
Specification of AIM Crypto
Engines

Mark Tullsen
John Launchbury
Thomas Nordin

Oregon Graduate Institute

Road Map

� AIM Overview
� Specifying Cryptographic Algorithms

� Block Ciphers on the PCE
� Stream Ciphers on the CCE

� Verification
� Summary

AIM

� Motorola AIM
(Advanced INFOSEC Machine)

� On-board encryption engines
� MASK technology

(Mathematically Assured Separation Kernel)
� Physically tamper-proof

www.motorola.com/GSS/SSTG/ISSPD/Embedded/AIM/

AIM Architecture

Key and process management

Crypto controller

Programmable
Block-cipher

Crypto
Engine
(PCE)

Configurable
Stream-cipher

Crypto
Engine
(CCE)

Channels
input

Channels
output

Road Map

� AIM Overview
� Specifying Cryptographic Algorithms

� Block Ciphers on the PCE (previous work)
� A DSL1 for permutations and S-boxes

� Stream Ciphers on the CCE
� A DSL for bit-functions and feedback shift registers

� Verification
� Summary

1 DSL – Domain Specific Language

PCE Architecture (Simplified)

� Execution components
� APFU (Permutation Function

Unit)
� 16 predefined permutations

� NLU (Non-Linear Unit)
� 16 one-bit memories
� Independently addressable

� LFU (Linear Function Unit)
� XOR unit

� ALU

Registers

APFU NLU LFU ALU

Memory
Access

A Recipe for a DSL

� Identify an abstraction (or Abstract Data Type)
� Think “values” (functionally, not procedurally):

� Yes: integers, complex numbers, polynomials, sequences, etc.
� No: linked-list, arrays, pointers, etc.

� Develop compositional operators for it
� Question: How can we create primitive values?
� Question: How can we produce new values from old?

� Look for natural algebraic laws
� Aids design of abstractions & operators
� Provides understanding of the operators

Permutations (Abstraction No. 1)

� Sequence of numbers
� Numbered left to right
� Beginning at 1

� Examples
� [4,1,2,3]
� [2,4,2,2,4,3,6]
� [8,1,7,4,1,5,3]

� Permutations can be any
size
� 16 or 32 bits is common

1 2 3 4

4 1 2 3

8 1 7 4 1 5 3

1 2 3 4 5 6 7 8

2 4 2 2 4 3 6

1 2 3 4 5 6

`into` Operator

� Pipe the output of one
permutation into the input of
another

� Like function composition 8 2 6 2 2 4 2

[2,4,2,2,4,3,6]
 `into`
[8,1,7,4,1,5,3]
=
[8,2,6,2,2,4,2]

1 2 3 4 5 6 7 8

++ Operator

� Joins two
permutations together,
side by side
� Each permutation

draws from the same
input bits

� Obtained simply by
appending the two
sequences together

1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8

2 4 8 2

7 3 1 6

1 2 3 4 5 6 7 8

2 4 8 2 7 3 1 6

[2,4,8,2] ++ [7,3,1,6]
 = [2,4,8,2,7,3,1,6]

More Operations
xs `select` [n..m]

 Selects bits n through m from xs
xs <<< n

Rotate xs left by n
xs >>> n

Rotate xs right by n
pad n xs

Pad xs on left to be n-bits wide
xs `beside` ys

Combine xs and ys in parallel
size xs

The number of bits output by xs (length of sequence)

Permutation Laws
� Size

size (xs ++ ys) = size xs + size ys
size (xs `beside` ys) = size xs + size ys
size (xs `into` ys) = size ys
size (pad n xs) = n

� Rotating
(xs >>> m) >>> n = xs >>> m+n
(xs <<< m) <<< n = xs <<< m+n

 xs >>> 0 = xs
 xs <<< 0 = xs

(xs >>> m) <<< n =
 if m > n then xs >>> (m-n) else xs <<< (n-m)

Permutation Laws (2)

� `into`
[1..] `into` xs = xs
xs `into` [1..size xs] = xs
xs `into` (ys ++ zs) = (xs `into` ys) ++ (xs `into` zs)
xs `into` (ys <<< n) = (xs `into` ys) <<< n
xs `into` (ys >>> n) = (xs `into` ys) >>> n

� Associativity
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)
(xs `beside` ys) `beside` zs
 = xs `beside` (ys `beside` zs)
(xs `select` ys) `select` zs
 = xs `select` (ys `select` zs)

S-boxes (Abstraction No. 2)

� Every crypto-algorithm needs non-linear components
� Multiplication (RC6)
� Galois field inversion (Rijndael)
� DES has 8 separate S-boxes; each 6-bit in, 4-bit out

� An S-box is an arbitrary function combined with a
“addressing permutation”

S-box Operations & Laws

� Creating S-boxes:
sbox :: Perm -> Int -> [Integer] -> Sbox

� Combining S-boxes:
pack :: Perm -> [Sbox] -> Sbox
extend :: [Sbox] -> Sbox
intoS :: Perm -> Sbox -> Sbox

� Laws:
p `intoS` (sbox q n xs) = sbox (p `into` q) n xs

Road Map

� AIM Overview
� Specifying Cryptographic Algorithms

� Block Ciphers on the PCE
� A DSL for permutations and S-boxes

� Stream Ciphers on the CCE
� A DSL for bit-functions and feedback shift registers

� Verification
� Summary

CCE Architecture (Simplified)

� Micro-sequencer
� Simple RISC architecture
� Interfaces with Crypto Controller
� Controls Cryptographic

Coprocessor

� Cryptographic Coprocessor
� Control Registers
� State Registers
� Configurable Logic

� The difficulty of programming
the CCE lies in specifying this

Cryptographic
Coprocessor

State Regs.

Micro-
Sequencer

Configurable
Logic

Control Regs.

Bit-Functions (Abstraction No. 3)

� Permutations allow for moving bits around

� Bit-Functions allow for Boolean functions
1 2 3 4

1&&4 3||4

&& ||

1 2 3 4

4 1 2 3

Bit-Function Examples
� Rotate (4 to 4 Bit-Function)

[4,1,2,3]

� Note: All permutations are Bit-Functions!

� Odd Parity (4 to 1 Bit-Function)

[1 `xor` 2 `xor` 3 `xor` 4]

� Two Bit Adder (4 to 2 Bit-Function)

[1 `xor` 3
, 2 `xor` 4 `xor` (1 && 3)
]

Bit-Function Operations

� Permutation operations extend to Bit-Functions:
� `into`
� ++
� `select`
� <<<, >>>
� pad
� `beside`
� size
� …

Bit-Function Operations

� Operations on “Input Bits”:
� Standard Boolean operators (overloaded):

1 && 2, 1 || 2, …
� Additional operators:

true, false, ite 1 2 3, 1 `xor` 2, …

� Bit-Function Operations:
ites b [x1,x2,…] [y1,y2,…] = [ite b x1 y1, ite b x2 y2, …]

Bit-Function Laws

� Permutation laws extend to Bit-Functions
(xs >>> m) >>> n = xs >>> m+n

� Boolean laws apply to each “bit”
[1 && true] = [1]

� Bit-Function Laws
ites a (ites b xs ys) zs =
 ites b (ites a xs zs) (ites a ys zs)

A Common Structure
in Stream Ciphers

� Feedback Shift Register (FSR)

b1 bn-1b2 b3 bn

Feedback Function

. . .

� Generalized FSR

b1 bn-1b2 b3 bn

Feedback Function

. . .

Output
Function

Generalized FSR
(Abstraction No. 4)

� FSR = (next,output,inputWidth)

next :: BitFunction (Q � I � Q)
output :: BitFunction (Q � O)
inputWidth :: Int

I

O

b1 bn-1b2 b3 bn

next

. . .

output

Q

FSR Compared to Moore Machine

� Moore Machine:
� Q = set of states
� I = set of inputs
� O = set of outputs
� q0 :: Q = initial state
� next :: Q � I � Q = next state function
� output :: Q � O = output function

� FSR Differences:
� FSR has no initial state
� State (Q) represented as a bit-vector, not arbitrary set
� Input and output (I and O) are bit-vectors, not sets

� compose :: FSR -> FSR -> FSR

� cycle :: FSR -> FSR

� parallel :: FSR -> FSR -> FSR

FSR Operators: Basic Three
(ab)

(a*)

(a|b)

More FSR Operators
� cascade :: [FSR] -> FSR

� outputInto :: FSR -> BitFunction -> FSR

� intoInput :: BitFunction -> FSR -> FSR

. . .

f

f

And More FSR Operators

� clocked :: FSR -> FSR

� clocks :: FSR -> FSR -> FSR

� N.B.: A FSR does not have a clock.

Example: Simple Shift Register

shift :: Int -> FSR
shift n = ([1..n] >>> 1, [n], 0)

Example:
 shift 8 = ([8,1,2,3,4,5,6,7], [8], 0)

1 72 3 84 5 6

Note:
 FSR = (BitFunction,BitFunction,Int)

Example:
Linear Feedback Shift Register

lfsr :: [Int] -> FSR

Example:
 lfsr [2,3,4,8] =
 ([(2 `xor` 3 `xor` 4 `xor` 8), 1, 2, 3, 4, 5, 6, 7]
 ,[8]
 ,0)

1 72 3 8

2�3�4�8

4 5 6

Example: Geffe Generator

geffe :: [Int] -> [Int] -> [Int] -> FSR
geffe xs ys zs =
 (lfsr xs `parallel` lfsr ys `parallel` lfsr zs)
 `outputInto` [ite 1 2 3]

lfsr xs

lfsr zs

lfsr ys

Mux

Select

Example: LILI-128

LFSRc LFSRd

fc fd

clockctl

2

 clockctl

Input Output sequence
0 0,0,0,1
1 0,0,1,1
2 0,1,1,1
3 1,1,1,1

Example: LILI-128
lili128 =
 cascade [shift 4 `clocks`
 lfsr’ [2,14,15,17,31,33,35,39] [12,20]
 , clockctl `clocks`
 lfsr’ [1,39,42,53,55,80,83,89] fd
]
fd = [1,2,4,8,13,21,31,45,66,81] `into` [fd']
clockctl =
 ([4,1,2,3] ++ ites 1 [i1 && i2, i2, i1 || i2]
 [false, 5, 6]
 ,[1 || 7]
 ,2)

FSR Laws

� Associative Laws

(x `parallel` y) `parallel` z = x `parallel` (y `parallel` z)

(x `compose` y) `compose` z = x `compose` (y `compose` z)

� Moving computation between FSRs

(x `outputInto` f) `compose` y = x `compose` (f `inputInto` y)

Road Map

� AIM Overview
� Specifying Cryptographic Algorithms

� Block Ciphers on the PCE
� Stream Ciphers on the CCE

� Verification
� Is an implementation (micro-code and configuration)

equivalent to the specification?

� Summary

Verification: Three Steps

� Parameterize model w.r.t. bit-operations on
registers

� Instantiate to three implementations of
“Booleans”
(Giving us three related models)

� Do testing and verification using these models

Step 1: Parameterize Model

� Transform PCE Model:
� Parameterize over Boolean operators on machine

registers and flags
� Achieved with Haskell’s type classes

PCE
Model

PCE
Model

Bool

Step 2: Instantiate Model Thrice

� Apply parameterized
model to three
implementations of
Boolean operators

PCE
Model

Bool

PCE
Model

Bool3

PCE
Model

BDD

Equivalent to
original model

More abstract than
original model

Symbolic execution
of original model

Step 3: Use BDD Model to Verify
� “i” a symbolic value

� rc6i’ and rc6s’ – program
 segments.

� What if verification doesn’t
succeed?

hugs> runPCE rc6i’ i `isEqual` rc6s’ i

True

runPCE

BDD

rc6Spec

BDD
rc6prog

Step 3: Use Bool3 Model to Test

hugs> runPCE rc6i’ i `isEqual` rc6s’ i

False

runPCE

BDD

rc6Spec

BDD
rc6prog

� Debug specification:
 rc6Spec input1 == output1

 rc6Spec input2 == output2

 . . .

� Debug “runPCE” and “rc6prog”:
 runPCE rc6prog input1 == output1

 runPCE rc6prog input2 == output2

 . . .

runPCE

Bool3

rc6Spec

Bool3
rc6prog

� Verification is
 complemented by testing:

Step 1: Parameterize Model

data Bool = True | False

True && x = x
False && x = False

False || x = x
True || x = True

...

class Boolean b where
 true :: b
 false :: b
 (&&) :: b -> b -> b
 (||) :: b -> b -> b
 not :: b -> b
 ite :: b -> b -> b -> b
 nor :: b -> b -> b
 xor :: b -> b -> b

 ite c a b =
 c && a || not c && b
 nor a b = not (a || b)
 xor a b =
 a && not b || not a && b

Step 1: Parameterize Model

� Generalizing PCE model to use Boolean
� Sometimes automatic:

� a && b

� Sometimes easy:
� if a then b else c => ite a b c

� Sometimes harder:
� lookup table (toInt bs) => ???

Step 2: Instantiate Model Thrice

instance Boolean Bool where
…

instance Boolean Bool3 where
…

instance Boolean BDD where
…

0 10 0 11 1 0

0 0 0 1v1

0 10 1 ?? ? 0

v1 v1

v2 v2

0 1

Step 2: Instantiate Model Thrice
data Bool3 = B3True | B3False | B3Unk

instance Boolean Bool3 where
 true = B3True
 false = B3False

 B3True && x = x
 B3False && x = B3False
 B3Unk && _ = B3Unk

 not B3True = B3False
 not B3False = B3True
 not B3Unk = B3Unk
 . . .

Step 2: Instantiate Model Thrice

instance Boolean BDD where
 true = bddTrue
 false = bddFalse

 (&&) = bddAnd
 (||) = bddOr
 not = bddNot

� BDD primitives implemented by foreign calls to
Buddy BDD library

Step 3: Use Models to Verify/Test

Hugs[AIM]> load "square.aim"
R0 = 00000000000000000000000000000000 R1 = 00000000000000000000000000000000
R2 = 00000000000000000000000000000000 R3 = 00000000000000000000000000000000
R4 = 00000000000000000000000000000000 R5 = 00000000000000000000000000000000
R6 = 00000000000000000000000000000000 R7 = 00000000000000000000000000000000

->0: R7 = 00000000000000000000000000001000;
 1: Shift_Count = 00000000000000000000000000001000;
 2: PERMUTE(APFU10, R31, R31, R0, R7) | R1 = P1 | R2 = P2 | R3 = P3;
 3: PERMUTE(APFU2, R31, R31, R0, R31);
 4: PERMUTE(APFU4, R31, R31, R0, R31) | R5 = NL | R3 = SUB(R1, R3);
 5: PERMUTE(APFU1, R31, R31, R0, R31) | R2 = SUB(R1, R2);
 6: PERMUTE(APFU3, R31, R31, R0, R31);

Step 3: Use Models to Verify/Test

Hugs[AIM]> setReg R0 newVars16
R0 = 0000000000000000################ R1 = 00000000000000000000000000000000
R2 = 00000000000000000000000000000000 R3 = 00000000000000000000000000000000
R4 = 00000000000000000000000000000000 R5 = 00000000000000000000000000000000
R6 = 00000000000000000000000000000000 R7 = 00000000000000000000000000000000

->0: R7 = 00000000000000000000000000001000;
 1: Shift_Count = 00000000000000000000000000001000;
 2: PERMUTE(APFU10, R31, R31, R0, R7) | R1 = P1 | R2 = P2 | R3 = P3;
 3: PERMUTE(APFU2, R31, R31, R0, R31);
 4: PERMUTE(APFU4, R31, R31, R0, R31) | R5 = NL | R3 = SUB(R1, R3);

Step 3: Use Models to Verify/Test

Hugs[AIM]> step 4
R0 = 0000000000000000################ R1 = 000010000000000000001000########
R2 = 00000000########0000000000000000 R3 = 00000000########00000000########
R4 = 00000000000000000000000000000000 R5 = 00000000000000000000000000000000
R6 = 00000000000000000000000000000000 R7 = 00000000000000000000000000001000

 2: PERMUTE(APFU10, R31, R31, R0, R7) | R1 = P1 | R2 = P2 | R3 = P3;
 3: PERMUTE(APFU2, R31, R31, R0, R31);
->4: PERMUTE(APFU4, R31, R31, R0, R31) | R5 = NL | R3 = SUB(R1, R3);
 5: PERMUTE(APFU1, R31, R31, R0, R31) | R2 = SUB(R1, R2);
 6: PERMUTE(APFU3, R31, R31, R0, R31);

Step 3: Use Models to Verify/Test

Hugs[AIM]> step 4
R0 = 0000000000000000################ R1 = 000010000000000000001000########
R2 = 0000############00001000######## R3 = 0000############0000############
R4 = 00000000000000000000000000000000 R5 = 0000000000000000##############0#
R6 = 00000000000000000000000000000000 R7 = 00000000000000000000000000001000

 6: PERMUTE(APFU3, R31, R31, R0, R31);
 7: PERMUTE(APFU11, R31, R31, R3, R31) | R4 = P2 | R3 = LINEAR(P2_P3) | R1 =

ADD(R5, NL);
->8: R6 = ADD(A, A, LSL);
 9: PERMUTE(APFU2, R31, R31, R2, R31) | R3 = SUB(R3, R4);
 10: PERMUTE(APFU2, R31, R31, A, R31) | R6 = SUB(R6, NL, LSL);

Step 3: Use Models to Verify/Test

Hugs[AIM]> step 8
R0 = ##############################0# R1 = 000000000000000#################
R2 = 0000############00001000######## R3 = 0000###0########0000###0########
R4 = 00000000########00000000######## R5 = ##############################0#
R6 = ##############################0# R7 = 00000000000000000000000000001000

 12: PERMUTE(APFU4, R31, R31, R3, R31) | R5 = ADD(R5, R1, LSL);
 13: PERMUTE(APFU12, R31, R31, R6, R31) | R5 = SUB(A, NL, LSL);
 14: R0 = ADD(P1, A);
->15: JMP(15);

Hugs[AIM]> R0 `isEqual` (newVars16 * newVars16)
R0 == ##############################0# --> True

Road Map

� AIM Overview
� Specifying Cryptographic Algorithms

� Block Ciphers on the PCE
� Stream Ciphers on the CCE

� Verification
� Summary

Summary

� Large gap between specification &
implementation

� Multiple techniques to span the gap
� Domain Abstractions (DSL)
� Configuration (PNLFU or Logic) Generators
� Machine Models

� Parameterized Models: Standard, Symbolic

� Executable Specifications

� Haskell is the infrastructure for it all

RC6 Algorithm

A Large Gap

Specification Implementation

RC6 micro-code

RC6 Perm/NLU

PCE

RC6 Algorithm

Domain Abstractions (DSL)

Specification Implementation

RC6 micro-code

RC6 Perm/NLU

RC6
Perms/S-Boxes

PCE

RC6 Algorithm

Configuration Generators

Specification Implementation

RC6 micro-code

RC6 Perm/NLU

Perm/NLU
Generator

RC6
Perms/S-Boxes

PCE

PCE
Standard/Symbolic

Model

RC6 Algorithm

Machine Models (Std, Symbolic)

Specification Implementation

RC6 micro-code

RC6 Perm/NLU

Perm/NLU
Generator

RC6
Perms/S-Boxes

PCE
Standard/Symbolic

Model

testing
RC6 Algorithm

Executable Specifications

Specification Implementation

RC6 micro-code

RC6 Perm/NLU

Haskell Perm/NLU
Generator

RC6
Perms/S-Boxes

PCE
Standard/Symbolic

Model

RC6 Algorithm

Haskell is the infrastructure

Specification Implementation

RC6 micro-code

RC6 Perm/NLU

Haskell Perm/NLU
Generator

RC6
Perms/S-Boxes

verification

Achieved
with

Haskell

Embedded
in Haskell Written in

Haskell

Accomplishments

� Designed DSL for Bit-Functions/Finite-Shift-Registers
� Clean extension of previous DSL for Permutations/S-boxes
� Formal semantics
� Algebra

� Wrote HW models for PCE and CCE
� Developed “parameterized” model for PCE
� Developed specifications and implementations

� RC6 (needs multiplication), Rinjdael, TEA

� Integrated BDD package into Haskell
� Verified 3 micro-code implementations of squaring

Lessons
� A single language greatly simplified our job

 Using Haskell to
� Embed DSL ■ Model ■ Specify

 enables us to
� Verify in Haskell

� Investment in DSL design was worthwhile
� Can amortize over many ciphers
� Makes specifications shorter and clearer
� Can generate correct configurations

� Automatically for PCE, semi-automatically for CCE.

� Haskell’s overloading (type classes) greatly facilitated
� Embedding DSL into Haskell
� Model “parameterization”

	Specification of AIM Crypto Engines
	Road Map
	AIM
	AIM Architecture
	Road Map
	PCE Architecture (Simplified)
	A Recipe for a DSL
	Permutations (Abstraction No. 1)
	`into` Operator
	++ Operator
	More Operations
	Permutation Laws
	Permutation Laws (2)
	S-boxes (Abstraction No. 2)
	S-box Operations & Laws
	Road Map
	CCE Architecture (Simplified)
	Bit-Functions (Abstraction No. 3)
	Bit-Function Examples
	Bit-Function Operations
	Bit-Function Operations
	Bit-Function Laws
	A Common Structurein Stream Ciphers
	Generalized FSR(Abstraction No. 4)
	FSR Compared to Moore Machine
	FSR Operators: Basic Three
	More FSR Operators
	And More FSR Operators
	Example: Simple Shift Register
	Example: Linear Feedback Shift Register
	Example: Geffe Generator
	Example: LILI-128
	Example: LILI-128
	FSR Laws
	Road Map
	Verification: Three Steps
	Step 1: Parameterize Model
	Step 2: Instantiate Model Thrice
	Step 3: Use BDD Model to Verify
	Step 3: Use Bool3 Model to Test
	Step 1: Parameterize Model
	Step 1: Parameterize Model
	Step 2: Instantiate Model Thrice
	Step 2: Instantiate Model Thrice
	Step 2: Instantiate Model Thrice
	Step 3: Use Models to Verify/Test
	Step 3: Use Models to Verify/Test
	Step 3: Use Models to Verify/Test
	Step 3: Use Models to Verify/Test
	Step 3: Use Models to Verify/Test
	Road Map
	Summary
	A Large Gap
	Domain Abstractions (DSL)
	Configuration Generators
	Machine Models (Std, Symbolic)
	Executable Specifications
	Haskell is the infrastructure
	Accomplishments
	Lessons

