into a form of sequenced events.  It normalizes this data for canonical-based 

storage in a database.  Their scheme constructs classifiers for machine learning with the 

stored event sequences as input.  They use a technique called Opaque Object to represent 

this classification data.  This specific approach allows objects to represent data in rich 

syntax and semantics.  It also yields a similarity distance between any two objects, which 

factors into their classification method based on clustering.  The authors use a Microsoft-

developed distributed system of virtual machine-based “workers” with kernel mode 

monitor agents running on them.  As files under investigation are executed, the monitor 

agent intercepts and monitors all system calls in kernel mode.  The authors acknowledge 
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the limiting factors of lack of code structural information, environment conditions, and 

ineffective virtualization as obstacles to accurate malware classification. 

Willems et al. takes steps towards automating much of the dynamic analysis 

required by advanced, in-depth malware analysis in [WHF07].  They use their own tool 

(now a commercial product) called CWSandbox to monitor all malware system calls and 

generate  a  detailed  report   to  simplify  a  malware  analyst’s   task.     They  use  API  hooking  

and dynamic link library (DLL) injection to run CWSandbox as a rootkit, thus evading 

detection by sophisticated malware.  CWSandbox collects information exposing the 

malware’s   behavior.      This   information   consists   of   file  modification/creation,  Windows  

registry changes, DLLs that are loaded, virtual memory footprint, process creation, 

network connections, and miscellaneous events pertaining to kernel driver or protected 

storage access attempts.  This tool is unique in its ability to bridge the gap between 

automated, autonomous malware detection and in-depth, human-based analysis.  

Unfortunately, it is still a relatively slow method of automating malware detection, with 

an effective throughput of only 500 binaries per day per instance of CWSandbox. 

Bailey   et   al.   extend  Willem   et   al.’s   efforts   in   fingerprinting   malware   behavior  

using runtime system state changes in [BOA+07].  They execute malware in virtualized 

environments   to  perform  causal   tracing  of   system  objects  created  during   the  malware’s  

execution.  These system events are exported to a server that builds causal dependency 

graphs of these events.  This aids in validating that the events being caused by the 

malware are not normal system events.  This approach goes beyond the capability of 

CWSandbox by using classification algorithms to automate detection of malware.  The 

authors implement a tree structure based on a hierarchical clustering algorithm.  An 



 

20 

 

inconsistency measure is calculated for this tree structure to break the tree into 

meaningful groups or clusters.  These clusters serve as models to measure program 

behaviors against. 

Ding et al. implement a behavior-based dynamic heuristic analysis approach to 

proactively detect unknown malware in [DJB+09].  This approach categorizes behavior 

features based on Win32 API calls and their specific parameters.  An automatic behavior-

tracing system is developed to collect the behavior features during runtime.  The authors 

opt for two independent detection models: a statistical detection model and a mixture of 

expert (MoE) model.  The malware behavior features are broken into six classes of 

malicious behaviors related to files, processes, windows operation, networking, registry 

settings, and windows services.  After comparing the results of malicious and benign 

executables in the context of these six classes, a more detailed 35-dimension feature 

vector is defined where each dimension accounts for one kind of behavior.  This feature 

vector is the input to the statistical and MoE models for ultimate classification of 

malware.  After experiments, the statistical model of malware detection achieves a 96% 

true positive detection rate with a nearly 35% false positive rate.  The MoE model 

achieves a 1% false positive rate, but it can only reach a 75% detection accuracy rate. 

Dai et al. takes a different approach to dynamically quantify malware behavior in 

[DGL09].  The authors focus their work on feature set selection via static and dynamic 

means.  This hybrid method of extracting statistical information is relatively rare and, 

thus, unique.  This comprehensive effort uses multiple data mining approaches: simple 

heuristics (PE headers and strings), n-grams, static instruction sequences, and dynamic 

instruction sequences.  A separate algorithm is used to obtain instruction sequence blocks 
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of significance, and the top instruction associations are selected for the feature set.  The 

selected feature sets for each data mining approach are utilized for support vector 

machine training.  The dynamic instruction sequence-based SVM outperformed the other 

data mining approaches with a malware detection accuracy of over 91%. 

 2.3.2.2   Anomaly-Based Dynamic Analysis 

True anomaly-based dynamic analysis is a rare technique for malware detection.  

Many methods may claim they are anomaly-based, but for the purpose of this research, 

anomaly-based implies a quantification of benign behavior, not a quantification of 

heuristic-based malicious behavior.  It is difficult to find published work in this area, 

which implies that this method of malware detection is still novel, or this method is not a 

worthwhile pursuit.  However, the idea of quantifying benign program execution at 

runtime should be no less daunting than doing it statically.  At least one published effort 

clearly attempts this task, and another non-published effort successfully achieves this, 

which is discussed in Section 2.5. 

Apap et al. present a host-based intrusion detection system for Windows that 

focuses specifically on registry accesses in [AHH+02].  The Registry is a worthwhile 

location to monitor runtime execution of programs.  This is because Registry activity 

tends to be regular over time, with most programs accessing only at startup/shutdown or 

at specific time intervals.  Therefore, anomalous and irregular activity may be relatively 

easy to identify.  Additionally, many malware infections launch programs or change keys 

that have not been launched or changed since the operating system had first been 

installed.  The authors exploit this beneficial scenario by developing a system called 
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RAD (Registry Anomaly Detection) to monitor registry accesses in real-time to detect the 

activity of malware.  This work is an extension of a network packet header-based 

anomaly detector called PHAD (Packet Header Anomaly Detection).  The RAD system is 

divided into three basic components: an audit sensor, a model generator, and an anomaly 

detector.  The sensors log registry activity to a database while the model generator reads 

this data to determine models of normal registry behavior.  Finally, the anomaly detector 

uses the model as a point of comparison for all registry accesses to determine their 

potentially malicious intent.  After training RAD for two days on benign behavior, the 

system is put to test.  It performs well, achieving a 100% detection rate of malicious 

activity in certain scenarios.  However, there are many false positives in most scenarios, 

and most of these false positives are caused by legitimate processes that did not run 

during the two-day training phase.  This lack of an exhaustive training phase reveals an 

inherent limitation to dynamic analysis-based anomaly detection. 

 2.3.2.3.   Limitations of Dynamic Analysis 

Just as there are limitations to static analysis that are addressed by dynamic 

analysis, the opposite is true as well.  Dynamic analysis-based malware detection 

generally requires orders of magnitude more time to perform than static-based 

techniques.  Also, the malware has to run for a long enough duration to capture sufficient 

malware information, but it also has to be run quickly enough to be scalable.  This makes 

dynamic analysis vulnerable to intentional or inadvertent time-delayed evasion 

techniques.  Specifically, when a program under inspection is executed, the monitoring 

agent only witnesses a single instance of execution of that program.  If malware is 
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programmed to activate at a certain time, dynamic analysis will almost surely miss this 

behavior.  Bailey et al. draw attention to the fact that anti-VM (virtual machine) evasion 

techniques exist [BOA+07].   Finally, malware that depends on user input may not reveal 

its full functionality without manual intervention or an advanced clicking emulator to 

simulate humanlike mouse clicks.  

2.4   Detecting Email-Borne Malicious Code 

Detecting malware sent by email can be seen as an extension to the malware 

detection problem in general.  However, there are some advantages to detecting malware 

within special purpose applications.  This is further discussed in the next section.  It is 

important to note that many email-based malware detection solutions do not take 

advantage of the special purpose application, and they are simply commodity anti-virus 

products that run the same scans with the same signatures used on client-based systems.  

While this is convenient and necessary to prevent common, known malware from 

infiltrating a network via email, it still lacks the ability to detect most new malware and 

0-day attacks.  Fortunately, there is work in this area that has set the precedent for 

tracking malicious emails.   

Shih et al. propose a method of detecting unknown malicious emails [SCY05].  

Their method evaluates the malice of an email attachment by focusing solely on the 

behavior of the email and not the contents of the attachment itself.  This technique 

evaluates three classifiers against four versions of commodity anti-virus software.  The 

three classifiers it uses are the Naïve Bayes, the Bayesian network, and the decision tree 

classifiers.  Their feature sets consist of 11 email content-based features: mail content 
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type, mail size, MIME (Multipurpose Internet Mail Extensions) format, attachment, 

number of attachments, attachment size, script language, subject, carbon copy, and 

recipient.  All three of these classification approaches outperform the four anti-virus 

products in detecting five variants of known malware.  However, targeted and tailored 

spear phishing emails will likely evade a detection technique that relies on anomalous 

email behavior. 

Schultz et al. makes a significant contribution to this field of email-borne malware 

detection with their seminal work call MEF (Malicious Email Filter) [SEZB01].  MEF is 

a tool that detects malicious Windows executables using Procmail and a UNIX mail 

server.  This tool offers three key contributions: 1) detection of known and unknown 

malware attachments, 2) automatic distributed propagation of detection models, and 3) 

ability to monitor the propagation of malicious email attachments.  This framework uses 

a Naïve Bayes classifier to detect malware, and this classifier is generated by a data 

mining algorithm trained over a given set of data.  MEF has the ability to detect similar 

but unknown malware, and its probabilistic classification methods allow the tool to 

identify borderline executables, meaning they are on the border of the threshold between 

malicious and benign.  These borderline cases provide an opportunity for expert analysts 

to make a determination.  In turn, the detection models can be updated with this valuable 

new insight, and MEF can update a central server with the updated detection models for 

distribution to other MEF outposts.   

MEF also tracks the propagation of email attachments.  It stores a unique 

identifier (hash) for every email attachment in a database as well as log data pertinent to 

each email.  The logs of malicious attachments are sent to the central server.  Therefore, 
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the central server can use the unique identifier and contextual log data to track the spread 

of malicious attachments via email.  MEF is tested against a signature-based malware 

detection approach that emulates commodity anti-virus software on mail servers.  The 

data set consists of 4,300 files, 1,000 of which are benign.  MEF significantly 

outperforms the signature-based approach with an accuracy rate of over 97%.  The 

experiments do not  evaluate  MEF’s  detection  model  updating  or  its  malicious  attachment  

propagation tracking.  Additionally, the detection of unknown malware is not thoroughly 

evaluated. 

Bhattacharyya et al. extends the work of Schultz et al. with their Malicious Email 

Tracking (MET) system [BaH02].  MET shifts focus away from the three major 

capabilities of MEF and towards a dramatically improved malicious email propagation 

tracking capability.  MET maintains a database of statistics about the trajectory of email 

attachments, and this affords the tool a global perspective on the spread of malicious 

software via email (assuming a global MET presence).  This database of email 

attachment trajectory data also provides the ability to determine all the points of entry of 

email-borne malware into a network.  Another tangential benefit of this technique is the 

ability to reduce the spread of self-replicating malware through email. 

MET gathers the core statistics for each email attachment, which consists of the 

prevalence of an attachment and its birth rate.  Prevalence is the number of times a MET 

client observes an attachment, and the birth rate is the average number of copies sent 

from the same user.  MET has built-in heuristics to determine if an attachment is self-

propagating, and this information can be communicated to a central MET server for 

distribution to other MET clients.  This is how self-replicating malware can be prevented 



 

26 

 

after the initial infection.  The limitation to this approach is obvious: there will be an 

initial infection and likely multiple infections before the trajectory data begins to line up 

with the classifier model.  Also, a targeted spear phishing attack is designed to emulate 

legitimate behavior and appropriate recipients.  Thus, a detection technique that tracks 

email trajectory likely will not recognize anything anomalous in a spear phishing email. 

Finally, there is one documented framework for detecting 0-day worms and 

viruses in email, as proposed by Sidiroglou et al. in [SIK+05].  This framework is an 

email worm vaccine architecture, and it uses the Registry Anomaly Detection (RAD) 

mechanism, designed by Apap et al. in [AHH+02], to detect malware in emails.  RAD 

monitors Windows registry accesses in real-time to detect the activity of malware.  The 

authors design the system to use a Simple Mail Transfer Protocol (SMTP) proxy between 

the Internet and the protected email server.  This proxy intercepts all incoming emails, 

extracts all attachments, and runs the attachments on a virtual machine that uses RAD to 

detect anomalous behavior.  Upon detection of a malicious file and therefore malicious 

email, the SMTP proxy is notified, and the email message is discarded.  Experiments are 

run with publicly available attacks delivered via email, and this system achieves a 100% 

detection rate with a false positive rate of 5%.  However, this anomaly-based dynamic 

analysis technique has its drawbacks.  Because   RAD   has   to   be   trained   on   “normal”  

behavior, many false positives are caused by legitimate processes that do not run during 

the training phase of RAD.  This lack of an exhaustive training phase reveals an inherent 

limitation to this method of malware detection in emails.  Additionally, these experiments 

do not appear to use unknown malware, which leave the claim of detecting 0-day worms 

and viruses untested.  Finally, not all malicious code alters the Windows registry.  This 
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limits the detection footprint of RAD, which limits the scope of detectable malware 

offered by this email worm vaccine architecture. 

The email-focused malware detection techniques discussed to this point are either 

unlikely to detect novel malware in targeted emails due to the difficulty in detecting 

malware that leaves such a small network footprint (i.e., it does not spread 

indiscriminately like a worm), or their ability to detect unknown malware remains 

untested.  Also, none of these techniques takes into account the download of malware or 

the exploitation of web browsers caused by URLs within emails.  This is a significant 

drawback to using any of these techniques to detect spear phishing emails that use 

malicious URLs. 

2.5   Spear Phishing Detection Framework 

This   section’s  purpose   is   to  extend   the   literature   review   into   the introduction of 

the spear phishing detection framework proposed in this research.  Special purpose and 

general purpose systems are discussed first, followed by the principles behind a malware 

detection approach that combines static and dynamic analysis.  Finally, the two malware 

detection algorithms selected for this research are introduced and discussed.  

This research effort attempts to build a spear phishing detection framework that is 

implemented at the email server/service level of the network.  It uses both dynamic and 

static analysis techniques to detect the presence of malicious email attachments, 

especially novel/unknown malware. 

There are two important questions about this spear phishing detection framework 

that need to be answered: 1) Why implement this framework at the server/service level 
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and not as a client-based application? and 2) Why use a dynamic analysis-based approach 

when it is notorious for its overhead costs in time and resources?  Both of these questions 

are answered in the following sections. 

2.5.1   Special Purpose versus General Purpose Systems 

Client workstations are general purpose computers, thus they have to be able to 

handle multiple types of user input, applications, and functionality.  Because of this, the 

set of all possible actions that a general purpose computer can perform is intractably 

large.  Essentially, their behavior can be unpredictable.  In addition, client-based 

computers have to provide virtually instantaneous feedback and response, or real-time 

computing, to user inputs.  This has become the norm and the expectation from virtually 

all computer users.  Because of this, dynamic-analysis based malware detection has to 

take into account a myriad of possible files, processes, and network connections being 

created, modified, and/or terminated.  Also, the malware detection product cannot 

introduce much latency, or else the enterprise-wide adoption of the product will meet 

many obstacles.   

    Email servers, on the other hand, are intended to be special purpose computers, 

though not quite as special purpose as an embedded system (i.e., cell phone, DVD player, 

electronic gadget, etc.).  However, in comparison to client workstations, email server 

behavior is more predictable, and so is its file, process, and network connection creation, 

modification, and/or termination.  Even though commercial email server software is 

designed to meet the needs of a broad and diverse customer base, it still operates 

according to a much more limited baseline behavior than a general purpose system does. 
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 Additionally, latency is not a significant issue.  Email delays are acceptable to the point 

that they are not surprising, and many times they go unnoticed by the email recipients. 

 Therefore, malware detection products have more leeway in time to perform more in-

depth analysis on email. 

    In addition, having a malware detection framework at the network boundary 

can stop malware at the point of entry into a network instead of waiting to stop it at the 

client.  In most situations, this is a preferred approach over letting the malware reach its 

target before preventing its execution.  Typically, there are many network points of entry, 

but using email as an attack vector has proven to be effective and reliable for cyber 

espionage.  Also, it is easier to manage/administrate software at the server/service-level 

vice the client/distributed user-level. 

2.5.2   Combining Dynamic and Static Analysis of Malware 

In almost all related work for malware detection, authors emphasize the need to 

augment static analysis with dynamic analysis and vice versa.  Hybrid approaches are 

somewhat rare, but the benefits of combining both approaches are synergistic.  While 

static analysis prevails in speed and exhaustive code analysis, it falters in obfuscated code 

and embedded malware analysis.  While dynamic analysis lacks in analysis speed and 

time-delayed evasion, it prevails in determining actual code execution sequences and 

functional behavior.  Using a spear phishing detection framework that follows a hybrid 

approach for malware detection alleviates many of the limitations of static and dynamic 

analysis. 
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2.5.3   Using Malware Type Recognition (MaTR) for Static Analysis 

A very important piece of a spear phishing prevention framework is its ability to 

identify malicious attachments to emails.  There are precedents for accomplishing this 

using static analysis-based techniques for malware detection.  Specifically, the MEF 

[SEZB01] and MET [BaH02]   tools,   in   addition   to   Shih   et   al.’s   work   [SCY05], 

demonstrate that using signature-based static analysis in combination with email services 

is a viable and effective means to detecting email-borne malware.   

Malware Type Recognition (MaTR) is a research initiative that extends the 

malware detection technologies to include the additional context of malware family types 

[DRP+10].  At the time of this thesis research, MaTR prototype version 1.00 is the current 

prototype.  This prototype implements   MaTR’s   best-performing pattern recognition 

technique and feature sets to perform automated static analysis for malware detection and 

malware type classification.  The additional context of malware type provides significant 

actionable information for network defenders.  This situational awareness is vitally 

important for identifying cyber espionage through spear phishing-borne malware, second 

only   to   the   tool’s   fundamental ability to determine malware from non-malware.  Also, 

this context can be used to prioritize more aggressive dynamic analysis efforts. 

In the context of this thesis, MaTR is a signature-based static analysis scheme that 

is comparable to Tabish  et  al.’s  work in [TSF09].  Thus, MaTR is one of the only static 

analysis-based methods for performing malware type classification as well as having very 

high detection rates (>99%).  It uses program structures and anomaly features of malware 

that are unique to certain classifier models.  This method of static analysis is proven to be 

very accurate in detecting malware.  MaTR uses these feature sets to form classifier 
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models that are used in a two-stage sequence.  The first stage is malware detection, and 

the second stage is malware classification.   

Ultimately, there are three primary reasons to use MaTR as the static analysis-

based malware detection engine for the spear phishing detection framework: 

1) Malware type classification makes the output of the product actionable. 

2) High true positive and true negative detection rates with very low false 

positive and false negative detection rates compared to all other methods 

of malware detection. 

3) Readily available resources for research associated with MaTR at AFIT. 

It is important to note the limitations of MaTR as well.  MaTR is prone to the 

same static analysis limitations in general.  However, many of the detection-evading 

techniques are manifested as feature sets of MaTR, thus making it more resilient to these 

inherent limitations.  Additionally, the MaTR prototype is substantially less accurate in 

classifying malware into types than it is in detecting malware from non-malware. 

2.5.4   Using ESCAPE for Dynamic Analysis 

The ESCAPE platform is a true anomaly-based, dynamic analysis technique 

designed to prevent malicious code from executing [Kim10].  The Air Force currently 

uses ESCAPE in a web crawling implementation to automate the detection and collection 

of malicious code that traverses the Internet.  The key to its success lies in its ability to 

whitelist, or sign, executable code that is known to be legitimate and subsequently track 

and prevent the execution of unknown/unsigned code.   
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ESCAPE is implemented as a device driver at the kernel level of the Windows 

XP, Vista, and 7 operating systems.  Since a device driver runs at the system level, 

ESCAPE runs in Ring 0 and can thus implement kernel hooks as necessary.  ESCAPE 

hooks the System Service Dispatch Table (SSDT), which is a kernel structure that 

contains pointers to addresses for the system services.  The SSDT is used to look up the 

function that handles a given system call [HoB05].  Specifically, ESCAPE hooks the 

NtAllocateVirtualMemory, NtProtectVirtualMemory, NtMapViewOfSection, 

NTCreateUserProcess, NtTerminateProcess, and NtSetInformationProcess Windows 

system functions.  In the SSDT, ESCAPE overwrites the pointers to these functions to 

point to its hook function.   

Hooking these functions allows ESCAPE to modify the memory protection 

characteristics of all pages in memory that are allocated or mapped into [RuS04].  This is 

due to the memory page protection argument that is passed to all six of these functions 

when they are called.  ESCAPE uses these hooks to force every page in memory to be 

non-executable, essentially enabling hardware-based Data Execution Prevention for 

every page in memory. 

ESCAPE also hooks the Interrupt Descriptor Table (IDT), which contains 

addresses to the functions that handle each interrupt, in order to hook the Page Fault 

Handler [HoB05].  ESCAPE then allows pages in memory to be executed only if it has a 

valid cryptographic signature.  ESCAPE pre-computes the HMAC (Hash-based Message 

Authentication Code) of every executable section within every file image on the system 

or application under its protection.  This is how ESCAPE whitelists, or signs, executable 

code.  This technique does assume, however, that the initial HMAC computation for all 
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the executable code is performed on legitimate, known good code.  Thus, ESCAPE has 

the ability to detect the execution of new, unknown, or unverified code caused by an 

attempt to transfer execution flow to an instruction in a page marked as non-executable.  

Essentially, ESCAPE uses its kernel access and privileges to protect user-level 

applications and processes from memory corruption exploits. 

An additional feature ESCAPE offers is the ability to use a list of exceptions for 

unsigned, non-whitelisted code that results from legitimate application functionality.  

This requires a training period where the protected application is used exhaustively in 

order to determine if any unsigned code attempts to run legitimately.  If so, the signature 

for this code can be added to an exceptions list, thereby reducing the rate of false 

positives.   

ESCAPE has demonstrated its effectiveness in detecting and preventing malicious 

code execution resulting from Internet browsing to malicious web sites.  Its first real-

world use is in a virtual environment that spawns numerous web crawlers to visit known 

or potentially malicious web sites.  As the web crawlers visit sites, ESCAPE detects 

unknown and potentially malicious code execution caused by web-borne exploit attempts 

against web browsers.  Using this code and memory page whitelisting approach, 

ESCAPE discovers 0-day exploits as well as known exploits without using signature-

based matching algorithms.   

Although its proactive malicious code detection capability is desirable, ESCAPE 

is still vulnerable to a return-to-libc attack due to the inherent nature of the attack using 

only   legitimately   executable   code.      Another   potential   weakness   of   ESCAPE’s   code  

whitelisting technique is manifested when a page in memory is marked as non-executable 
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even though there is legitimate executable code present.  This occurs in scenarios where 

applications do not use the Windows Data Execution Prevention (DEP) feature [Dat10].  

DEP helps to prevent code execution from data pages.  Applications like Adobe Reader 

or Flash attempt to execute legitimate code from data pages marked as non-executable by 

ESCAPE.  This scenario results in a false positive detection of malicious code if the 

dynamically-created   code   is   not   added   to   ESCAPE’s   exceptions   list.  However, the 

versions of ESCAPE for Windows Vista and Windows 7 have greatly diminished the 

false positive rate by preventing the most common DEP bypassing techniques.  

Additionally, since ESCAPE’s  malicious  URL  detection  capability   is  of   interest  

to   a   system   focused  on   spear  phishing  detection,   a  discussion  on  ESCAPE’s  malicious  

URL detection limitations is prudent.  ESCAPE is susceptible to certain web crawler 

prevention mechanisms by web sites not wishing to be crawled.  For example, a web 

page can appear to serve millions of dummy links to fool crawlers into wasting resources 

by chasing down each link.  This is overcome by setting a link threshold per web page 

visited by the crawler.  Also, a web page can cause infinite recursion or infinitely nested 

links by pointing links to each other.  The crawler can avoid this prevention scheme by 

setting another threshold on the number of nested links to follow.  A third example of an 

anti-crawling mechanism is a web page causing a seemingly infinite file load time.  The 

web server transmits what appears to be an infinite-sized file, which is defeated by setting 

a file download timeout on the crawler.  Finally, if a malicious URL expects a human 

user to click on a link to initiate an exploit attempt, then ESCAPE may not be able to 

detect this URL as malicious.  The lack of a user agent to click on active content is a 

limitation.  Additionally, all of these extra thresholds and limitations on the web crawler 



 

35 

 

effectively limit the ultimate capability of the ESCAPE to access and collect information 

on as many web pages as possible. 

Finally, ESCAPE protects against memory corruption exploits targeting specific 

application versions on specific operating systems, which are sensitive to the target 

process’s   memory   address   space   layout.      Memory   address   space   layouts   change  

depending on the operating system version and application version.  An exploit that 

works on one operating system and application version may not work on a different 

version of the operating system or the application.  Because of this, ESCAPE is modified 

and tuned for each operating system and each application version it protects.   
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III.   Methodology 
 

his chapter presents the methodology to design and evaluate the performance of 

the SPEar phishing Attack Detection system (SPEAD).  Section 3.1 addresses the 

problem definition, and the goals and hypotheses are introduced in Section 3.2.  The 

approach and experiments to achieve the research goals are outlined in Section 3.3.  

Section 3.4 provides details on how SPEAD is designed.  The System Boundaries and 

System Under Test (SUT) are defined in Section 3.5.  The system services and workload 

are discussed in Sections 3.6 and 3.7, respectively.  Section 3.8 describes the performance 

metrics to evaluate SPEAD.  The system parameters and factors are discussed in Section 

3.9 and 3.10, respectively.  A detailed explanation of the evaluation technique follows in 

Section 3.11, and the experimental design is highlighted in Section 3.12.  Finally, the 

chapter is summarized in Section 3.13.  

3.1 Problem Definition 

 Current malware detection technology does not adequately protect organizations 

or individuals from spear phishing emails that use novel, targeted, and tailored email-

borne malware.  The most common method of detecting email-borne malware is based on 

an adaptation of host-based anti-viral techniques that search for specific signatures as 

well as some heuristics of well-known email malware.  However, this static signature-

matching technique does not adequately prevent spear phishing attacks, which use novel 

malware.  An automated email analysis framework that reliably detects novel malware 

will significantly limit a primary attack vector for cyber espionage. 

T 
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3.2 Goals and Hypotheses  

 The objective of this thesis is to develop and evaluate a framework to perform 

automated analysis of emails for previously unknown malware in near real time.  The 

proposed system, SPEAD, identifies email transmissions on a target network, parses the 

emails for web site URLs (Uniform Resource Locators) and specific file attachments, 

submits these URLs and files to two malware detection engines (i.e., MaTR and 

ESCAPE), and stores the malware detection results in a database.  Because this research 

is sponsored by an Air Force entity, design decisions are made, wherever possible, to 

emulate expected behavior on an Air Force base network. 

 There are four goals of this research: 

1) Construct an email collection and processing system that passively obtains emails, 

parses them for URLs and specific file attachments, and inserts URL and file 

metadata into a database for automated malware analysis. 

2) Modify   MaTR’s   and   ESCAPE’s   execution   environments   to:   1) receive source 

URLs and files from a database for analysis, and 2) update the database with the 

malware detection results. 

3) Collect malware detection metrics from SPEAD and from commercial email anti-

virus  products  for  comparison  and  evaluation  of  SPEAD’s effectiveness. 

4) Characterize and evaluate the time required (i.e., latency) to perform this 

automated analysis of email file attachments and URLs under an approximated 

Air  Force  base’s  email  traffic  throughput. 

 It is hypothesized that an email collection system can be constructed that: 1) 

combines two malware detection algorithms to simultaneously and synergistically 
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address  the  other’s  weaknesses  and  limitations,  and  2)  detects  novel  email-borne malware 

at a higher rate than commodity anti-virus products.  In the context of this thesis, novel 

malware refers to malware or malicious code that is unknown to the general public and 

cannot be found within public forums, databases, or commercial products.  Because email 

transmissions from client to client generally occur in a timeframe on the order of seconds 

to minutes, it is also hypothesized that this system will identify the presence of malicious 

emails within one hour, regardless of the sustained email traffic workload. 

3.3 Approach 

This section provides a cursory look into the design and evaluation approach for 

SPEAD and how this approach achieves the four goals of this research.  While this 

section is focused on the high-level design decisions, a more detailed explanation of 

SPEAD’s  system  design  is  given  in  Section  3.4. 

The high-level   view  of  SPEAD’s  overall   functionality   is   illustrated   in Figure 1.  

This figure and its explanation summarize how this approach meets the first two research 

goals.    SPEAD’s  functionality is broken down into three phases:  

1) Email Collection: emails are passively collected (i.e., out of band) from a base LAN. 

2) Email Processing: emails are parsed for specific file attachments and all URLs. 

3) Malware Detection: files and URLs are submitted to malware detection engines. 
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Figure 1: High-level Flowchart of SPEAD Functionality 

 

 For email collection, SPEAD collects emails passively as an intentional decision 

to make this spear phishing detection framework more viable for wide-scale 

implementation.  Within the Air Force and other large organizations, there is a general 

reluctance   to   introduce   new  network   infrastructure   “inline”,  meaning   the   infrastructure  

becomes another device for network traffic to pass through before reaching its intended 

destination. 

 For email processing, SPEAD focuses on the following file types: Windows 

Portable Executable or Common Object File Format (PE/COFF), Adobe Reader, and 

Microsoft PowerPoint, Excel, and Word files.  These file types are selected for this 

research because of their prevalence in email spear phishing attacks [Van08]. 

 For malware detection, MaTR analyzes PE/COFF files, ESCAPE analyzes the 

non-PE/COFF files (i.e., Reader, PowerPoint, Excel, and Word files), and both MaTR 

and ESCAPE analyze URLs.  MaTR is initially designed to perform batch processing of 

PE/COFF files, and it has been extended to perform malware detection on PE/COFF files 

downloaded via URLs.  ESCAPE is initially implemented to perform a web crawling 
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mission to detect memory corruption exploits against Internet Explorer, but it has been 

extended to detect memory corruption exploits against Adobe Reader and Microsoft 

PowerPoint, Excel, and Word. 

 The approach for achieving the third research goal involves selecting and 

installing commodity anti-virus products, obtaining a malicious and non-malicious file 

and URL corpus, and sending malicious and non-malicious emails to SPEAD and each of 

the selected anti-virus (A/V) products.  Because it is impractical to examine all 

commercial anti-virus products, five representative commodity anti-virus products are 

chosen based on the following criteria:   

 The  product  has  a  history  of  performing  well  according  to  Virus  Bulletin’s  

rigorous anti-virus testing [Vir10].  

 The product offers a Microsoft Exchange Server component, which 

represents a common email server for large enterprises, such as the Air 

Force. 

 The product is competitively priced, which increases its viability as a 

widely scalable solution. 

 The five selected products are as follows: AVG Internet Security Business 

Edition, BitDefender Security for Windows Servers, G Data MailSecurity, McAfee 

GroupShield for Microsoft Exchange, and Microsoft Forefront Protection 2010 for 

Exchange Server.  Each of these five products is installed on a Microsoft Server 2008 R2 

operating system running Exchange Server 2007.  Because these anti-virus products 

employ static analysis-based malware detection, the choice of underlying operating 

system  does  not  affect  the  product’s  malware  detection accuracy. 
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 Next, a corpus of malicious files and URLs is acquired from various sources, as 

outlined in Table 1.  The malicious PE/COFF, Adobe Reader, and Microsoft PowerPoint, 

Excel, and Word files are acquired primarily from two sources: the VX Heavens public 

malware database and two exceptionally large organizations who wish to remain 

anonymous.  Additional Adobe Reader malware is obtained from the Offensive 

Computing website [Off10] and directly from an industry expert in Adobe Reader 

malware analysis [Dix10].  The malware collection acquired from the two large 

organizations is labeled as Novel because   of   the   organizations’   focus   on   protecting  

against cyber espionage and their general reluctance to submit all malware to anti-virus 

companies.  Malware obtained from the public sources are labeled as Known to indicate 

that this malware is more likely to be obtained and analyzed by anti-virus companies. 

Table 1: Malicious File and URL Corpus 
Sample 
Type PE/COFF Adobe 

Reader 
Microsoft 

Excel 
Microsoft 

Word 
Microsoft 

PowerPoint URLs 

Known 2,213 112 8 13 7 1,920 
Novel 278 91 21 9 4 0 
Total 2,491 203 29 22 11 1,920 

 

 Malicious URLs are acquired from the online Malware Domain List, which 

contains almost 60,000 malicious URLs, with the most recent URLs dated 6 January 

2011 [Mal11].  Only the URLs submitted since the beginning of December 2010 are used 

in this research due to the short lifespan of malicious URLs once they are reported.  No 

URLs are collected from private sources, so the entire malicious collection is considered 

to be known bad. 
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 All malware and malicious URL samples are assumed to be malicious based on 

the open-source   community’s   vetting   of   the  Known malware and URLs as well as the 

trusted relationship with the two anonymous organizations.  Validating every malicious 

file and URL through malware analysis is outside the scope of this research. 

 In addition to the malicious corpus of files and URLs, a collection of non-

malicious files and URLs, quantified in Table 2, are acquired from a computer security-

aware  graduate  student’s  computer.    The  files  are  reviewed  by  the  student  for  the  purpose  

of accounting for their existence.  Unfamiliar files are discarded to reduce the likelihood 

of malware making its way into the non-malicious file corpus.  The URLs, reviewed in a 

similar  fashion,  are  obtained  from  the  student’s  web  browser  “bookmarks”. 

Table 2: Non-malicious File and URL Corpus 

 PE/COFF Adobe 
Reader 

Microsoft 
Excel 

Microsoft 
Word 

Microsoft 
PowerPoint URLs 

Number of 
Samples 1,787 382 100 196 170 188 

 

 Ultimately, the malicious and non-malicious file and URL corpus are inserted into 

emails and used in the experiments outlined in the experimental methodology in Figure 2.  

Experiment 1 determines the optimal configuration for SPEAD and is detailed in Section 

3.3.1.  The metrics and data collected from Experiments 2 and 3 are used to achieve the 

third  research  goal  of  comparing  SPEAD’s  and  the  A/V  products’  detection  performance.    

These two experiments are explained in Sections 3.3.2 and 3.3.3.  Finally, Section 3.3.4 

describes  the  experiment  to  achieve  the  fourth  research  goal  of  characterizing  SPEAD’s  

latency. 
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Figure 2: Experiments Used to Achieve Research Goals 

3.3.1 Experiment #1: Find an Optimal Configuration 

 The first experiment seeks to determine the optimal configuration for one of 

ESCAPE’s  configuration  parameters.    ESCAPE’s  malware  detection  is  based  on  dynamic  

analysis, and it must therefore run each file and visit each URL it is analyzing.  Chapter 

2, Section 2.3.2.3 outlines the limitations of dynamic analysis, one of them being the non-

deterministic nature of deciding how long to wait for a process to finish its execution and 

reveal its true intentions.  Because of this, wait times of 5, 10, and 20 seconds are 

evaluated for malware detection accuracy in three separate tests.  A sample set of 

malicious files and URLs are selected based on preliminary research, where ESCAPE 

detects their exploitation attempts consistently with a wait time of 30 seconds.  This 

sample  set  is  delivered  by  email  to  SPEAD,  and  the  consistency  of  ESCAPE’s  detection  
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accuracy is evaluated for each wait time to determine the optimal configuration for 

ESCAPE.  These three tests are each repeated three times to ensure the metrics are 

accurate to the 95% confidence level.   

3.3.2 Experiment #2: Determine SPEAD Detection Accuracy 

 The second experiment involves sending malicious and non-malicious emails 

through SPEAD in order to determine malware detection accuracy metrics.  The 

malicious and non-malicious emails use the entire corpus of malicious and non-malicious 

files and URLs from Tables 1 and 2.  Four tests are performed using varying emails as 

input: 1) emails with malicious URLs, 2) emails with malicious files, 3) emails with non-

malicious URLs, and 4) emails with non-malicious files.  These four tests are segregated 

to simplify the metric collection efforts, and the tests are each repeated three times to 

ensure the metrics are accurate at a 95% confidence level.  The metrics, explained in 

Section  3.8,  are  used  to  evaluate  SPEAD’s  detection  performance  in  comparison  with  the  

commodity A/V products, discussed in the next section.   Additionally, the first two 

research goals are validated by demonstrating that all the emails sent into SPEAD are 

actually received and processed by SPEAD.  The list of URLs processed by ESCAPE and 

MaTR are compared with the list of URLs from both the malicious and non-malicious 

URL corpus.  Similarly, the full collection of files processed by ESCAPE and MaTR are 

compared with the original corpus of malicious and non-malicious files. 

3.3.3 Experiment #3: Determine Commodity A/V Detection Accuracy 

 The third experiment involves sending malicious and non-malicious emails 

through each of the five commercial anti-virus products in order to determine their 
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malware detection accuracy metrics.  Just as in Experiment 2, the malicious and non-

malicious emails use the entire corpus of malicious and non-malicious files and URLs, 

and four segregated tests are performed for each A/V product.  These four tests are each 

repeated three times to ensure the metrics are accurate at a 95% confidence level.  The 

metrics are used to evaluate the commodity anti-virus  products’  detection  performance  in  

comparison  with  SPEAD’s,  thus  achieving  the  third  research  goal. 

3.3.4 Experiment #4: Characterize SPEAD Latency 

 The fourth experiment is an abbreviated version of Experiment 2, where a smaller 

collection of source emails is used.  However, the purpose of this experiment is to 

observe the latency of SPEAD, which is the time SPEAD takes to receive an email and 

make   a   determination   on   the   email’s malicious intentions.  This latency metric is 

collected for three tests using varying speeds of email traffic sent to SPEAD: 1) a 

maximum email throughput, 2) an expected email throughput, and 3) a low email 

throughput.  These email throughputs are the speeds at which emails are sent, and they 

are based on an approximated Air Force base’s   email   traffic   throughput.  These 

throughputs are further explained in Section 3.7.  The three tests are each repeated three 

times to ensure latency metrics remain precise within a 95% confidence interval.  This 

experiment  seeks  to  characterize  SPEAD’s  latency  in  the  context  of  varying  email  traffic  

loads, thus achieving the fourth goal of this research. 

3.4 System Design 

 This section delves into the details of the SPEAD system design.  It does not 

cover the details of the underlying hardware and specific software versions, which are 
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explained in Section 3.11.  This section is organized in the context of Figure 1, where 

SPEAD’s   overall   functionality   is   illustrated   in   three   phases: email collection, email 

processing, and malware detection. 

3.4.1 Email Collection 

 SPEAD’s  email   collection   flowchart   is   shown   in  Figure  3,   and   it   consists   of   an  

email server receiving a new incoming email, adding a blind carbon copy recipient to the 

list  of  recipients,  and  delivering  the  email  to  the  appropriate  recipient’s  mailbox. 

 
Figure 3:  SPEAD’s  Email  Collection  Flowchart 

 

 The email collection is performed on a Microsoft Exchange 2007 email server 

running on a Microsoft Server 2008 R2 (Release 2) operating system.  The Exchange 

server is configured with the Hub Transport server role, which is the required 

configuration to handle all mail flow inside an organization, including email delivery to 

recipients’  mailboxes   [Hub06].  A transport rule is created on this email server that is 
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applied to all emails processed by this email server.  This rule adds a recipient to the 

incoming   email   by   blind   carbon   copying   the   email   to   a   specified  user’s  mailbox.     The  

specified user account belongs to SPEAD, and this effectively copies all incoming emails 

to  SPEAD’s  mailbox.   

3.4.2 Email Processing 

SPEAD’s   email   processing flowchart is shown in Figure 4, and it consists of 

downloading emails from a server-side mailbox, parsing the emails for URLs or specific 

files, and disseminating these URLs, files, and their respective metadata to the malware 

detection component.   

 
Figure 4:  SPEAD’s  Email  Processing  Flowchart 

 

The email processing is performed by three Microsoft Windows-based programs: 

Microsoft Outlook, Visual Basic for Applications (VBA), and Visual Basic scripts 
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(VBscripts).      In   the   context   of   Figure   3,  Outlook   downloads   the   email   from  SPEAD’s  

mailbox on the Exchange server, the Outlook VBA module determines if files or URLs 

exist, and the VBscripts extract the files/URLs, inserts appropriate information into a 

database, and copies files to a file share.  The detailed explanation is as follows: 

1) Microsoft Outlook is configured with an Exchange account for its SPEAD 

mailbox on the Exchange server.  As Outlook downloads new emails from the 

Exchange server, an email rule is run against all new emails as they enter the 

Inbox,  and   this   rule’s  purpose   is   to   run  an  Outlook  VBA  module   to  process  

each email. 

2) The Outlook VBA module determines if any attachments or URLs exist 

within   the   email.      The   attachments   are   easily   discovered   using   VBA’s  

MailItem object, which represents an email message in an Inbox folder, and 

the Attachments property, which references all attachments for the 

specified MailItem object [Mal10].  URLs are discovered using a regular 

expression pattern against which all email content is compared. 

3) Upon discovering any file attachments or URLs, the VBA program spawns a 

VBscript process to handle each file and each URL found in an email.  For 

example, if five emails are received, each with one file attachment, then five 

VBscript processes are started in parallel to handle each file attachment.  The 

same is true if one email contained five attachments. 

4) The purpose of the VBscript process is to insert the appropriate file and URL 

information into a MySQL database, which serves as a catalyst to start the 
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malware detection engines.  The VBscript behaves according to its input, as 

follows: 

a. If there is a file, the VBscript determines the file type based on the 

file’s   binary   header   information.     The   script   appends   the   appropriate  

file extension to the file name and then moves the file to a remote file 

share server.  Finally, the VBscript connects to a remote MySQL 

database, where it inserts a row containing information pertinent to the 

file. 

b. If there is a URL, the VBscript connects to a remote MySQL database, 

where it inserts a row containing information pertinent to the URL. 

5) The VBscript awaits a response from the malware detection engines for the 

file or URL in question.  The malware detection engines update specific 

MySQL columns for each file or URL being analyzed.  The script tracks this 

progress by polling the database at regular intervals until the appropriate 

database columns have been updated for the file or URL row in question.  

When   the   malware   detection   engines’   responses   are   detected,   the   script  

performs a final update of its file or URL row before terminating itself.  This 

final update is the latency, or the time it took the malware detection engines to 

provide an answer.  Latency   is   calculated   using   VBscript’s   native   timer 

function, which is accurate to the second.  A timestamp is taken when an 

email is received, and another timestamp is taken immediately after a response 

is received from the malware detection engines.  The difference between these 

timestamps is the latency in seconds. 
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3.4.3 Malware Detection 

 SPEAD’s  malware  detection flowchart is shown in Figure 5, and it consists of two 

malware detection algorithms, MaTR and ESCAPE, polling a database for files and 

URLs to be analyzed and performing malware analysis on these files and URLs. 

 
Figure 5:  SPEAD’s  Malware  Detection  Flowchart 

 

 The malware detection is performed by Windows-based MaTR and ESCAPE 

clients.  In the context of Figure 4, the MaTR client polls the database and performs its 

malware detection algorithm when a PE/COFF file or a URL needs to be analyzed.  

Similarly, the ESCAPE client polls the database and performs its malware detection 

algorithm when a non-PE/COFF file or a URL needs to be analyzed.  The database is 

updated  with  the  results  of  MaTR’s  and/or  ESCAPE’s  analysis.    The  details  of  MaTR’s  

and  ESCAPE’s  roles  in  malware  detection  are  given  in  the  following sections. 
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3.4.3.1 MaTR’s  Role  in  Malware  Detection 

 The MaTR algorithm is implemented as a command line utility running on a 

Windows operating system, and it is designed to receive PE/COFF files as input.  This 

Windows client also runs VBscripts to handle the file/URL input from the database as 

well as the analysis results from MaTR, as follows: 

1) Multiple MaTR processes are running in parallel on the Windows client to 

simultaneously analyze PE/COFF files from email attachments and PE/COFF 

files downloaded via URLs.  The results of analysis are recorded in a local log 

file. 

2) Multiple VBscript processes are running in parallel on the Windows client to 

simultaneously handle PE/COFF files and URLs from the remote MySQL 

database.  If a PE/COFF file is being analyzed, the file is first copied to the 

local hard drive from the remote file share.  If a URL is being analyzed, a file 

is downloaded from the URL and its file type is determined.  Non-PE/COFF 

files are ignored.  When MaTR finishes its analysis, these scripts read the 

appropriate log file and update the MySQL database with the malware 

detection results for the appropriate file or URL.   

3.4.3.2 ESCAPE’s  Role  in  Malware  Detection 

 ESCAPE is implemented as a 32 bit Windows driver installed on four unique 

Windows clients, as shown in Table 3.  These ESCAPE clients all have Adobe Reader, 

Internet Explorer, and Microsoft Office installed in order to analyze the four non-
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PE/COFF file types.  The justification for selecting these specific system parameters is 

explained in Section 3.9. 

Table 3: Four ESCAPE Client Configurations 

Windows 
Version 

Adobe 
Reader 
Version 

Internet 
Explorer 
Version 

Microsoft 
Office 

Version 
XP SP2 8.0 7.0 2007 

Vista (no SP) 8.0 7.0 2007 
Vista SP1 9.0 8.0 2007 

Windows 7 9.0 8.0 2007 
 

 Furthermore, four copies exist for each of these four configurations.  These 16 

ESCAPE clients allow for parallel analysis of files and URLs, which is needed to speed 

up the inherently slow nature of dynamic malware analysis.  The number of ESCAPE 

clients can be extended arbitrarily, but 16 clients are selected to adequately demonstrate 

scalability of the ESCAPE clients while staying within the limits of the underlying 

hardware described in Section 3.11.  These ESCAPE clients run Python scripts to handle 

the file/URL input from the database as well as the response from ESCAPE, as follows: 

1) Eight ESCAPE clients are running Python scripts to poll the remote MySQL 

database for non-PE/COFF files to be analyzed.  If such a file is ready for 

analysis, the Python script copies the file from the remote file share to the 

local disk before opening the file.  ESCAPE monitors the execution of the 

parent application and records its analysis results in a log file.  The script 

reads the log file and updates the MySQL database with the malware detection 

results for the appropriate file. 

2) Eight ESCAPE clients are running Python scripts to poll the remote MySQL 

database for URLs to be analyzed.  If a URL is ready for analysis, the Python 
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script launches Internet Explorer to visit the web page.  ESCAPE monitors the 

execution of Internet Explorer and records its analysis results in a log file.  

The script reads the log file and updates the MySQL database with the 

malware detection results for the appropriate URL. 

 An additional feature of ESCAPE that is not evaluated in this research effort is its 

ability   to   capture   a   memory   dump   of   the   offending   process’s   address   space   when 

malicious code is detected.  This memory dump is stored on the file share for further 

analysis as needed. 

3.5 System boundaries  

 The System Under Test (SUT) is the SPEar phishing Attack Detection (SPEAD) 

system shown in Figure 6.  SPEAD consists of the following components:  email 

collection, email processing, file sharing, malware detection database, and the malware 

detection engine.  The Component Under Test (CUT) is the malware detection engine, 

which consists of two subcomponents: ESCAPE and MaTR.    

 
Figure 6: Spear Phishing Attack Detection System 
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 Workload parameters include emails with malicious and non-malicious file 

attachments, emails with malicious and non-malicious URLs, and the email throughput, 

which is measured in number of attachments per minute and number of URLs per minute.  

The workload parameters are discussed in more detail in Section 3.7.  The system 

parameters consist of the software used by the email collection, email processing, file 

sharing,   and  malware   detection   database   components.      It   also   includes  ESCAPE’s   and  

MaTR’s  configurations.     The system parameters are discussed in more detail in Section 

3.9.  The metrics of the system consist of the true positive malware detection rate, the 

false positive malware detection rate, and the latency in determining if an email is 

malicious or not.  These metrics are clarified in Section 3.8. 

 Because Experiment 3 does not use SPEAD, only certain portions of the SUT in 

Figure 6 apply, such as the workload and the metrics.  Specifically, the true positive and 

false positive detection rates, and not the latency, are collected for Experiment 3. 

3.6 System Services 

SPEAD provides a malicious email detection service for email servers on local 

area network gateways to the Internet.  The service is successful if the system identifies 

an email containing a malicious file attachment or URL within an hour to allow for near 

real time mitigation.  SPEAD fails if it incorrectly identifies a malicious email as benign 

or  a  benign  email  as  malicious.    In  addition,  failure  occurs  if  SPEAD’s  latency  is  greater  

than one hour. 
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3.7 Workload 

 The workload submitted to SPEAD consists of emails sent to an email server that 

vary in three ways: 1) the presence of a file attachment, 2) the presence of a URL, and 3) 

the speed at which the emails are sent.  Every email used in the four experiments contains 

exactly one file attachment or one URL within the email body.  These files and URLs are 

pulled from the malicious and non-malicious file and URL corpus.   

 The speeds at which the emails are sent (i.e., email throughput), are varied only 

for Experiment 4.  Experiments 1, 2, and 3 use the maximum email throughput offered by 

this experimental setup in order to achieve those experiments with efficient use of time.  

Email throughput is varied between low, expected, and maximum throughput for 

Experiment 4 by changing the email sending function on the email sending system.  The 

details of the email sending system are provided in Section 3.11.    

 The low and expected email throughputs are based on the email statistics from 

Table 4.  The statistics are a summary of a one-week observational study of a large Air 

Force   base’s   incoming and outgoing emails.  The expected email throughput is an 

estimate of the number of emails with attachments or URLs that SPEAD would be 

expected to process at a sustained rate at a large Air Force base.  This expected 

throughput is calculated using the one-day maximums over an 8-hour period to 

approximate peak email usage during a typical work day.  The expected email throughput 

is calculated to be approximately 53 attachments and 1,111 URLs per minute.  Because 

this expected throughput is an estimate, round numbers are used for clarity and to ease 

the configuration of the email sending system.  Thus, this experiment uses an expected 

email throughput of 60 attachments and 1,000 URLs per minute. 



 

56 

 

Table 4: Email Statistics from One-week Observation of an Air Force Base 
 Attachments URLs 

7-Day Total 132,656 2,873,076 
1-Day Maximum 25,288 533,363 

 

 The low email throughput is based on the overall weekly average, and it is a 

conservative estimate of the sustained email throughput for non-peak usage.  The low 

email throughput is calculated to be approximately 11 attachments and 249 URLs per 

minute.  Again, more convenient numbers are chosen to aid in configuring the email 

sending system.  This experiment uses a low throughput of 12 attachments and 240 URLs 

per minute. 

 The maximum throughput is based on preliminary testing of the email sending 

system’s   maximum   email   throughput.      This   maximum   observed throughput is 

approximately 232 attachments and 1,422 URLs per minute.  This experiment uses an 

estimated maximum throughput of 300 attachments and 1,500 URLs per minute. 

3.8 Performance Metrics 

 System performance is measured in terms of malicious email detection accuracy 

rates as well as the latency introduced by SPEAD.  The following performance metrics 

are defined: 

 True Positive Rate:  The percentage of malicious emails identified as malicious by 

SPEAD.      This  metric   is   measured   by   observing   SPEAD’s   response   to   each  malicious  

email.  If every malicious email is identified as such, the true positive rate is 100%.  The 

false negative rate, which is the percentage of malicious emails identified as legitimate, is 

deduced from the true positive rate since the sum of the true positive and false negative 
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rates is 100%.  The true positive rate metric is also measured for the five commodity anti-

virus products. 

 False Positive Rate:  The percentage of non-malicious emails identified as 

malicious by  SPEAD.    This  metric  is  measured  by  observing  SPEAD’s  response  to  each  

non-malicious email.  If every non-malicious email is detected as malicious, the false 

positive rate is 100%.  The true negative rate, which is the percentage of non-malicious 

emails identified as legitimate, is deduced from the false positive rate since the sum of the 

false positive and true negative rates is 100%.  The false positive metric is also measured 

for the five commodity anti-virus products. 

 Latency:  The amount of time it takes an email to propagate through SPEAD.  

Latency is measured by subtracting the time of the CUT decision determination from the 

time when SPEAD received the incoming email at the email collector component, as 

discussed in Section 3.4.2.  The latency metric characterizes the maximum and average 

time   delay   in   SPEAD’s   determination   of   an   email’s   malicious   intent.      This   metric  

determines the success of SPEAD at meeting the secondary experimental goal of 

providing a near real time response. 

3.9 System Parameters 

 System parameters are the properties of SPEAD which, when changed, affect the 

performance of the system.  Figure 6 lists the system parameters, which are defined as 

follows: 

 Email Collection Software:  The email collection component of SPEAD uses the 

Microsoft Exchange 2007 email server running on a Microsoft Server 2008 R2 
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(Release  2)  operating  system.    Server  2008  R2  is  Microsoft’s  newest  server  operating 

system.  Exchange 2007 is selected because of its common use in the Air Force.  The 

latest version, Exchange 2010, is considered, but a license cannot be obtained in the 

timeframe of this research.  Regardless, both Exchange 2007 and 2010 have the Hub 

Transport Server Role, which is used to set up a Transport Rule to blind carbon copy 

the SPEAD mailbox on the server.  Other types of email servers are not considered 

because of the Air Force-focused nature of this experimental setup.  Therefore, this 

system parameter is fixed.   

 Email Processing Software:  The email processing component of SPEAD uses 

Microsoft Outlook, VBA programs, and VBscript.  Microsoft Outlook is selected as 

the email client for SPEAD because it is ubiquitous across the Air Force network as 

the email client of choice, and it is assumed that spear phishing attacks against the Air 

Force are designed to be successful with Outlook as the email client.  VBA and 

VBscripts are selected because of their inherent interoperability with Windows 

applications such as Outlook.  This system parameter is fixed, but the correctness of 

the VBA and VBscript code is validated as a part of Experiment 2 because this is 

original code created for SPEAD. 

 Malware Detection Database Software:  The malware detection database component 

of SPEAD uses the MySQL database.  MySQL is selected because of its proven 

capabilities for high availability, high performance, scalability, flexibility, and robust 

transactional support [Top10].  MySQL uses the InnoDB storage engine for 

transactional support, which allows for unlimited row-level locking [The10].  This 

http://dev.mysql.com/doc/refman/5.0/en/innodb-storage-engine.html
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storage engine is crucial for a multi-user  concurrency  environment  such  as  SPEAD’s  

environment.  This system parameter is fixed.   

 File Sharing Software:  The file sharing component of SPEAD uses the Samba 

service  installed  on  the  same  Linux  platform  as  SPEAD’s  malware  detection  database  

component.  Samba is an open source software suite that provides file sharing 

services to SMB (Server Message Block) clients [Wha10].  SMB is the service 

Windows clients use for file sharing.  Because the email processing and malware 

detection engine components of SPEAD use Windows, Samba is selected.  This 

system parameter is fixed. 

 MaTR Configuration:  The CUT uses MaTR as half of its malware detection engine.  

MaTR’s   malware   detection   algorithm   uses   a   decision   tree   classifier   model   for  

malware type classification [DRP+10].  While a different classifier certainly affects 

the malware detection accuracy, varying this parameter is outside the scope of this 

thesis.  The MaTR prototype is used for this SPEAD prototype.  Furthermore, 

because MaTR analyzes 32 bit Windows Portable Executable and Common Object 

File Format (PE/COFF) files, it needs a Windows operating system.  Thus, the MaTR 

command line utility runs on the Windows 7 operating system.  VBscripts are used as 

the communication conduit between the MaTR utility and the malware detection 

database because VBscripts provide convenient functionality with Windows-based 

applications.  Thus, this system parameter is fixed. 

 ESCAPE Configuration:  The CUT uses ESCAPE as half of its malware detection 

engine.      ESCAPE’s   malware   detection   algorithm   is   based   on   dynamic   analysis.    

Section 3.3.1 describes Experiment 1 and its purpose, which is to establish a 



 

60 

 

sufficient wait time for a process to finish its execution and reveal its true intentions.  

Section 4.1 discusses the results of Experiment 1.  After Experiment 1, this portion of 

the ESCAPE Configuration system parameter is fixed and used for Experiments 2 and 

4. 

 Table 3 in Section 3.4.3.2 outlines the four configurations used by the ESCAPE 

clients.  In order to understand why these specific operating system and application 

versions are selected, it is important to remember that ESCAPE is modified and tuned for 

each operating system and each application version it protects.  Thus, it only detects 

memory corruption exploits that would have been successful against the operating system 

and application version ESCAPE is protecting.  The selection of the specific operating 

systems and application versions in Table 3 are a result of a balanced look at two 

opposing thought processes: 

1) When SPEAD operates on a real-world network, the latest operating system 

and application versions are likely to be employed.  To emulate this reality, 

the latest operating system and application versions must be considered for 

this research.   

2) Because new exploits against the latest operating system (O/S) and application 

versions are inherently difficult to obtain due to the fact that they are unknown 

until they are known, older operating systems and application versions must 

be   considered   for   the   sake   of   experimentation   and   evaluation   of   SPEAD’s  

effectiveness in a research environment.  To this same end, multiple O/S and 

application versions must be considered to widen the detection aperture for 

ESCAPE. 
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 The latter thought process drives more of the reasoning behind the selection of the 

four specific ESCAPE client configurations.  The current Adobe Reader version is not 

tested due to the difficulty in obtaining exploits against it.  Thus, version 8.0 and 9.0 are 

selected.  Table 3 also shows that Microsoft Windows XP, Vista, and 7 are selected 

because of their current and future use in the Air Force [Ken10].  Internet Explorer 7.0 

and 8.0 and Microsoft Office 2007 are selected because of their ubiquitous use on the 

selected operating systems.  All selected operating systems and applications, with the 

exception of XP and one of the Vista configurations, are unpatched to allow for as many 

application vulnerabilities as possible for the   sake   of   evaluating   SPEAD’s  

implementation of ESCAPE against obtainable malware.  Windows XP requires Service 

Pack 2 (SP2) to run Internet Explorer 7.0, and Vista requires SP1 to run Internet Explorer 

8.0. 

3.10 Factors 

 This section describes the factors that are varied during the experiments.  Table 5 

shows these factors and their associated levels.  These factors are selected from the 

SUT’s  workload  and  system  parameters.    Each  of  the  four  experiments  uses  a  portion  of  

these factors and their levels. 

Table 5: Factor Levels for the Experiments 
Factor Level 1 Level 2 Level 3 

Emails with Attachments Malicious Non-malicious  
Emails with URLs Malicious Non-malicious  
Email Throughput Maximum Expected Low 

ESCAPE Configuration Wait 5 sec Wait 10 sec Wait 20 sec 
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 Experiment   1   focuses   on   ESCAPE’s   configuration.      Thus,   all   factors   are  

controlled at the Level 1 factor level with the exception of the ESCAPE Configuration 

system parameter, where all three factor levels are used.  Malicious attachments and 

URLs  are  used  at  a  maximum  email  throughput  to  measure  ESCAPE’s  malware  detection  

configuration in a time-efficient manner. 

 Experiments  2  and  3  focus  on  SPEAD’s  and  the  commercial  anti-virus  products’  

malware detection metrics.  Thus, emails with attachments and emails with URLs are 

varied according to their factor levels.  The email throughput factor is controlled at the 

maximum level to complete the experiments in a time-efficient manner.  Experiment 2 

also uses a controlled ESCAPE Configuration factor level that is determined from 

Experiment 1.  Experiment 3 does not use the ESCAPE Configuration factor because 

SPEAD is not a part of this experiment. 

 Experiment 4 focuses on the latency metric of SPEAD across varying email 

throughputs.  A sample subset of malicious and non-malicious files and URLs is 

randomly selected for each of the three email throughput latency tests.  The selection of 

this sample set is clarified in Section 4.3.  Thus, only the email throughput factor is 

varied.  This experiment uses a controlled ESCAPE Configuration factor level that is 

determined from Experiment 1. 

3.11 Evaluation Technique  

 The experiments use a direct measurement-based evaluation technique to 

determine   SPEAD’s   performance   by   recording   measurements   while the system is 

operating.  There are many reasons to pursue this evaluation technique over simulation-
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based or analytic modeling-based techniques.  Namely, the MaTR and ESCAPE 

frameworks are already established and can be integrated into this new system.  Also, all 

network activity takes place in a controlled laboratory environment.  Because the 

environment is controlled, the accuracy afforded by this measurement-based evaluation is 

high and more realistic than a simulation-based or analytic modeling-based evaluation.  

Lastly, the higher cost typically associated with measurement-based evaluations is 

fulfilled by sponsor funding for this research effort.   

 The experimental setup is illustrated in Figure 7.  It shows that the experiments 

are initiated from an email sender system.  The email sending system crafts and sends one 

email at a time to an arbitrary email account on the Microsoft Exchange server.  Since 

this email server is the email collection component for SPEAD, all emails are copied to 

SPEAD’s mailbox on the server.  This is required for Experiments 1, 2, and 4.   

 
Figure 7: Experimental Setup 
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 The email server also doubles as the server upon which the commercial anti-virus 

products are installed for Experiment 3.  Virtual machine snapshots are used to 

differentiate between operating configurations for this email server, and additional details 

are given in the rest of this section. 

 The experiment environment consists of a collection of hardware and software 

dedicated to this research effort.  The experimental setup consists of the following 

components: 

 Two Dell PowerEdge R610 servers with 64GB of memory, dual six-core Intel Xeon 

processors at 2.93GHz, four Ethernet ports, and 1TB of storage each.  These servers 

run  all  of  SPEAD’s  software  for  the  experiments  via  virtual  machines  running  on  top  

of the ESX 4.1 operating system.  These servers are referenced below as ESX Server 

1 and ESX Server 2 for clarity. 

 One email sending system running on an Ubuntu Linux 9.10 (64 bit) virtual machine 

image on ESX Server 1.  This image has Postfix version 2.6.5 installed, which is an 

open source email server package for Linux.  Mutt version 1.5.20 is installed as the 

email client, which is responsible for sending the email workload for the experiments.  

This image is configured with four virtual processors, 16GB of RAM, and one virtual 

Ethernet adapter. 

 One email collection system running on Microsoft Server 2008 R2 with Exchange 

Server 2007 SP1 loaded as a virtual machine image on ESX Server 1.  This image has 

six snapshots.  One snapshot is saved as the baseline email server that SPEAD uses 

for its email collection component.  Five snapshots are saved for each of the 

following five installed anti-virus products: AVG Internet Security Business Edition 
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9.0, BitDefender Security for Windows Servers version 3.0, G Data MailSecurity, 

McAfee GroupShield version 7.0.1 for Microsoft Exchange, and Microsoft Forefront 

Protection 2010 for Exchange Server.  This image is configured with two virtual 

processors, 4GB of RAM, and one virtual Ethernet adapter. 

 One email processing system running on a Windows 7 (64 bit) virtual machine image 

on ESX Server 1.  This image has Microsoft Office 2007 installed, the MySQL 

Connector/ODBC 5.1.8 driver (Open Database Connectivity), and the following open 

source   command   line   utilities:   Fourmilab’s   MD5   version   2.2   program   and   the  

GnuWin32 File version 5.03 program.  This system has the default references for the 

Outlook Visual Basic for Applications (VBA) editor in addition to the following: 

ActiveX Data Objects 6.0 Library and VBScript Regular Expressions 5.5.  This 

image is configured with four virtual processors, 16GB of RAM, and one virtual 

Ethernet adapter. 

 One malware detection database running on an Ubuntu Linux Server 10.04.1 (64 bit) 

virtual machine image on ESX Server 1.  This image has MySQL 5.1.41 and Samba 

3.4.7 services installed.  This image is configured with four virtual processors, 30GB 

of RAM, and one virtual Ethernet adapter. 

 16 ESCAPE clients running various versions of Windows virtual machine images on 

ESX Server 2.  These images are the four clones of each of the four ESCAPE 

configurations outlined in Table 3.  The XP images are configured with one processor 

and 1GB of RAM while the others have 2GB of RAM.  All 16 images have PyWin32 

version 2.6 installed, which is a Python Win32 extension for Windows.  Each image 

has one virtual Ethernet adapter connected to the Internet. 



 

66 

 

 One MaTR client running on a Windows 7 (64 bit) virtual machine image on ESX 

Server 2.  This image uses two virtual processors, 4GB of RAM, and one virtual 

Ethernet adapter. 

3.12 Experimental Design 

 The four experiments each use a partial-factorial design with factors and levels 

selected from Table 5.  There are a total of 90 tests required to accomplish all four 

experiments.  These tests are calculated as follows: 

 Experiment 1 3 ESCAPE configurations * 3 repetitions = 9 

 Experiment 2 2 email types * 2 levels * 3 repetitions = 12 

 Experiment 3 2 email types * 2 levels * 5 A/V products * 3 repetitions = 60 

 Experiment 4 3 email throughput levels * 3 repetitions = 9 

 Each experiment is replicated three times to confirm the resulting metrics at a 

95% confidence level. 

3.13 Methodology Summary 

 This chapter discusses the methodology used to evaluate the performance of an 

email spear phishing detection system.  The four goals of this research or introduced, and 

the approach   and   experiments   to   accomplish   these   goals   are   described.      The   system’s  

design, boundaries, services, workload, and parameters are provided in detail.  

Performance is evaluated using a measurement-based technique and is based on three 

performance metrics: true positive rate, false negative rate, and latency.  A partial-

factorial experimental design is replicated three times for each experiment for a total of 
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90 tests.  Analysis of the results of these tests is used to evaluate the impact of varying 

the workload and system parameters on overall system performance. 
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IV. Results and Analysis 
 

his chapter presents and analyzes the experimental results from the four 

experiments.  First, the results of Experiment 1 are explained in Section 4.1.  

Next, Section 4.2 provides an analysis of the metrics collected from Experiments 2 and 3 

to characterize SPEAD’s   effectiveness.      Section   4.3   quantifies   SPEAD’s   latency  

performance using Experiment 4 results.  Finally, the chapter is concluded and 

summarized in Section 4.4. 

4.1 Results and Analysis of Experiment 1 

 This  experiment’s  purpose   is   to  vary  ESCAPE’s  configuration across three tests 

to determine which configuration is optimal for accurate malware detection and speed of 

analysis in terms of only the wait time factor.  The time ESCAPE waits for a process to 

execute or a web site to load is varied between 5, 10, and 20 seconds.  A sample set of 15 

malicious files and 10 URLs is selected based on preliminary tests, which show 

consistent ESCAPE responses for these files and URLs.  These files and URLs are sent to 

SPEAD from the email sending system at the maximum throughput.  It is important to 

note that many malicious web sites do not attempt to exploit the same IP (Internet 

Protocol) address multiple times in a short timeframe to keep automated malware 

collection devices from collecting their malware.  Because of this possibility, this test is 

repeated two more times on different days to reduce the likelihood of skewed results. 

 The file results of this experiment are shown in Table 6.  The analysis for 

ESCAPE’s  file  wait  time  configuration  is  straightforward.  With the exception of the 5-

second wait time in Test 1, all other tests and configurations correctly detect all 15 files 

T 
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as malicious.  Because the 20-second wait time offers no apparent benefit, the 10-second 

wait  time  is  chosen  for  ESCAPE’s  file  wait time for SPEAD. 

Table 6: Results of File Tests for ESCAPE Wait Times 

 

 The URL results for this experiment are illustrated in Figure 8.  The 10-second 

wait time shows the outright best or tied for best performance in all three tests, with a 

maximum of seven out of the ten malicious URLs detected correctly.  It is noteworthy 

that the 5-second wait time detected one more malicious URL than the 20-second wait 

time in Test 1, which is counterintuitive.  This may be a manifestation of a few of the 

web sites withholding their exploits after seeing the same IP address twice in a short 

period. 

 
Figure 8: Results of URL Tests for ESCAPE Wait Times 

 

Wait Time Test 1 Test 2 Test 3
5 sec 12 15 15
10 sec 15 15 15
20 sec 15 15 15

Files Detected as Malicious



 

70 

 

 Because  of  the  results  of  Experiment  1,  ESCAPE’s  wait  time  for  files and URLs 

is configured for 10 seconds.  This SPEAD system parameter is fixed for the remaining 

experiments, and it represents an optimal wait time configuration only.  Other 

fundamental  aspects  of  ESCAPE’s  execution  environment  are  not  evaluated  for  optimal 

configuration, and this is the subject of future work. 

4.2 Results and Analysis of Experiments 2 and 3 

 This   section   first   discusses   the   validation   of   SPEAD’s   design.      Then,   the   file-

based detection metrics are analyzed.  This section is concluded with an analysis of the 

URL detection metrics. 

4.2.1 Validation  of  SPEAD’s  Design 

 As discussed in Section 3.3.2, the files and URLs processed by MaTR and 

ESCAPE during Experiment 2 are compared with the original files and URLs from the 

corpus.  Figure 9 shows a collage of screenshots illustrating the validation technique used 

for the files.  SPEAD stores all of these files on the file share on the malware detection 

database for processing by ESCAPE and MaTR.  The Linux program md5deep is used to 

calculate the MD5 (Message-Digest Algorithm 5) hashes of the file corpus on the email 

sending system.  These unique hashes are compared to the MD5 hashes of all the 

analyzed files stored on the file share.  Figure 9 also shows two red underlined Linux 

commands.  The -x <comparison file> option for md5deep tells the program to 

compare every newly calculated hash to the list of hashes in the comparison file and 

output any non-matches.  This command results in no non-matches.  Conversely, the –m 

<comparison file> option tells md5deep to output all matches, of which there are 
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exactly 5,391.  This is the total number of files in the file corpus.  The red rectangles in 

Figure 9 verify that all 5,391 files are processed from the email sending system to the 

email processing system and, ultimately, to the malware detection database. 

 
Figure 9: Collage of Screenshots Showing SPEAD File Processing Validation 

 

 This MD5 calculation and comparison is made after each of the three iterations of 

Experiment 2, and the MD5 hash values for the files match every time.  This is 

conclusive evidence that SPEAD correctly recognizes and parses file attachments from 

emails, validating this portion of the original code written for the email processing 

component of SPEAD. 

 The URLs are validated in a similar fashion, but Figure 10 shows a URL that 

SPEAD processed that it is not intended to analyze.  The MD5 hash calculated for the list 

of all malicious and non-malicious URLs from the URL corpus do not match the hash of 

the list of URLs in the database.  Thus, the application Notepad++, a source code editor 

and Notepad replacement, is used to perform a visual comparison of the list of URLs sent 

and the list in the database.  There is only one discrepancy, shown in Figure 10 with the 
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red minus sign next to it.  This URL is from the collection of clean URLs, which has been 

exported into a file from   a   graduate   student’s   web   browser   bookmarks.      The   email  

sending system uses this file of exported bookmarks in its original format (i.e., URLs are 

tagged with metadata).  Because of this, the following bookmark is processed: 

<DT><A HREF=“[intended  URL]”  ADD_DATE="1292535624"  
ICON="data:image/png;base64,iV <snipped> Ff" 
>About.com: http://www.state.ma.us/dor</A> 

 
The yellow highlight shows a text description for this bookmark that contains a URL 

within it. 

 
Figure 10: Screenshot of URL Mismatch 

 

 This URL is removed from the list in order to perform another MD5 hash 

comparison, shown in Figure 11.  The hashes for the two lists match, which validate that 

only one URL is mismatched.  This URL mismatch appears to be inconsequential 

considering   it   is   SPEAD’s   purpose   to   recognize  web   site   links  within   emails.      Further  
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testing with real-world emails may reveal  flaws  in  SPEAD’s  URL  processing  algorithm,  

if any.  This is discussed as an area for future research in Section 5.3. 

 
Figure 11:  Screenshot  Showing  SPEAD’s  URL  Processing  Validation 

 The results of this experiment provide convincing evidence that SPEAD correctly 

recognizes and parses file attachments and URLs from emails, validating the original 

code written for the email processing component of SPEAD. 

4.2.2 Comparing File Detection Metrics 

 This section contains the true and false positive detection metrics and the analysis 

of these metrics for SPEAD and the five commodity anti-virus (A/V) products.  The 

overall file detection metrics for SPEAD and the five A/V products are shown in Table 7.  

These metrics are the mean detection accuracies across three tests for each platform.  The 

green highlights indicate which system had the highest true positive detection rate for 

each file type.  The yellow highlights indicate which systems detected false positives, 

meaning the systems label a file as malicious when it is not malicious.  Section 4.2.2.1 

discusses the PE/COFF metrics, followed by Sections 4.2.2.2 – 4.2.2.5, which analyze the 

non-PE/COFF metrics. 
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Table 7: Comparison of Overall Detection Metrics for Files 

 

 The detection metrics are further organized into 2x2 tables of counts of total 

malware detected and not detected in each test, as shown in the example in Table 8.  This 

allows for Fisher’s Exact Test (FET) to be used to calculate p-values for the difference in 

sample proportions.  FET is  the  “gold  standard”  of testing tools for 2x2 tables because of 

its calculation of a p-value that requires no approximation [RaS02].  Furthermore, FET is 

appropriate for any sample size and for the test of equal population odds.  Both of these 

facts are relevant to the analysis in this chapter due to the relatively small sample sizes of 

Microsoft Excel, PowerPoint, and Word malware as well as the use of the odds ratio to 

compare novel and known malware detection rates.  The R statistical application [Rpr11] 

is used to calculate the FET p-values for this thesis chapter. 

Table 8: Example 2x2 Table for SPEAD Detection Metrics 

 

 The p-value of any particular test is the measure of the credibility of the null 

hypothesis, which is the hypothesis that the means of the data being tested are equal.  If 

True + 
Rate        
(%)

False + 
Rate        
(%)

True + 
Rate        
(%)

False + 
Rate        
(%)

True + 
Rate        
(%)

False + 
Rate        
(%)

True + 
Rate        
(%)

False + 
Rate        
(%)

True + 
Rate        
(%)

False + 
Rate        
(%)

SPEAD 99.68 0.39 68.35 0.96 67.82 0.67 13.64 0.00 0.00 0.00
Forefront 95.06 0.36 87.19 0.00 100.00 1.00 95.45 0.00 81.82 0.00

G Data 94.82 0.00 75.37 0.00 51.72 0.00 81.82 0.00 81.82 0.00
BitDefender 93.06 0.00 84.73 0.00 17.24 0.00 31.82 0.00 81.82 0.00

McAfee 90.29 0.00 42.89 0.00 79.31 0.00 68.18 0.00 54.55 0.00
AVG 93.59 0.00 65.02 0.00 20.69 0.00 45.45 0.00 54.55 0.00

Excel Word PowerPoint

System

PE/COFF Reader

Malware Detected Not

Known 2,210 3
Novel 273 5

SPEAD Detecting PE/COFF Malware
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two data sets are truly equal, the null hypothesis is confirmed.  The p-value is the 

probability that random sampling of the data population distribution could achieve the 

same result reported in the test.  Thus, Figure 12 is a guide for interpreting p-values.  A 

very small p-value, such as 0.005, is usually an indicator that there is strong evidence for 

the null hypothesis being incorrect.  This means the probability that random sampling 

could achieve the same result is very small, and it is convincing evidence the test result is 

not  due  to  chance  (i.e.,  the  two  data  sets’  means  are  different).  FET uses a two-sided p-

value, which allows for the difference in means to be positive or negative.  Thus, all p-

values reported in this chapter for tests of equal population odds are two-sided. 

 
Figure 12: p-Value Interpretation Scale [RaS02] 

4.2.2.1 PE/COFF Malware Detection Results  

 As shown in Table 7, SPEAD’s  PE/COFF   true  positive  detection   rate is clearly 

the highest,   thanks   to   MaTR’s   remarkable   PE/COFF   malware   detection   algorithm.  

Because Table 7 reports the mean detection accuracies across three tests, it is important 

to determine if SPEAD’s  PE/COFF detection accuracy is truly different from the other 

platforms’.      Tukey’s   HSD   (Honest   Significant   Difference)   Method   is   used   to   test   all 

possible pairwise differences in means to determine if at least one of these differences is 

significantly different from zero at a 95% confidence level.  Figure 13 illustrates this 
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comparison.  The six systems are labeled 1 through 6, with SPEAD being 1.  Visual 

inspection,   highlighted   by   the   red   box,   shows   that   SPEAD’s  mean   detection   accuracy  

compared   to   the   others’   is   significantly   different   from   zero (i.e., dashed vertical line).  

The p-values  for  each  of  SPEAD’s  comparisons  is  too  small  to  be  reported by R, which is 

conclusive   evidence   that   SPEAD’s  higher-performing PE/COFF true positive detection 

accuracy is not the same (i.e., it is different) at a statistically significant level.   

 
Figure 13: Comparison of Differences in Means of PE/COFF Detection Accuracies for 

SPEAD versus Others 
 

 In terms of the false positive metric, most of the systems do not have any trouble 

correctly labeling the non-malicious files across all files types in the corpus.  Only 

SPEAD and Forefront record any false positives.  This is understandable for malware 

detection algorithms that attain significantly high true positive rates.  It appears that 

SPEAD’s   and   Forefront’s   detection   algorithms   seek   to   encompass   more   generic  
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heuristics of malicious PE/COFF files, as indicated by their achieving the highest true 

positive rates for PE/COFF files.   

 Naturally, there is value in quantifying the significance of the difference between 

SPEAD’s   and   the   others’   true   positive   detection   rates.      Thus, a comparison of the 

statistical odds of detection between SPEAD and the next best performer, Forefront, 

reveals that  SPEAD’s  performance  may  be  preferable.     The  odds   for  SPEAD  correctly  

detecting a malicious PE/COFF file is 310.4:1.  This is calculated by dividing the number 

of malicious PE/COFF files not detected (8) by the number correctly detected (2,483).  

Forefront’s  odds  for  correctly  detecting  a  malicious  PE/COFF  file  are  19.3:1.    Thus,  the  

odds of SPEAD correctly detecting a malicious PE/COFF file are 16.1 times as large as 

the odds for Forefront correctly making the same determination, with a 95% confidence 

interval of 7.87   to  33.03.     Also,  Fisher’s  Exact  Test   (FET) for the difference in sample 

proportions results in a two-sided p-value less than 2.2e-16, providing strong evidence 

that  SPEAD’s  and  Forefront’s true positive detection proportions are different (i.e., the 

ratio is not 1:1) at a statistically significant level.   

 The same odds ratio comparison is used to determine that SPEAD is 1.2 times 

more likely to detect a non-malicious file as malicious when compared to Forefront, with 

a confidence interval of 0.39 to 3.48 and a FET p-value of 1.  This very high p-value 

indicates a high probability that the difference between SPEAD’s  and  Forefront’s   false 

positive rates can be attributable to chance.  Therefore, the evidence strongly supports the 

notion   that  SPEAD’s  overall  PE/COFF  detection  performance  may  be  preferable  when  

compared  to  Forefront’s when a similar malware population is evaluated. 
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 Even though SPEAD performs PE/COFF malware detection well, the overall 

detection metrics from Table 7 do  not  bode  well  for  SPEAD’s  direct  comparison  against  

the five commodity A/V products.  A cursory visual inspection of these metrics show that 

SPEAD ranks fourth, third, sixth, and sixth out of the six systems in terms of true positive 

rates, respectively, for Adobe Reader, Microsoft Excel, Word, and PowerPoint files.  This 

cursory analysis leads to the conclusion that SPEAD may underperform if it is used as an 

anti-virus replacement for email servers. 

 However, the focus of this research is on spear phishing detection, which greatly 

depends  on  the  system’s  ability  to  detect  novel  malware.    Because  of  this  research  focus,  

additional analysis is needed in terms of novel malware detection versus known malware 

detection. 

 Table 9 summarizes the PE/COFF malware detection metrics in the context of 

novel and known malware.  As discussed in Chapter 3, Section 3.2, the term novel 

malware refers to malware or malicious code that is unknown to the general public and 

cannot be found within public forums, databases, or commercial products.  The malicious 

file corpus has been segregated according to Table 1. 

Table 9: PE/COFF Detection Results for Novel and Known Malware 

 

Novel 
Detection 
Accuracy 

(%)

Known 
Detection 
Accuracy 

(%)

False 
Positive 

Rate        
(%)

SPEAD 98.20 99.86 0.39
Forefront 56.47 99.91 0.36
G Data 53.96 99.95 0.00
BitDefender 42.09 99.46 0.00
McAfee 27.70 98.15 0.00
AVG 46.04 99.56 0.00

PE/COFF

System
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 The odds of SPEAD detecting novel PE/COFF malware is 42.1 times as large as 

the odds of Forefront, the next best performer, detecting the same.  This is with a 95% 

confidence interval of 16.84 to 105.14 and a FET two-sided p-value less than 2.2e-16, 

which is conclusive evidence to support this large discrepancy in odds.  The relatively 

wide range of the confidence interval for the odds ratio is the result of a large standard 

error.  The standard error for an odds ratio is calculated by taking the square root of the 

sum of the reciprocals of the four cell counts in a 2x2 table [RaS02], like that shown in 

Table 8.  SPEAD detects 273 of the 278 novel PE/COFF malware samples, leaving only 

5 undetected.  This small count (5) causes the standard error to be large because its 

reciprocal is used.  In summary,   SPEAD’s   detection accuracy for novel PE/COFF 

malware is significantly higher than the commodity anti-virus products in this 

experiment.  This characteristic is very  conducive  to  SPEAD’s  mission of detecting novel 

malware in email spear phishing attacks. 

4.2.2.2 Adobe Reader Malware Detection Results 

 Table 10 summarizes the Adobe Reader malware detection metrics in the context 

of  known  and  novel  malware.    Superficial  analysis  of  SPEAD’s  novel  malware detection 

rate  indicates  it  is  comparable  to  the  commodity  A/V  products’  rates,  with  less  than  two  

percentage points separating the top four performers. 
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Table 10: Adobe Reader Detection Results for Novel and Known Malware 

 

 To confirm this cursory analysis, a more in-depth analysis of the differences in 

means for the novel malware detection accuracies is shown in Figure 14.    Tukey’s  HSD  

Method to test the differences in means is used to illustrate this point at a 95% confidence 

level.  The pairwise comparisons indicate that the differences in means for SPEAD – 

Forefront, SPEAD – G Data, and SPEAD – BitDefender are not significantly different 

from zero because their confidence intervals include zero, and the p-values for each 

comparison   are   greater   than   0.999.      This  means   SPEAD’s,   Forefront’s,   G  Data’s,   and  

BitDefender’s   novel  Adobe  Reader  malware   detection   accuracies   are   very   similar   at   a  

statistically   significant   level.      This   is   confirmation   that   SPEAD’s   novel  Adobe  Reader  

malware detection rate is comparable to the best of the commodity A/V products in this 

experiment.   

Novel 
Detection 
Accuracy 

(%)

Known 
Detection 
Accuracy 

(%)

False 
Positive 

Rate        
(%)

SPEAD 88.79 51.74 0.96
Forefront 90.11 84.82 0.00
G Data 89.01 64.29 0.00
BitDefender 89.01 81.25 0.00
McAfee 41.76 43.75 0.00
AVG 72.16 59.45 0.00

Adobe Reader

System
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Figure 14: Comparison of Differences in Means of Adobe Reader Novel Malware 

Detection Accuracies for SPEAD versus Others 
 

 Furthermore, this data is viewed from one more angle.  A close examination of 

Table 10 reveals   a   large   discrepancy   between   SPEAD’s   novel   and   its   known  malware  

detection   accuracies   in   comparison   to   the   A/V   systems’   discrepancies.      This   fact   has  

profound effects  on   the  significance  of  ESCAPE’s  role   in  helping  SPEAD  detect  novel  

Adobe Reader malware.  The analysis is framed in this context: when a detection system 

detects Adobe Reader malware, what are the odds that the malware is novel?   

 The answer to this question is determined in the same way the PE/COFF data is 

analyzed to determine the odds ratio between two detection systems.  Figure 15 illustrates 

the odds ratio for each detection system, and they are reported with 95% confidence 

intervals.  The odds ratios are in terms of the odds of detection being of novel malware.  
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In other words, when SPEAD detects Adobe Reader malware, the odds of the malware 

being novel in nature is 7.54 times as large as the odds of it being known malware with a 

95% confidence interval of 3.55 to 16.03 and a FET two-sided p-value of 8.78e-09.  This 

p-value is the FET probability for the odds ratio being equal to 1, which is a test to see if 

the two populations are statistically the same.  SPEAD’s   odds   ratio   and   associated   p-

value provide conclusive evidence that its malware detection accuracy is statistically 

different between the novel and known malware populations.  Even though SPEAD’s  

odds ratio is 1.68 times higher than the next best, G Data, their confidence intervals do 

overlap.  This fact is noteworthy, and it reduces but does not eliminate the significance of 

SPEAD’s  higher  odds  in  detecting  novel  malware  over  known  malware.   

 
Figure 15: Odds Ratios of Novel:Known Adobe Reader Malware Detection 
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 Therefore, this analysis leads to the conclusion that SPEAD is comparable to the 

best-performing commodity A/V products in terms of novel Adobe Reader malware 

detection outright, but when SPEAD detects malware, the odds of it being novel malware 

is higher.  This is a highly desirable attribute in a spear phishing attack detection 

platform.  

 One  reason  for  ESCAPE’s  success  in  detecting  the  novel  nature  of  Adobe  Reader  

malware in this experiment could be dependent upon the nature of the malware 

populations used in the malicious file corpus.  The Adobe Reader malware labeled as 

novel is the malware collected from the two large, anonymous organizations.  It is 

possible that the Adobe Reader malware used in attacks against these organizations use 

memory corruption exploitation techniques more often than the population of Adobe 

Reader malware outside these two organizations.  It is also possible that Adobe Reader 

malware used in attacks against large organizations, in general, use memory corruption 

exploits more often. 

 Another  reason  for  ESCAPE’s  successful  focus  on  novel  malware  is  because  it  is  

unencumbered by the need to detect all known malware.  This is unlike the A/V products, 

whose commercial viability primarily hinges on its ability to detect as much malware as 

possible. 

 In terms of false positives, a reason  for  ESCAPE’s  false  positives  is due to its lack 

of appropriate exceptions.  ESCAPE uses exceptions to handle legitimate application 

functionality that is not knowable when ESCAPE creates its database of signed code.  It 

is possible the false positive Reader files attempt to use Reader functionality for which an 

exception has not been created for ESCAPE.  Thus, ESCAPE detects this functionality as 
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anomalous and therefore malicious.  This may also be true with the operating system and 

its need to run legitimate code that is unknown to ESCAPE.  If this occurs while a file is 

being analyzed, ESCAPE will record this anomalous code execution attempt in its log 

file.  The Python script may incorrectly attribute the anomaly to the file being analyzed, 

thus  causing  a   false  positive.     Because  SPEAD’s  false  positive   rate   is  still   significantly  

low,  it  may  not  detract  from  SPEAD’s  ability  to  detect  novel  Reader  malware  at  a  high  

rate.  An experiment with additional Adobe Reader files or on a real-world network may 

help characterize the significance, if any, of false positives for this file type. 

4.2.2.3 Microsoft Excel Malware Detection Results 

 Table 11 summarizes the Microsoft Excel malware detection metrics in the 

context   of   novel   and   known   malware.      SPEAD’s   novel   malware   detection   accuracy  

appears  to  be  significantly  higher  than  all  but  Forefront’s.    The  Excel  sample  size  is  very  

small compared to the PE/COFF and Adobe Reader malware sample sizes.  With only 29 

samples,  Forefront’s  metrics  appear  anomalous,  but  they  are  impressive  nonetheless.     A  

more sophisticated analysis of the odds ratios is used again to draw conclusions about the 

likelihood of Excel malware detection being of novel malware. 

Table 11: Microsoft Excel Detection Results for Novel and Known Malware 

 

Novel 
Detection 
Accuracy 

(%)

Known 
Detection 
Accuracy 

(%)

False 
Positive 

Rate        
(%)

SPEAD 90.48 8.33 0.67
Forefront 100.00 100.00 1.00
G Data 38.10 87.50 0.00
BitDefender 19.05 12.50 0.00
McAfee 76.19 87.50 0.00
AVG 0.00 75.00 0.00

System

Microsoft Excel
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 The odds ratios for each detection system, in terms of the odds of detection being 

of novel Excel malware, are shown in Figure 16.  Note  that  Forefront’s  odds  ratio  is  only  

1:1 even though it detects 100% of known and novel malware.  This is not an anomalous 

result indicative of a failure in the odds ratio technique.  In fact, the odds ratio for 

Forefront makes the point that when even though Forefront may detect all novel Excel 

malware, an analyst who needs to know if the malware is novel will do just as well 

flipping a coin to make that determination.  The   fact   that   Forefront’s   detection   is  

exceptional is still a significantly valuable characteristic of a spear phishing detection 

platform, but so is a platform’s  ability  to  tell  an  analyst  the  probability  that the malware is 

novel. 

 
Figure 16: Odds Ratios of Novel:Known Microsoft Excel Malware Detection 
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 When SPEAD detects Excel malware, the odds of the malware being novel in 

nature are 66.5 times as large as the odds of it being known malware with a 95% 

confidence interval of 5.18 to 853.49 and a FET two-sided p-value of 0.00017.  Again, 

this p-value is the FET probability for the odds ratio being equal to 1, which is a test to 

see if the two populations are statistically the same.  SPEAD’s  odds  ratio  and  associated  

p-value provide conclusive evidence that its malware detection accuracy is statistically 

different between the novel and known malware populations.  The wide confidence 

interval is again indicative of the small cell counts in the Excel detection 2x2 table, where 

1 out of 8 known malware and 19 out of 21 novel malware are detected.  This leaves two 

of the cells with counts of 1 and 2 for known malware detected and novel malware 

undetected, respectively.  This causes a large standard error, and it can be mitigated with 

a larger sample size and, presumably, higher cell counts for the 2x2 table.   

 This analysis leads to the conclusion that SPEAD outperforms the other 

commodity A/V products, except Forefront, in terms of novel Microsoft Excel malware 

detection.  Furthermore, the odds of malware detection being attributed to novel malware 

are extremely high only when SPEAD detects it.  The strength of this conclusion is 

difficult to determine, however, because of the small sample size of Excel malware.  

Additional  samples  of  known  and  novel  malware  are  needed  to  be  able  to  infer  SPEAD’s  

detection accuracy to a wider population. 

 Concerning false positives, the same reasoning applies here as it does in Section 

4.2.2.3.      ESCAPE   may   not   be   tuned   appropriately   to   know   all   of   Microsoft   Excel’s  

functionality. 
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4.2.2.4 Microsoft Word Malware Detection Results 

 Table 12 summarizes the Microsoft Word malware detection metrics in the 

context   of   novel   and   known  malware.      SPEAD’s   novel  malware   detection   accuracy   is  

clearly less than comparable to the commodity A/V detection rates.  With only 22 

samples, conclusions that can be drawn from this analysis are not strong.  Still, the odds 

ratios are used to draw conclusions about the tendencies of Word malware detection 

being of novel malware. 

Table 12: Microsoft Word Detection Results for Novel and Known Malware 

 

 The odds ratios for each detection system, in terms of the odds of detection being 

of novel Word malware, are shown in Figure 17.  When SPEAD detects Word malware, 

the odds of the malware being novel in nature are 3.43 times as large as the odds of it 

being known malware with a 95% confidence interval of 0.26 to 45.03 and a FET two-

sided p-value of 0.54416.  This p-value suggests that any discrepancy between the 

observed odds ratio (3.43) and an odds ratio of 1 is likely due to chance.  This is also true 

for BitDefender, which has the next highest odds ratio (2.67) and a p-value of 0.37616. 

Novel 
Detection 
Accuracy 

(%)

Known 
Detection 
Accuracy 

(%)

False 
Positive 

Rate        
(%)

SPEAD 22.22 7.69 0.00
Forefront 88.89 100.00 0.00
G Data 66.67 92.31 0.00
BitDefender 66.67 23.08 0.00
McAfee 22.22 100.00 0.00
AVG 11.11 69.23 0.00

System

Microsoft Word
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Figure 17: Odds Ratios of Novel:Known Microsoft Word Malware Detection 

 

 Even though SPEAD shows a tendency to focus its detection on novel Word 

malware, its   significance   is   diminished   in   light   of   SPEAD’s   inaccuracy   in   detecting  

malicious Word files in this sample set (only 3 out of 22 detected overall) and the high 

probability of this favorable odds ratio being due to chance.  Additional samples of 

known   and   novel   malware   are   needed   to   characterize   SPEAD’s   detection   capabilities  

more accurately. 

4.2.2.5 Microsoft PowerPoint Malware Detection Results 

 Table 13 summarizes the Microsoft PowerPoint malware detection metrics in the 

context of novel and known  malware.    SPEAD’s  lack  of  detecting  any  malicious  samples  

in this small sample leads to an inconclusive analysis.  With only 11 samples, conclusions 

that can be drawn from this analysis are weak.  However, the detection rates by the 
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commodity A/V systems are moderate enough to suggest that these are, in fact, samples 

of  malicious  PowerPoint  files.    One  reason  for  SPEAD’s  lack  of  detection  could  be  due  to  

PowerPoint-based attacks not relying on memory corruption exploits.  If this is generally 

true, ESCAPE is not an ideal malware detection engine for PowerPoint malware.  

However, additional samples of known and novel PowerPoint malware are needed to 

characterize  SPEAD’s  detection  capabilities  more  accurately. 

Table 13: Microsoft PowerPoint Detection Results for Novel and Known Malware 

 

4.2.3 Comparing URL Detection Metrics 

 The detection of malicious URLs is a difficult problem to solve due to the fleeting 

nature of web-based exploits and how long they are viable and accessible before being 

taken down.  Table 14 is a good illustration of the fact that the approach to detecting 

malicious URLs varies widely.  Even though G Data achieves the highest detection 

accuracy (29.69%), it also demonstrates the highest false positive rate (25.97%) by far.  

This suggests G Data’s  detection algorithm or content filtering is, perhaps, overly generic 

in its detection.  While this is good for malicious detection rates, it also causes G Data to 

label numerous URLs as malicious even though they are not.  McAfee clearly displays 

Novel 
Detection 
Accuracy 

(%)

Known 
Detection 
Accuracy 

(%)

False 
Positive 

Rate        
(%)

SPEAD 0.00 0.00 0.00
Forefront 50.00 100.00 0.00
G Data 75.00 85.71 0.00
BitDefender 75.00 85.71 0.00
McAfee 50.00 57.14 0.00
AVG 25.00 71.43 0.00

System

Microsoft PowerPoint
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the best balance of detection accuracy (25.26%, second highest) with a relatively low 

false positive rate (1.06%).   

Table 14: URL Detection Results for All Platforms 

 

 There are two important discussion items that are not readily apparent by looking 

at only the detection metrics: 

1) Malware or malicious code must be actively hosted from a web site for ESCAPE 

to detect it.  This is a fundamental design feature of ESCAPE, but it makes testing 

and comparison difficult to do with certainty.  Theoretically, the longer a URL is 

known to be malicious, the more likely A/V products and content filtering engines 

are to detect it.  Conversely, the longer a URL is known to be malicious, the more 

likely it is to terminate or limit its active malware hosting due to the ever-

increasing attention the web site receives from those who are not its intended 

victims.  This means ESCAPE will not detect the malicious web site where a 

commodity A/V product might through the use of a known bad list.  Many of the 

malicious URLs used in this experiment are more than a month old, which is not 

an ideal testing scenario where the focus is on novel malicious code exploits. 

Detection 
Accuracy 

(%)

False 
Positive 

Rate        
(%)

SPEAD 2.92 0.71
Forefront 0.94 0.00
G Data 29.69 25.97
BitDefender 0.00 0.00
McAfee 25.16 1.06
AVG 0.24 0.00

System

URLs
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2) Out of the 56 URLs detected in each of the three tests, 35 of them are due to the 

download of a PE/COFF file that is deemed to be malicious by MaTR.  These 

malicious PE/COFF files are saved on the file share.  This fact alone provides a 

malware or network intrusion analyst a tangible and significant value that 

commodity A/V does not.  Additionally, the fact that ESCAPE detects a URL as 

malicious is a strong indicator that the web site is actively exploiting victims at 

the time the email is received that contained the URL.  This immediate feedback, 

proven by dynamic analysis, is valuable information for an analyst.  Therefore, 

SPEAD provides two capabilities that the other A/V products do not: malicious 

PE/COFF file downloads and immediate confirmation of active and current 

malicious websites. 

 The reasons for false positives in this experiment are the same reasons already 

discussed in Sections 4.2.2.2 and 4.2.2.3.  There may be Internet Explorer functionality of 

which ESCAPE is not aware.  Full feature testing may reduce the false positive rate, and 

it is a consideration for future research. 

4.3 Results and Analysis of Experiment 4 

 The  results  of  this  experiment  are  used  to  characterize  SPEAD’s  latency,  which  is  

the time it takes SPEAD to receive an email and to make a determination whether the 

email is malicious or not.  It is important  to  note  that  SPEAD’s  malware  detection  rates  

are   not   being   evaluated   in   this   experiment.      This   is   because  MaTR’s   and   ESCAPE’s  

execution environments already process at their maximum configured speeds when a 
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queue exists for files or URLs waiting to be analyzed.  Thus, a larger queue does not 

affect their detection capabilities.   

 This experiment uses three sizes of file and URL sample sets based on the email 

throughput being tested.  The appropriate number of files and URLs are selected to allow 

for a one-minute duration of emails being sent:  

 12 files and 240 URLs are selected for the low throughput of 12 

attachments/minute and 240 URLs /min 

 60 files and 1,000 URLs are selected for the expected throughput of 60 

attachments/minute and 1,000 URLs /min 

 300 files and 1,500 URLs are selected for the max throughput of 232 

attachments/minute and 1,422 URLs /min 

These samples are randomly selected from the malicious and non-malicious PE/COFF 

files, non-PE/COFF files, and URLs.  Each file type is as equally represented as possible 

based on the sample size.  The file latency results are analyzed first, followed by the URL 

latency results. 

4.3.1 File Latency Results and Analysis 

 The test for each throughput speed is repeated twice for a total of three tests at 

each throughput speed.  The average latency results for each throughput are calculated, 

and the file results are displayed in Figure 18.  These plots show a linear growth trend 

after an initial slow-growth period, especially when the sample size is large as it is in the 

maximum throughput test.  These initial slow-growth trends are due to the rapid static 

analysis responses offered by MaTR for the PE/COFF files. 
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Figure 18: Latency Results for All Files at Each Email Throughput Speed 

 
 In   order   to   quantify   SPEAD’s   file   processing   latency  more   accurately,   the   file  

results are segregated into PE/COFF and non-PE/COFF latency responses.  Figure 19 

shows the plots of the non-PE/COFF latency results.  A linear trend line and associated 

R2 statistic are calculated and displayed on each plot.  The R2 statistic represents the 

percentage of the total system response variation that is explained by the explanatory 

variable [RaS02], which, in the case of a simple linear regression, is the slope of the line.  

The high R2 statistic supports the linear trend line for the expected (98.03%) and 

maximum (99.56%) email throughput plots.  Because the linear trend line (in red) for the 

low throughput plot appears not to fit well (R2 = 83.97%), an exponential model (in 

green) is offered as a better fit (R2 = 94.19%) for the small sample size.  Based on these 

plots, the following qualitative observations are made: 
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Figure 19: Latency Results for Non-PE/COFF Files at Each Email Throughput Speed 

 

 A perfectly horizontal line means new files received by SPEAD would always 

have the same expected wait time regardless of the current queue of files to be 

processed.  Because these lines show a linear growth, this means there is an 

increase in latency for each new file received by SPEAD.  This demonstrates, 

essentially, a queuing delay within SPEAD.  Analogous to a queuing delay in 

network routers when packets arrive faster than the router can process them, 

SPEAD experiences a queuing delay when emails arrive at a rate faster than they 

are processed.  This queue consists of the unanalyzed files and URLs in the 

malware detection database. 

 The slopes of the trend lines translate to the expected increase in wait time, and 

these increases in latency are estimated to be 7.68 seconds, 8.85 seconds, and 9.04 
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seconds for each new file introduced in a low, expected, and maximum 

throughput environment, respectively.  The exponential model can also be used as 

an estimator of the expected file latency at low email throughputs, but its equation 

is not as intuitive as the linear equation for the purpose of cursory estimation of 

latencies.  Additionally, because the expected and maximum throughput models 

are distinctly linear with larger samples sizes, it is reasonable to assume the low 

throughput model is truly linear.  The small sample size (8 files) may not be 

sufficient to produce a strong linear trend over time. 

 The plots of the PE/COFF file latency results are shown in Figure 20.  The low 

and   expected   throughput’s   linear   trend   lines   both   show  a   predominately   horizontal tilt, 

indicating a nearly ideal growth in wait time, or lack thereof.  The maximum throughput 

plot shows both an exponential and linear growth trend for comparison.  The following 

qualitative observations are made: 

 The R2 statistic (78.5%) for the low throughput is counterintuitive.  Judging by 

the  difficulty  in  differentiating  the  linear  trend  line  from  the  data’s  plotted  line,  it  

appears as though the R2 statistic should be closer to 100%.  The R2 statistic is 

somewhat lower in this case because there is very little total variation in latency 

across these four files.  The linear equation explains 78.5% of this small total 

variation, which results in a very good-fitting model without a R2 of 100%.  

 The expected increase in latency for each new PE/COFF file received by SPEAD 

is 0.07 seconds for the low and expected workloads. 
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Figure 20: Latency Results for PE/COFF Files at Each Email Throughput Speed 

 

 By visual inspection of the maximum throughput plot, the exponential trend line 

appears to be the better fit.  The expected increase in latency for each new 

PE/COFF file received by SPEAD is 5.64e0.0178 seconds, or about 0.25 seconds if 

the growth is linear, for the maximum throughput.  There appears to be a 

saturation point somewhere between the expected and maximum throughput 

speeds where the latency growth begins to increase above the 0.07/file linear rate.   

 If the latency growth is truly linear for the maximum throughput environment, 

then there are several possible reasons to explain why the plot appears to be 

exponential: 

a) The VBscript responsible for calculating the latency metric polls the 

database every five seconds.  With enough samples over time, the average 
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relative growth in latency between samples (i.e., the slope of the line) 

covers up the effect of this polling interval on the observed latency.  

However, at the start of an experiment, no latency less than five seconds is 

possible because the script will not poll for responses until the five-second 

mark.  Because of this, the first 14 samples at the start of the maximum 

throughput test all have latencies in the six-second range, giving the plot 

the appearance of exponential growth as samples 15 and beyond resume a 

linear growth in latency. 

b) There is a mix of malicious and non-malicious PE/COFF files in the 

sample  set  for  the  maximum  throughput  tests.    MaTR’s  analysis  time  may  

be sensitive to files that are malicious due to the extra traversing of the 

decision   tree  needed   to   classify   the  malware’s   type   as  backdoor,  Trojan, 

worm, etc.  If this is the case, then a run of consecutive malicious 

PE/COFF files may slightly skew the latency growth trend line.  

Coincidentally, the last 19 files analyzed in the maximum throughput 

scenario are all classified as malicious, which may have an additive effect 

on the latency growth trend and give it the appearance of an exponential 

turn upwards on the graph towards the latter samples. 

c) The underlying ESX server may be reaching a processing speed limit due 

to the immediate influx of processing needed for 17 virtual images (1 

MaTR and 16 ESCAPE) to analyze files and URLs at the maximum 

throughput rate.  This may cause noticeable increases in latency for 
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relatively small growth trends like that shown by the rapid PE/COFF file 

processing. 

4.3.2 URL Latency Results and Analysis 

 The URL latency plots are averages of three tests, just as the file latency plots are.  

These plots are displayed in Figure 21.  Linear trend lines and R2 statistics are added to 

these plots as well as the linear equation used to formulate the trend line.  These linear 

trend lines fit the plots very well in all three test scenarios with R2 statistics over 99% in 

each plot.  Thus, a direct comparison of the slopes of the equations can be made.  The 

expected increases in latency for a new URL received by SPEAD are 3.78 seconds, 3.90 

seconds, and 4.04 seconds, respectively, for the low, expected, and maximum throughput 

conditions.   

 
Figure 21: Latency Results for URLs at Each Email Throughput Speed 
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 It is noteworthy that there is only a 0.12 second latency increase going from the 

low to the expected throughput, but there is a 0.14 second latency increase going from the 

expected to the maximum throughput.  This is despite the growth in URLs with the 

former (760 URL increase) being much greater than the growth in URLs with the latter 

(500 URL increase).  This indicates a saturation point for URL processing at throughputs 

somewhere between 1,000 and 1,500 URLs per minute. 

4.3.3 Overall Latency Analysis 

 SPEAD’s  non-PE/COFF file processing does no better than a latency increase of 

about 7.7 seconds per additional file received even at the low email throughput.  

Compared to the best URL processing latency of about a 3.8 second increase per 

additional URL, it is noteworthy that the non-PE/COFF file processing latency grows at 

approximately twice the rate.  This may be due to the file-based applications needing 

more processing bandwidth or more memory than Internet Explorer, thus requiring a little 

more time to open each file and also to terminate the application upon analysis 

completion. 

 SPEAD’s  PE/COFF  file  processing   is   significantly   faster   than   its  non-PE/COFF 

file and URL processing.  The evidence strongly supports the notion that static analysis is 

much quicker than dynamic analysis.  SPEAD appears to be able to handle much higher 

email throughput rates of PE/COFF files. 

 Finally, the data is viewed in the context of the research hypothesis that SPEAD 

can operate under any sustained traffic workload and still detect novel malware in one 

hour or less.  Table 15 is the summary of this data.  These calculations assume the email 
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throughput workload is constant, but traffic that is bursty would have some idle time to 

allow SPEAD an opportunity to continue processing queued files and URLs without 

introducing new items.  For PE/COFF inputs, SPEAD can handle a sustained maximum 

workload for over an hour before the latency reaches one hour per item.  For non-

PE/COFF  files,  even  a  low,  sustained  throughput  workload  pushes  SPEAD’s  latency  per  

file to the one hour mark before 40 minutes.  The URL input is slightly better, lasting 

until almost 80 minutes at a low workload  before  SPEAD’s  latency  reaches  one  hour  per  

URL.  This analysis supports a conclusion that the research hypothesis concerning 

SPEAD’s  latency  is  not  correct.  It is important to note that the point of this experiment is 

to   quantify   SPEAD’s   non-optimal runtime performance configuration for future 

comparison  in  case  SPEAD’s  performance  is  enhanced  for  optimal  runtime  speeds. 

Table 15: Expected Time to Reach 1 Hour Latency 

 

4.4 Summary 

 This chapter presents and analyzes the data collected from the four experiments 

undertaken by this research.  The results of Experiment 1 are discussed, and the analysis 

conclusions are used to configure ESCAPE for optimal malware detection accuracy with 

a consideration for speed.  The results of Experiments 2 and 3 are analyzed, and many 

conclusions are made.  Namely, the original code for SPEAD is validated, and SPEAD 

PE/COFF 0.07 50704.23 4225.35 0.07 50704.23 845.07 0.25 14693.88 63.34
Non-PE/COFF 7.68 468.75 39.06 8.85 406.78 6.78 9.04 398.23 1.72

URL 3.78 952.38 79.37 3.90 923.08 15.38 4.04 891.09 3.84
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proves to be a viable option as a complementary email-based malware detection 

framework that focuses primarily on novel malware, especially PE/COFF, Adobe Reader, 

and   Microsoft   Excel   malware.      Furthermore,   SPEAD’s   URL   detection   metrics   and  

unique   detection   capabilities   are   discussed   and   quantified.      Finally,   SPEAD’s   latency  

results are presented and analyzed in order to characterize SPEAD’s   performance   in  

terms of the research hypothesis. 
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V. Conclusions 
 

his chapter summarizes the overall conclusions drawn from this research.  

Section 5.1 compares the four research goals with the experimental results to 

determine if the research goals and hypotheses are met.  The significance of this research 

is outlined in Section 5.2.  Finally, suggestions for future work to extend this research are 

provided in Section 5.3. 

5.1 Research Conclusions 

5.1.1 Goals #1 and #2: Construct a spear phishing detection system 

The first goal of this research is to construct an email collection and processing 

system to obtain emails, parse them for files and Uniform Resource Locators (URLs), 

and insert appropriate information into a database for automated malware analysis.  The 

second research goal is to modify the execution environment of two malware detection 

algorithms, ESCAPE and MaTR (Malware Type Recognition), to interact with this 

database for file/URL download and the upload of detection results.  Original code is 

written to create a framework that accomplishes these first two goals.  This framework is 

called the SPEar phishing Attack Detection system (SPEAD).  Experiment 1 is used to 

optimize  ESCAPE’s  analysis  wait   time  to  10  seconds.     The  results  of  Experiment  2  are  

used to verify that all files and all URLs are successfully processed and inserted into the 

database.  This validates the correctness and effectiveness of the original code.  Thus, the 

first two research goals are achieved. 

T 
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5.1.2 Goal #3: Compare this system to the current industry standard 

The third goal of this research is to collect malware detection metrics for SPEAD 

and commodity anti-virus   products   to   determine   SPEAD’s   effectiveness   in   detecting  

novel email-borne malware.  Experiments 2 and 3 provide ample metrics and data to 

perform a comparison.  In comparison to the commercial products, SPEAD is the best 

performer for the overall detection of all malicious Portable Executable and Common 

Object File Format (PE/COFF) files (99.68% true positive rate, 0.39% false positive rate) 

as well as novel PE/COFF malware (98.2% true positive rate).   

SPEAD’s  performance  is  also  statistically  comparable  to  the  anti-virus products in 

terms of the detection of novel Adobe Reader malware with a 88.79% true positive rate 

and the fact that the pairwise differences in means between SPEAD and the other three 

top performers is not significantly different from zero (two-sided p-values greater than 

0.999 for each pairwise comparison).   

 Furthermore, SPEAD demonstrates unique advantages in terms of its statistically 

strong tendency to focus its detection on novel malware only.  Specifically, the odds of a 

SPEAD malware detection being attributed to novel malware are as follows: 

 For PE/COFF files, 42.1:1 odds in favor of SPEAD detecting novel PE/COFF 

malware over the next best-performing anti-virus product (95% confidence 

interval is 16.84 to 105.14 with two-sided p-value less than 2.2e-16). 

 For Adobe Reader files, 7.54:1 odds that when SPEAD detects Reader malware, 

the malware is novel (95% confidence interval is 3.55 to 16.03 with two-sided p-

value of 8.78e-9).  The next best performer is G Data with 4.5:1 odds (95% 

confidence interval of 2.10 to 9.64 with two-sided p-value of 3.82e-5). 
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 For Microsoft Excel files, 66.5:1 odds that when SPEAD detects Excel malware, 

the malware is novel (95% confidence interval is 5.88 to 853.49 with two-sided p-

value of 0.00017).  The next best performer is BitDefender with 1.65:1 odds (95% 

confidence interval of 0.16 to 17.47 with two-sided p-value of 1). 

Additionally, SPEAD offers two unique benefits from analysis of email-borne 

URLs: 1) automated PE/COFF malware download from malicious URLs (35 downloads 

during Experiment 2, and 2) near real time confirmation of active malicious web sites (56 

sites detected as malicious).  The hypothesis that two malware detection algorithms can 

co-exist in an email context while outperforming commodity anti-virus products is 

mostly  confirmed.    Full  confirmation  is  lacking  due  to  SPEAD’s  lack  of  effectiveness  in  

detecting novel Microsoft Word and PowerPoint malware at a sufficient rate with this 

limited sample set.  Even though the hypothesis is not fully confirmed, the third research 

goal is still achieved,   which   aimed   to   quantify   SPEAD’s   effectiveness   in   relation   to  

commodity A/V solutions. 

5.1.3 Goal #4: Characterize the detection latency of this system 

The fourth goal of this research is to characterize SPEAD detection latency while 

using  an  approximated  Air  Force  base’s  email   traffic  workload.      It is important to note 

that SPEAD does not have an optimal runtime performance configuration.  This research 

goal   simply  aims   to   take   a   snapshot  of  SPEAD’s   latency  characteristics   as   a  gauge   for  

future work in this area, if necessary. Experiment 4 performs the necessary tests to 

quantify  SPEAD’s   latencies   in   varying   email   traffic  workloads.      SPEAD’s   latencies   in  
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the worst case scenario (i.e., email throughput of 300 files/minute and 1,500 

URLs/minute) are as follows:  

 For PE/COFF files, analysis is expected to cause one-hour latencies in about 

63.34 minutes. 

 For non-PE/COFF files, analysis is expected to cause one-hour latencies in 

about 1.72 minutes. 

 For URLs, analysis is expected to cause one-hour latencies in about 3.84 

minutes.   

While the fourth research goal is achieved, the hypothesis that SPEAD can 

effectively detect malware under any sustained workload within one hour is not 

confirmed. 

5.2 Significance of Research 

This research provides the Air Force and other large organizations with the 

capability for fully automated detection of email spear phishing attacks indicative of 

cyber espionage.  No other public framework or product exists that combines malware 

detection algorithms for the sole purpose of autonomously identifying previously 

unknown malicious software and malicious web site links delivered through emails.   

SPEAD can be implemented in a plug-and-play manner for any network 

enterprise employing Microsoft Exchange as its email service or that can provide emails 

to a Microsoft Outlook email client.  Its passive network presence and near real time 

detection provide network security analysts with the unique benefit of immediate cyber 

espionage situational awareness.  Additionally, SPEAD is a good complement to 
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traditional anti-virus and anti-spam solutions because of its unique ability to identify the 

novel malware attacks many anti-virus solutions and anti-spam engines struggle to find in 

email attachments and URLs. 

5.3 Recommendations for Future Research 

A myriad of extensions to this research are viable.  [MeM11] proposes an 

automated framework for the detection of cyber espionage events on a network, and 

SPEAD’s   spear   phishing   detection   capabilities   can   be   implemented   within   such   a  

framework.   

SPEAD can also be extended to include an inline network configuration, where 

SPEAD’s   capabilities   are   enhanced   for   automated   prevention of novel email attacks.  

This requires an optimization study to determine the appropriate configuration and 

coding  improvements  to  decrease  SPEAD’s  latency  under  varying  workloads.    Included  

in this optimization study could be the addition of more ESCAPE and MaTR virtual 

clients to maximize parallel processing. 

Since SPEAD is a framework for integrating malware detection algorithms, this 

research can be extended to include other cutting edge detection algorithms.  Additional 

testing could include scenarios   where   SPEAD’s   malware   detection   algorithms   are  

complemented by varying anti-virus products to determine the best complementary 

configuration for both known and novel malware detection. 

An observational study using SPEAD on an operational network would 

undoubtedly  test  SPEAD’s  detection  of  truly  novel  and  previously  unknown  email-based 
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attacks.     This  study  would  also  validate  SPEAD’s  URL  parsing  effectiveness  with  real-

world emails and URLs. 

Additionally, the following specific enhancements can be coded, tested, and 

evaluated: 

 Check all incoming URLs against a known good whitelist and known bad 

blacklist to reduce the amount of unnecessary URL analysis 

 Public Key Infrastructure validation: compare the sender of digitally signed 

and/or encrypted emails with what is represented in the signature or public key 

 Parse emails for archive file formats such as .zip and .rar files; automatically 

decompress these files for analysis 

 Parse files for embedded documents (i.e., .pdf embedded in a Word document) 

 Create a software agent to click on, open, or download items within documents or 

on web sites for more in-depth dynamic analysis 

 Configure SPEAD to revert ESCAPE clients to snapshots every time a malicious 

file/URL is detected 

 Configure SPEAD to implement prioritization of analysis; evaluate the 

performance improvement of SPEAD malware detection algorithms re-scanning 

old file/URLs during idle time 

 Create original exploits for   each   file   type   for   testing   SPEAD’s   novel   malware  

detection; same can be applied to web-based attack vectors 

 Capture ESCAPE’s detection metrics with enough granularity to compare 

malware detections on Windows XP to those on Windows Vista and/or Windows 
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7 to determine the effectiveness of Windows native memory corruption protection 

mechanisms 

 Perform full feature testing of ESCAPE-protected applications to reduce the false 

positive detection rate 

 Evaluate all ESCAPE configuration factors to determine an optimal configuration 

for speed of detection without sacrificing accuracy 

 Use obfuscated, packed, or compressed malware to evaluate detection limitations 

of SPEAD versus commodity anti-virus 
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