Specification of AIM Crypto Engines

Mark Tullsen
John Launchbury
Thomas Nordin

Oregon Graduate Institute

Road Map

- AIM Overview
- Specifying Cryptographic Algorithms
- Block Ciphers on the PCE
- Stream Ciphers on the CCE
- Verification
- Summary

AIM

- Motorola AIM (Advanced INFOSEC Machine)

THE POWER TO PROTECT, THE FLEXIBILITY TO ADAPT.

- On-board encryption engines
- MASK technology (Mathematically Assured Separation Kernel)
- Physically tamper-proof
www.motorola.com/GSS/SSTG/ISSPD/Embedded/AIM/

AIM Architecture

Road Map

- AIM Overview
- Specifying Cryptographic Algorithms
- Block Ciphers on the PCE (previous work)
- A DSL ${ }^{1}$ for permutations and S-boxes
- Stream Ciphers on the CCE
- A DSL for bit-functions and feedback shift registers
- Verification
- Summary

PCE Architecture (Simplified)

- Execution components
- APFU (Permutation Function Unit)
- 16 predefined permutations
- NLU (Non-Linear Unit)
- 16 one-bit memories
- Independently addressable
- LFU (Linear Function Unit)
- XOR unit
- ALU

A Recipe for a DSL

- Identify an abstraction (or Abstract Data Type)
- Think "values" (functionally, not procedurally):
- Yes: integers, complex numbers, polynomials, sequences, etc.
- No: linked-list, arrays, pointers, etc.
- Develop compositional operators for it
- Question: How can we create primitive values?
- Question: How can we produce new values from old?
- Look for natural algebraic laws
- Aids design of abstractions \& operators
- Provides understanding of the operators

Permutations (Abstraction No. 1)

- Sequence of numbers
- Numbered left to right
- Beginning at 1
- Examples
- [4,1,2,3]
- $[2,4,2,2,4,3,6]$
- [8,1,7,4,1,5,3]
- Permutations can be any size
- 16 or 32 bits is common

`into` Operator

- Pipe the output of one permutation into the input of another
- Like function composition

++ Operator

- Joins two permutations together, side by side
- Each permutation draws from the same input bits
- Obtained simply by appending the two sequences together

$$
\begin{gathered}
{[2,4,8,2]++[7,3,1,6]} \\
=[2,4,8,2,7,3,1,6]
\end{gathered}
$$

More Operations

```
xs `select` [n..m]
```

Selects bits n through m from xs

```
xs <<< n
```

Rotate xs left by n
xs $\ggg n$
Rotate xs right by n
pad n xs
Pad xs on left to be n-bits wide
xs `beside` ys
Combine xs and ys in parallel
size xs
The number of bits output by xs (length of sequence)

Permutation Laws

- Size

```
size (xs ++ ys) = size xs + size ys
size (xs `beside` ys) = size xs + size ys
size (xs `into` ys) = size ys
size (pad n xs) = n
```

- Rotating

```
(xs >>> m) >>> n = xs >>> m+n
(xs <<< m) <<< n = xs <<< m+n
    xs >>> 0 = xs
    xs <<< 0 = xs
(xs >>> m) <<< n =
    if m > n then xs >>> (m-n) else xs <<< (n-m)
```


Permutation Laws (2)

- `into`

```
[1..] `into` xs = xs
xs `into` [1..size xs] = xs
xs `into` (ys ++ zs) = (xs `into` ys) ++ (xs `into` zs)
xs `into` (ys <<< n) = (xs `into` ys) <<< n
xs `into` (ys >>> n) = (xs `into` ys) >>> n
```

- Associativity

```
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)
(xs `beside` ys) `beside` zs
    = xs `beside` (ys `beside` zs)
    (xs `select` ys) `select` zs
    = xs `select` (ys `select` zs)
```


S-boxes (Abstraction No. 2)

- Every crypto-algorithm needs non-linear components
- Multiplication (RC6)
- Galois field inversion (Rijndael)
- DES has 8 separate S-boxes; each 6-bit in, 4-bit out

- An S-box is an arbitrary function combined with a "addressing permutation"

S-box Operations \& Laws

- Creating S-boxes:
sbox : : Perm -> Int $->$ [Integer] $->$ Sbox
- Combining S-boxes:
pack : : Perm $->$ [Sbox] $->$ Sbox
extend : : [Sbox] -> Sbox
intoS : : Perm -> Sbox -> Sbox
- Laws:
p `intoS` (sbox q $n \mathrm{xs}$) $=$ sbox (p `into` q) $n \mathrm{xs}$

Road Map

- AIM Overview
- Specifying Cryptographic Algorithms
- Block Ciphers on the PCE
- A DSL for permutations and S-boxes
- Stream Ciphers on the CCE
- A DSL for bit-functions and feedback shift registers
- Verification
- Summary

CCE Architecture (Simplified)

- Micro-sequencer
- Simple RISC architecture
- Interfaces with Crypto Controller
- Controls Cryptographic Coprocessor
- Cryptographic Coprocessor
- Control Registers
- State Registers
- Configurable Logic
- The difficulty of programming the CCE lies in specifying this

Bit-Functions (Abstraction No. 3)

- Permutations allow for moving bits around

- Bit-Functions allow for Boolean functions

Bit-Function Examples

- Rotate (4 to 4 Bit-Function)
[4, 1, 2, 3]
- Note: All permutations are Bit-Functions!
- Odd Parity (4 to 1 Bit-Function)

```
[1 `xor` 2 `xor` 3 `xor` 4]
```

- Two Bit Adder (4 to 2 Bit-Function)

```
[ 1 `xor` 3
, 2 `xor` 4 `xor` (1 && 3)
]
```


Bit-Function Operations

- Permutation operations extend to Bit-Functions:
- `into`
. + +
- `select`
- <<<, >>>
- pad
- `beside`
- size

Bit-Function Operations

- Operations on "Input Bits":
- Standard Boolean operators (overloaded): $1 \& \& 2,1$ || 2, ...
- Additional operators: true, false, ite 12 3, 1 `xor` 2, ...
- Bit-Function Operations:
ites $b[x 1, x 2, \ldots][y 1, y 2, \ldots]=.[$ ite $b x 1 y 1$, ite b x2 y2, ...]

Bit-Function Laws

- Permutation laws extend to Bit-Functions (xs >>> m) >>> n = xs >>> m+n
- Boolean laws apply to each "bit"
[1 \&\& true] = [1]
- Bit-Function Laws
ites a (ites b xs ys) zs = ites b (ites $a \operatorname{xs} z s$) (ites a ys zs)

A Common Structure in Stream Ciphers

- Feedback Shift Register (FSR)

- Generalized FSR

Generalized FSR (Abstraction No. 4)

- FSR = (next,output,inputWidth)

next	$::$ BitFunction	$(Q \times I \rightarrow Q)$
output	$::$ BitFunction	$(Q \rightarrow O)$
inputWidth	$:$: Int	

FSR Compared to Moore Machine

- Moore Machine:
- Q = set of states
- I = set of inputs
- $\mathrm{O}=$ set of outputs
- q0 :: Q = initial state
- next $\quad:: \mathrm{Q} \times \mathrm{I} \rightarrow \mathrm{Q}=$ next state function
- output :: $\mathrm{Q} \rightarrow \mathrm{O}=$ output function
- FSR Differences:
- FSR has no initial state
- State (Q) represented as a bit-vector, not arbitrary set
- Input and output (I and O) are bit-vectors, not sets

FSR Operators: Basic Three

- compose :: FSR -> FSR -> FSR
(ab)

- cycle :: FSR -> FSR
(a*)

- parallel :: FSR -> FSR -> FSR

More FSR Operators

- cascade :: [FSR] -> FSR

- outputInto :: FSR -> BitFunction -> FSR

- intoInput :: BitFunction -> FSR -> FSR

And More FSR Operators

- clocked :: FSR -> FSR

- clocks :: FSR -> FSR -> FSR

- N.B.: A FSR does not have a clock.

Example: Simple Shift Register

shift :: Int -> FSR
shift $\mathrm{n}=([1 . . \mathrm{n}] \ggg 1,[\mathrm{n}], 0)$

Example:
shift $8=([8,1,2,3,4,5,6,7],[8], 0)$

Note:
FSR = (BitFunction,BitFunction,Int)

Example: Linear Feedback Shift Register

Ifsr :: [Int] -> FSR
Example:
Ifsr [2,3,4,8] =
([(2 `xor` 3 `xor` 4 `xor` 8$), 1,2,3,4,5,6,7]$
,[8]
,0)

Example: Geffe Generator

geffe :: [Int] -> [Int] -> [Int] -> FSR geffe xs ys zs =
(Ifsr xs `parallel` Ifsr ys `parallel` Ifsr zs)
`outputInto` [ite 12 3]

Example: LILI-128

	clockctl
Input	Output sequence
0	$0,0,0,1$
1	$0,0,1,1$
2	$0,1,1,1$
3	$1,1,1,1$

Example: LILI-128

lili128 =
cascade [shift 4 `clocks`
lfsr' [2, 14, 15, 17, 31, 33, 35, 39] [12, 20]
, clockctl `clocks`
lfsr' $[1,39,42,53,55,80,83,89]$ fd
]
fd $=[1,2,4,8,13,21,31,45,66,81]$ into` [fd']
clockctl =
([4,1,2,3] ++ ites 1 [i1 \&\& i2, i2, i1 || i2] [false, 5, 6]
, [1 || 7]
, 2)

FSR Laws

- Associative Laws

```
(x `parallel` y) `parallel` z = x `parallel` (y `parallel` z)
(x `compose` y) `compose` z = x `compose` (y `compose` z)
```

- Moving computation between FSRs
(x `outputInto` f) `compose` $y=x$ `compose` (f `inputInto` y)

Road Map

- AIM Overview
- Specifying Cryptographic Algorithms
- Block Ciphers on the PCE
- Stream Ciphers on the CCE
- Verification
- Is an implementation (micro-code and configuration) equivalent to the specification?
- Summary

Verification: Three Steps

- Parameterize model w.r.t. bit-operations on registers
- Instantiate to three implementations of "Booleans"
(Giving us three related models)
- Do testing and verification using these models

Step 1: Parameterize Model

- Transform PCE Model:
- Parameterize over Boolean operators on machine registers and flags
- Achieved with Haskell's type classes

Step 2: Instantiate Model Thrice

- Apply parameterized model to three implementations of Boolean operators

Equivalent to original model

More abstract than original model

Symbolic execution of original model

Step 3: Use BDD Model to Verify

- "i" a symbolic value
- rc6i' and rc6s' - program segments.
- What if verification doesn't succeed?

```
hugs> runPCE rc6i' \(i\) `isEqual` rc6s' i
```

True

Step 3: Use Bool3 Model to Test

hugs> runPCE rc6i' i 'isEqual` rc6s' i False

- Verification is complemented by testing:

Bool3

- Debug specification:
rc6Spec input1 == output1
rc6Spec input2 == output2
- Debug "runPCE" and "rc6prog":
runPCE rc6prog input1 == output1
runPCE rc6prog input2 == output2

Step 1: Parameterize Model

data Bool $=$ True | False

True \&\& $x=\mathbf{x}$
False \&\& x = False

False || $\mathbf{x}=\mathbf{x}$
True $|\mid x=$ True

$$
\begin{aligned}
& \text { class Boolean } b \text { where } \\
& \text { true : : b } \\
& \text { false : : b } \\
& \text { (\&\&) : : b }->\mathrm{b}->\mathrm{b} \\
& \text { (||) : : b }->\mathrm{b} \rightarrow \mathrm{~b} \\
& \text { not }: \text { : b }->\mathrm{b} \\
& \text { ito } \quad:: \mathrm{b}->\mathrm{b}->\mathrm{b}->\mathrm{b} \\
& \text { nor } \quad: \text { : } b->b->b \\
& \text { xor } \quad: \text { : b -> b -> b } \\
& \text { ute } \mathrm{c} a \mathrm{~b}= \\
& \text { c \&\& } a \operatorname{l|} \operatorname{not} c \& \& b \\
& \text { nor } a b=\operatorname{not}(a| | b) \\
& \text { xor a b = } \\
& \mathrm{a} \& \& \operatorname{not} \mathrm{~b}|\mid \text { not } \mathrm{a} \& \& \mathrm{~b}
\end{aligned}
$$

Step 1: Parameterize Model

- Generalizing PCE model to use Boolean
- Sometimes automatic:
- a \& \& b
- Sometimes easy:
- if a then b else c => ite a b c
- Sometimes harder:
- lookup table (toInt bs) => ???

Step 2: Instantiate Model Thrice

0	0	0	1	1	0	1	1

instance Boolean Bool where

0	0	1	$?$	$?$	0	1	$?$

instance Boolean BDD where

Step 2: Instantiate Model Thrice

```
data Bool3 = B3True | B3False | B3Unk
instance Boolean Bool3 where
    true = B3True
    false = B3False
    B3True && x = x
    B3False && x = B3False
    B3Unk && _ = B3Unk
    not B3True = B3False
    not B3False = B3True
    not B3Unk = B3Unk
```


Step 2: Instantiate Model Thrice

instance Boolean BDD where
true $=$ bddTrue
false $=$ bddFalse
(\&\&) = bddAnd
(||) = bddOr
not $=$ bddNot

- BDD primitives implemented by foreign calls to Buddy BDD library

Step 3: Use Models to Verify/Test

```
Hugs[AIM]> load "square.aim"
RO = 00000000000000000000000000000000 R1 = 00000000000000000000000000000000
R2 = 00000000000000000000000000000000 R3 = 00000000000000000000000000000000
R4 = 00000000000000000000000000000000 R5 = 00000000000000000000000000000000
R6 = 00000000000000000000000000000000 R7 = 00000000000000000000000000000000
->0: R7 = 00000000000000000000000000001000;
    1: Shift_Count = 00000000000000000000000000001000;
    2: PERMUTE (APFU10, R31, R31, R0, R7) | R1 = P1 | R2 = P2 | R3 = P3;
    3: PERMUTE (APFU2, R31, R31, R0, R31);
    4: PERMUTE (APFU4, R31, R31, R0, R31) | R5 = NL | R3 = SUB(R1, R3);
    5: PERMUTE (APFU1, R31, R31, R0, R31) | R2 = SUB(R1, R2);
    6: PERMUTE (APFU3, R31, R31, R0, R31);
```


Step 3: Use Models to Verify/Test

```
Hugs [AIM]> setReg R0 newVars16
R0 = 0000000000000000################ R1 = 00000000000000000000000000000000
R2 = 00000000000000000000000000000000 R3 = 00000000000000000000000000000000
R4 = 00000000000000000000000000000000 R5 = 00000000000000000000000000000000
R6 = 00000000000000000000000000000000 R7 = 00000000000000000000000000000000
->0: R7 = 00000000000000000000000000001000;
    1: Shift_Count = 00000000000000000000000000001000;
    2: PERMUTE (APFU10, R31, R31, R0, R7) | R1 = P1 | R2 = P2 | R3 = P3;
    3: PERMUTE (APFU2, R31, R31, R0, R31);
    4: PERMUTE (APFU4, R31, R31, R0, R31) | R5 = NL | R3 = SUB(R1, R3);
```


Step 3: Use Models to Verify/Test

```
Hugs[AIM]> step 4
R0 = 0000000000000000################ R1 = 000010000000000000001000########
R2 = 00000000########0000000000000000
R3 = 00000000########00000000########
R4 = 00000000000000000000000000000000
R5 = 00000000000000000000000000000000
R6 = 00000000000000000000000000000000 R7 = 00000000000000000000000000001000
    2: PERMUTE (APFU10, R31, R31, R0, R7) | R1 = P1 | R2 = P2 | R3 = P3;
    3: PERMUTE (APFU2, R31, R31, R0, R31);
->4: PERMUTE (APFU4, R31, R31, R0, R31) | R5 = NL | R3 = SUB(R1, R3);
    5: PERMUTE (APFU1, R31, R31, R0, R31) | R2 = SUB(R1, R2);
    6: PERMUTE (APFU3, R31, R31, R0, R31);
```


Step 3: Use Models to Verify/Test

```
Hugs[AIM]> step 4
R0 = 0000000000000000################ R1 = 000010000000000000001000########
R2 = 0000############00001000########
R3 = 0000############0000############
R4 = 00000000000000000000000000000000
R5 = 0000000000000000##############0#
R6 = 00000000000000000000000000000000
R7 = 00000000000000000000000000001000
6: PERMUTE (APFU3, R31, R31, R0, R31);
7: PERMUTE (APFU11, R31, R31, R3, R31) | R4 = P2 | R3 = LINEAR (P2_P3) \(\mid R 1=\) ADD (R5, NL) ;
\(->8: ~ R 6=A D D(A, A, L S L) ;\)
9: PERMUTE (APFU2, R31, R31, R2, R31) | R3 = SUB (R3, R4) ;
10: PERMUTE (APFU2, R31, R31, A, R31) | R6 = SUB (R6, NL, LSL) ;
```


Step 3: Use Models to Verify/Test

```
Hugs[AIM]> step 8
R0 = ##############################0#
R2 = 0000############00001000########
R4 = 00000000########00000000########
R6 = ##############################0#
    12: PERMUTE (APFU4, R31, R31, R3, R31) | R5 = ADD (R5, R1, LSL);
    13: PERMUTE (APFU12, R31, R31, R6, R31) | R5 = SUB(A, NL, LSL);
    14: RO = ADD (P1, A);
->15: JMP(15);
Hugs [AIM]> R0 `isEqual` (newVars16 * newVars16)
R0 == ##############################0# --> True
```

 R1 = 000000000000000\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
 R3 = 0000\#\#\#0\#\#\#\#\#\#\#\#0000\#\#\#0\#\#\#\#\#\#\#\#
R5 = \#0\#
R7 $=00000000000000000000000000001000$

Road Map

- AIM Overview
- Specifying Cryptographic Algorithms
- Block Ciphers on the PCE
- Stream Ciphers on the CCE
- Verification
- Summary

Summary

- Large gap between specification \& implementation
- Multiple techniques to span the gap
- Domain Abstractions (DSL)
- Configuration (PNLFU or Logic) Generators
- Machine Models
- Parameterized Models: Standard, Symbolic
- Executable Specifications
- Haskell is the infrastructure for it all

A Large Gap

Specification

Implementation

PCE

Domain Abstractions (DSL)

Specification

Implementation

> RC6 micro-code
> RC6 Perm/NLU

PCE

Configuration Generators

Specification
Implementation

Machine Models (Std, Symbolic)

Specification

Implementation

Executable Specifications

Specification

Implementation

Haskell is the infrastructure

Accomplishments

- Designed DSL for Bit-Functions/Finite-Shift-Registers
- Clean extension of previous DSL for Permutations/S-boxes
- Formal semantics
- Algebra
- Wrote HW models for PCE and CCE
- Developed "parameterized" model for PCE
- Developed specifications and implementations
- RC6 (needs multiplication), Rinjdael, TEA
- Integrated BDD package into Haskell
- Verified 3 micro-code implementations of squaring

Lessons

- A single language greatly simplified our job

Using Haskell to

- Embed DSL . Model . Specify enables us to
- Verify in Haskell
- Investment in DSL design was worthwhile
- Can amortize over many ciphers
- Makes specifications shorter and clearer
- Can generate correct configurations
- Automatically for PCE, semi-automatically for CCE.
- Haskell's overloading (type classes) greatly facilitated
- Embedding DSL into Haskell
- Model "parameterization"

