Specification of AIM Crypto Engines

Mark Tullsen John Launchbury Thomas Nordin

Oregon Graduate Institute

🚽 🔹 AIM Overview

- Specifying Cryptographic Algorithms
 - Block Ciphers on the PCE
 - Stream Ciphers on the CCE
- Verification
- Summary

Motorola AIM (Advanced INFOSEC Machine)

- On-board encryption engines
- MASK technology (Mathematically Assured Separation Kernel)
- Physically tamper-proof

www.motorola.com/GSS/SSTG/ISSPD/Embedded/AIM/

- AIM Overview
- Specifying Cryptographic Algorithms
 - Block Ciphers on the PCE (previous work)
 - A DSL¹ for permutations and S-boxes
 - Stream Ciphers on the CCE
 - A DSL for bit-functions and feedback shift registers
- Verification
- Summary

¹ DSL – Domain Specific Language

PCE Architecture (Simplified)

- Execution components
 - APFU (Permutation Function Unit)
 - 16 predefined permutations
 - NLU (Non-Linear Unit)
 - 16 one-bit memories
 - Independently addressable
 - LFU (Linear Function Unit)
 - XOR unit
 - ALU

A Recipe for a DSL

- Identify an abstraction (or Abstract Data Type)
 - Think "values" (functionally, not procedurally):
 - Yes: integers, complex numbers, polynomials, sequences, etc.
 - No: linked-list, arrays, pointers, etc.
- Develop compositional operators for it
 - Question: How can we create primitive values?
 - Question: How can we produce new values from old?
- Look for natural algebraic laws
 - Aids design of abstractions & operators
 - Provides understanding of the operators

Permutations (Abstraction No. 1)

- Sequence of numbers
 - Numbered left to right
 - Beginning at 1
- Examples
 - [4,1,2,3]
 - [2,4,2,2,4,3,6]
 - [8,1,7,4,1,5,3]
- Permutations can be any size
 - 16 or 32 bits is common

- Pipe the output of one permutation into the input of another
- Like function composition

++ Operator

- Joins two permutations together, side by side
 - Each permutation draws from the same input bits
 - Obtained simply by appending the two sequences together

More Operations

xs `select`	[nm]
	Selects bits n through m from xs
xs <<< n	
	Rotate xs left by n
xs >>> n	
	Rotate xs right by n
pad n xs	
	Pad xs on left to be n-bits wide
xs `beside`	ys
	Combine xs and ys in parallel
size xs	
	The number of bits output by xs (length of sequence)

Permutation Laws

Size size (xs ++ ys) = size xs + size ys size (xs `beside` ys) = size xs + size ys size (xs `into` ys) = size ys size (pad n xs) = n Rotating (xs >>> m) >>> n = xs >>> m+n $(xs \ll m) \ll n = xs \ll m+n$ xs >>> 0 = xs $xs \ll 0 = xs$ (xs >>> m) <<< n =if m > n then xs >>> (m-n) else xs <<< (n-m)

Permutation Laws (2)

`into`		
[1] `into` xs = xs		
xs `into` [1size xs] = xs		
xs `into` (ys ++ zs) = (xs `into` ys) ++ (xs `into` zs)		
xs `into` (ys <<< n) = (xs `into` ys) <<< n		
xs `into` (ys >>> n) = (xs `into` ys) >>> n		
Associativity		
(xs ++ ys) ++ zs = xs ++ (ys ++ zs)		
(xs `beside` ys) `beside` zs		
= xs `beside` (ys `beside` zs)		
(xs `select` ys) `select` zs		
= xs `select` (ys `select` zs)		

S-boxes (Abstraction No. 2)

- Every crypto-algorithm needs non-linear components
 - Multiplication (RC6)
 - Galois field inversion (Rijndael)
 - DES has 8 separate S-boxes; each 6-bit in, 4-bit out

 An S-box is an arbitrary function combined with a "addressing permutation"

S-box Operations & Laws

Creating S-boxes: sbox :: Perm -> Int -> [Integer] -> Sbox

Combining S-boxes:

pack :: Perm -> [Sbox] -> Sbox

extend :: [Sbox] -> Sbox

intoS :: Perm -> Sbox -> Sbox

Laws:

p `intoS` (sbox q n xs) = sbox (p `into` q) n xs

- AIM Overview
- Specifying Cryptographic Algorithms
 - Block Ciphers on the PCE
 - A DSL for permutations and S-boxes
 - Stream Ciphers on the CCE
 - A DSL for bit-functions and feedback shift registers
- Verification
- Summary

CCE Architecture (Simplified)

- Micro-sequencer
 - Simple RISC architecture
 - Interfaces with Crypto Controller
 - Controls Cryptographic Coprocessor
- Cryptographic Coprocessor
 - Control Registers
 - State Registers
 - Configurable Logic
 - The difficulty of programming the CCE lies in specifying this

Bit-Functions (Abstraction No. 3)

Permutations allow for moving bits around

Bit-Functions allow for Boolean functions

Bit-Function Examples

- Rotate (4 to 4 Bit-Function)
 [4,1,2,3]
 - Note: All permutations are Bit-Functions!
- Odd Parity (4 to 1 Bit-Function)
 - [1 `xor` 2 `xor` 3 `xor` 4]
- Two Bit Adder (4 to 2 Bit-Function)

```
[ 1 `xor` 3
, 2 `xor` 4 `xor` (1 && 3)
]
```

Bit-Function Operations

- Permutation operations extend to Bit-Functions:
 - `into`
 - ++
 - `select`
 - <<<, >>>
 - pad
 - `beside`
 - size

...

Bit-Function Operations

Operations on "Input Bits":

- Standard Boolean operators (overloaded):
 - 1 && 2, 1 || 2, ...
- Additional operators:

true, false, ite 1 2 3, 1 `xor` 2, ...

 Bit-Function Operations: ites b [x1,x2,...] [y1,y2,...] = [ite b x1 y1, ite b x2 y2, ...]

- Permutation laws extend to Bit-Functions (xs >>> m) >>> n = xs >>> m+n
- Boolean laws apply to each "bit" [1 && true] = [1]

A Common Structure in Stream Ciphers

Feedback Shift Register (FSR)

Generalized FSR

Generalized FSR (Abstraction No. 4)

- FSR = (next,output,inputWidth)
 - next :: BitFunction $(Q \times I \rightarrow Q)$ output :: BitFunction $(Q \rightarrow O)$ inputWidth :: Int

FSR Compared to Moore Machine

- Moore Machine:
 - Q = set of states
 - I = set of inputs
 - O = set of outputs
 - q0 :: Q = initial state
 - next :: $Q \times I \rightarrow Q$ = next state function
 - output :: $Q \rightarrow O$ = output function
- FSR Differences:
 - FSR has no initial state
 - State (Q) represented as a bit-vector, not arbitrary set
 - Input and output (I and O) are bit-vectors, not sets

FSR Operators: Basic Three

(a*)

compose :: FSR -> FSR -> FSR (ab)

cycle :: FSR -> FSR

parallel :: FSR -> FSR -> FSR (a|b)

cascade :: [FSR] -> FSR

outputInto :: FSR -> BitFunction -> FSR

intoInput :: BitFunction -> FSR -> FSR

clocked :: FSR -> FSR

clocks :: FSR -> FSR -> FSR

N.B.: A FSR does not have a clock.

Example: Simple Shift Register

shift :: Int -> FSR shift n = ([1..n] >>> 1, [n], 0)

Example: shift 8 = ([8,1,2,3,4,5,6,7], [8], 0)

Note: FSR = (BitFunction,BitFunction,Int)

Example: Linear Feedback Shift Register

lfsr :: [Int] -> FSR

Example: Geffe Generator

```
geffe :: [Int] -> [Int] -> [Int] -> FSR
geffe xs ys zs =
  (lfsr xs `parallel` lfsr ys `parallel` lfsr zs)
  `outputInto` [ite 1 2 3]
```


Example: LILI-128

clockctl		
<u>Input</u> o	Output sequence	
1	0,0,1,1	
2	0,1,1,1	
3	1,1,1,1	

Example: LILI-128

```
1i1i128 =
  cascade [ shift 4 `clocks`
             lfsr' [2,14,15,17,31,33,35,39] [12,20]
          , clockctl `clocks`
             lfsr' [1,39,42,53,55,80,83,89] fd
          1
fd
         = [1,2,4,8,13,21,31,45,66,81] `into` [fd']
clockctl =
  ([4,1,2,3] ++ ites 1 [i1 && i2, i2, i1 || i2]
                        [false, 5, 6]
  , [1 || 7]
  ,2)
```


Associative Laws

```
(x `parallel` y) `parallel` z = x `parallel` (y `parallel` z)
```

(x `compose` y) `compose` z = x `compose` (y `compose` z)

Moving computation between FSRs

(x `outputInto` f) `compose` y = x `compose` (f `inputInto` y)

- AIM Overview
- Specifying Cryptographic Algorithms
 - Block Ciphers on the PCE
 - Stream Ciphers on the CCE
- Verification
 - Is an implementation (micro-code and configuration) equivalent to the specification?
 - Summary

Verification: Three Steps

- Parameterize model w.r.t. bit-operations on registers
- Instantiate to three implementations of "Booleans" (Giving us three related models)
- Do testing and verification using these models

Step 1: Parameterize Model

Transform PCE Model:

- Parameterize over Boolean operators on machine registers and flags
 - Achieved with Haskell's type classes

 Apply parameterized model to three implementations of Boolean operators

Equivalent to original model

More abstract than original model

BDD PCE Model

Symbolic execution of original model

Step 3: Use BDD Model to Verify

hugs> runPCE rc6i' i `isEqual` rc6s' i

True

- "i" a symbolic value
- rc6i' and rc6s' program segments.
- What if verification doesn't succeed?

Step 3: Use Bool3 Model to Test

hugs> runPCE rc6i' i `isEqual` rc6s' i False

 Verification is complemented by testing:

• Debug specification: rc6Spec input1 == output1 rc6Spec input2 == output2

. . .

. . .

Debug "runPCE" and "rc6prog": runPCE rc6prog input1 == output1 runPCE rc6prog input2 == output2

Step 1: Parameterize Model

data Bool = True | False True && x = x False && x = False False || x = x True || x = True

. . .

class Boolean b where true :: b false :: b (&&) :: b -> b -> b (||) :: b -> b -> b not :: $b \rightarrow b$ ite :: b -> b -> b -> b nor :: $b \rightarrow b \rightarrow b$ xor :: $b \rightarrow b \rightarrow b$ ite c a b =c & a || not c & b nor a b = not (a || b)xor a b =a & w not b || not a & w b

Step 1: Parameterize Model

Generalizing PCE model to use Boolean

- Sometimes automatic:
 - a && b
- Sometimes easy:
 - if a then b else c => ite a b c
- Sometimes harder:
 - lookup table (toInt bs) => ???

...

...

...

instance Boolean Bool where

instance Boolean Bool3 where

instance Boolean BDD where

data Bool3 = B3True | B3False | B3Unk

instance Boolean Bool3 where

- true = B3True
- false = B3False
- B3True && x = xB3False && x = B3False
- B3Unk && = B3Unk

not B3True = B3False
not B3False = B3True
not B3Unk = B3Unk

• •

instance Boolean BDD where

- true = bddTrue
- false = bddFalse
- (&&) = bddAnd
- (||) = bddOr
- not = bddNot

 BDD primitives implemented by foreign calls to Buddy BDD library

Hugs[AIM]> load "square.aim"

- - 2: PERMUTE (APFU10, R31, R31, R0, R7) | R1 = P1 | R2 = P2 | R3 = P3;
 - 3: PERMUTE (APFU2, R31, R31, R0, R31);
 - 4: PERMUTE (APFU4, R31, R31, R0, R31) | R5 = NL | R3 = SUB(R1, R3);
 - 5: PERMUTE (APFU1, R31, R31, R0, R31) | R2 = SUB(R1, R2);
 - 6: PERMUTE (APFU3, R31, R31, R0, R31);

Hugs[AIM]> setReg R0 newVars16

- - 2: PERMUTE (APFU10, R31, R31, R0, R7) | R1 = P1 | R2 = P2 | R3 = P3;
 - 3: PERMUTE (APFU2, R31, R31, R0, R31);
 - 4: PERMUTE (APFU4, R31, R31, R0, R31) | R5 = NL | R3 = SUB(R1, R3);

Hugs[AIM]> step 4

- 2: PERMUTE (APFU10, R31, R31, R0, R7) | R1 = P1 | R2 = P2 | R3 = P3;
- 3: PERMUTE (APFU2, R31, R31, R0, R31);
- ->4: PERMUTE (APFU4, R31, R31, R0, R31) | R5 = NL | R3 = SUB(R1, R3);
 - 5: PERMUTE (APFU1, R31, R31, R0, R31) | R2 = SUB(R1, R2);

6: PERMUTE (APFU3, R31, R31, R0, R31);

Hugs[AIM] > step 8

12: PERMUTE (APFU4, R31, R31, R3, R31) | R5 = ADD (R5, R1, LSL); 13: PERMUTE (APFU12, R31, R31, R6, R31) | R5 = SUB(A, NL, LSL); 14: R0 = ADD (P1, A);

->15: JMP(15);

- AIM Overview
- Specifying Cryptographic Algorithms
 - Block Ciphers on the PCE
 - Stream Ciphers on the CCE
- Verification
- 🚽 🔹 Summary

- Large gap between specification & implementation
- Multiple techniques to span the gap
 - Domain Abstractions (DSL)
 - Configuration (PNLFU or Logic) Generators
 - Machine Models
 - Parameterized Models: Standard, Symbolic
 - Executable Specifications
- Haskell is the infrastructure for it all

PCE

Domain Abstractions (DSL)

Specification

Implementation

PCE

Configuration Generators

Machine Models (Std, Symbolic)

Executable Specifications

Specification

Implementation

Haskell is the infrastructure

Accomplishments

- Designed DSL for Bit-Functions/Finite-Shift-Registers
 - Clean extension of previous DSL for Permutations/S-boxes
 - Formal semantics
 - Algebra
- Wrote HW models for PCE and CCE
- Developed "parameterized" model for PCE
- Developed specifications and implementations
 - RC6 (needs multiplication), Rinjdael, TEA
- Integrated BDD package into Haskell
- Verified 3 micro-code implementations of squaring

- A single language greatly simplified our job Using Haskell to
 - Embed DSL
 Model
 Specify enables us to
 - Verify in Haskell
- Investment in DSL design was worthwhile
 - Can amortize over many ciphers
 - Makes specifications shorter and clearer
 - Can generate correct configurations
 - Automatically for PCE, semi-automatically for CCE.
- Haskell's overloading (type classes) greatly facilitated
 - Embedding DSL into Haskell
 - Model "parameterization"