
Specware Technologies

Douglas R Smith

Kestrel Institute and Kestrel Technology
Palo Alto, California

www.kestrel.edu
www.kestreltechnology.com

Code Generation by Refinement

Requirements

Specification

semiformal link

Property-preserving
refinements
from design theories

Key ideas
• specifications
• refinement
• design theories
• composition

…

Code

Specifications and Morphisms/Interpretations

spec Partial-Order is
type E
op le: E, E → Boolean
axiom reflx is le(x,x)
axiom trans is le(x,y) ∧ le(y,z) ⇒ le(x,z)
axiom antis is le(x,y) ∧ le(y,x) ⇒ x = y
end-spec

spec Integer is
type Int
op ≤ : Int, Int → Boolean
op 0 : Int
op _+_ : Int , Int → Int
…
end-spec

Specification morphism: a language translation that preserves provability

E ↦ Int
le ↦ ≤

axioms ↦ thms

le(x,x) translates to x ≤ x

Software Development by Refinement

Spec0

Spec1

Spec2

…
Specn

Code

denotes models for Spec0

models for Spec1
specification
refinement

models for Spec2

…

models for Specn•

code
generation

• a model (for Specn)

Code generation is accomplished via a logic morphism
from SPEC to the logic of a programming language

Specification Language: MetaSlang

• types:
– products: P,Q
– coproducts: P+Q
– function sorts: P→ Q
– subtypes defined using predicates: P|I
– quotients defined using equivalence relations : P/≡
– type axioms: Even-integers = Integer | even?
– polymorphic types

• function signatures
• optional definitions, using patterns
• higher-order axioms and theorems
• executable subset similar to ML

A = spec
type Even = Nat | even?
def even? n = (n div 2 = 0)
op f : Even → Boolean
… f(expr) …
axiom fa(n:Even) f(n) ⇒ n>0
…

A � even? is a well-defined function

A, context � even?(expr)

Proof
Obligations

Even ↦ E
f ↦ g
…

B � g : E → Boolean

B � fa(n:E) g(n) ⇒ n>0

B = spec …

Assurance Aim

Let S0 → S1 → ••• → Sn be a derivation.

If (1) the proof obligations generated for each spec Si i=0,1,..,n are provable
and (2) the proof obligations generated for each morphism are provable
and (3) the translation to executable code preserves the definitions

then (1) the executable code terminates on all legal inputs and
(2) the code computes functions that satisfy the specified properties in S0.

Concerns:
• correctness of the code generators and compilers
• correctness of underlying computation substrate

Composing Specifications: the Colimit operation

spec TRANSITIVE -RELATION is
type E
op _tr_ : E, E → Boolean
axiom transitivity is

a tr b ∧ b tr c ⇒ a tr c
end-spec

spec REFLEXIVE-RELATION is
type E
op _rr_ : E, E → Boolean
axiom reflexivity is a rr a

end-spec

spec PREORDER-RELATION is
type E
op ≤ : E, E → Boolean
axiom reflexivity is

a ≤ a
axiom transitivity is

a ≤ b ∧ b ≤ c ⇒ a ≤ c
end-spec

spec BINARY-RELATION is
type E
op _br_ : E, E → Boolean

end-spec

Calculating a Colimit in SPEC

Collect equivalence classes of sorts and ops from all specs in the diagram.

E
br

E
rr

x rr x

E
tr

axiom x tr y ∧ y tr z ⇒ x tr z

BINARY-RELATION REFLEXIVE-RELATION

TRANSITIVE-RELATION

po

PREORDER-RELATION

{E,E,E} rename E
{br, rr, tr} rename ≤

axiom x ≤ x
axiom x ≤ y ∧ y ≤ z ⇒ x ≤ z

Structure of a Specification for Scheduling

Time, Quantity

Resource Task

Reservation
= Resource×Task×Time

1-Sort

po

Schedule
= Set(Reservation)

Set

Scheduler

Structuring a Spec via Colimits

Spec 1-SORT
type E

Spec LINEAR ORDER
type L
op ≤: L,L → Boolean
...

LINEAR ORDER GROUP

po

LINEAR ORDER + GROUP
{L→Time, ≤ → time-le}

extend
Spec TIME

type Time
op time-le
...

LINEARLY ORDERED GROUP

rename

QUANTITY

coproduct

TIME + QUANTITY

Constructing Refinements

1. Library of Refinements

Set

Sequence

Resource

Transportation
Resource

Global
Search

Global Search
Algorithm

Scheduling0

Scheduling1

po

Scheduling2

po

Global
Search

Global Search
Algorithm Set

Sequence

Scheduling3

Context-dependent
Simplification

• Rewrite Simplification
• Context-dependent Simplification
• Finite Differencing
• Case Analysis
• Partial Evaluation

2. Library of Refinement Generators

Scheduling4

Finite Differencing

Planware: Synthesis of High Performance Schedulers

Planware Scheduler
Generator

Customized Scheduler
(in MetaSlang)

20,000 LOC

Optimization and
Code Generation

Customized Scheduler
(in CommonLisp)

88,000 LOC

Library of
resource and task

models

Model
Construction

Tool

Model of Scheduling
Problem

890 linesTPFDD
Strategic Airlift
Aircrews
Fuel tracking
MOG

TPFDD data,
Resource data

C0 C2 C4 C6 C8

schedule

Customized
Scheduler

Java Card Applet Generator

(automatic)

domain-
specific

language
(DSL)

GENERATORapplet
spec

applet
code

Java
Card

domain = smart cards
• ISO 7816 commands/responses
• cryptography
• personal identification numbers
• …

• productivity
• high assurance

Independent Certification

GENERATORapplet
spec

applet
code

CHECKER

yes/no

proof

FORGES: Stateflow to C

Stateflow
meta-model

Partial
Evaluator

C
optimization

Stateflow
to C

off

on

e

e/c1
d[c2]

C code

Compiler based on a partial evaluator
constructed with stepwise refinement

Results
“The surprising result for us and Kestrel was the quality and
size of the code generated. It has taken both dSpace and the
MathWorks many years to develop their respective code
generation tools. Kestrel took less than two years. In addition,
because it is based on an analytic approach to generating the
code generator, it is relatively easy to extend the supported
Stateflow language and create a new code generator. We
believe this approach is extremely promising and hope that
commercial tool vendors will take notice.”

– Bill Milam, Ford Research

State Machine Foundations in Specware

1. Nature of State Machines and behavior
• discrete systems
• communication protocols
• hybrid systems
• resource systems
⇒ nodes represent activities and invariant structure

2. Systems Specification and Design
• contravariance of system versus environment
• system parameter as requirements on environment

Env1 p Agent1parameter,
environment spec,
required services

body,
system/component/agent spec,
offered services

Env2 p Agent2

Evolving specifications (especs)

Key ideas that link state machine concepts with logical concepts

axioms, theoremsproperties

functions, valuesvariables

setsdatatypes

ModelState

1. States are models (structures satisfying axioms)

2. State transitions are finite model changes

Example: Updating an array/finite-function A

true → A(3) := 4

A : {1,2,3} → Nat A : {1,2,3} → Nat

185A 485A

Evolving specifications (especs)

3. Abstract states are sets of states
Specs denote sets of models

Specs represent abstract states

4. Abstract transitions are interpretations (in the opposite direction)!

x := e

pre(x) post(x)

correctness condition:
pre(x) ⊢ post(e)

spec before is
…

var x : …
ax pre(x)
…

end-spec

spec after is
…

var x : …
ax post(x)
…

end-spec

{e↤ x}

Especs, states, and computation

•
•

•

•

•

•
•

Base global spec

states/models

denotes

One Loop Two abstract state specs

extends to

Guarded Commands

g(x) → x := e

pre(x) post(x)

is represented as the compound arrow:

spec B is
…
var x : …
ax post(x)
…

end-spec

spec A is
…

var x : …
ax pre(x)
…

end-spec

{e↤ x}spec AB is
import A
ax g(x)

end-spec

Accord Specs and Refinement

Babs = 〈 specabs , behaviorabs 〉

Bcon = 〈 speccon , behaviorcon 〉

Espec Refinement

x0, y0
x := x0
y := y0

x = y → z := x

ax z = gcd(x0, y0)

y > x → y := y - x

x>y → x := x - y

z := gcd(x0, y0)

ax z = gcd(x0, y0)

behavior
refinement

(simulation)

One Loop Two

One Two

skipx0, y0

x0, y0 : Pos
z : Pos

spec
refinement

x0, y0 : Pos
x, y, z : Pos

ax gcd(x0, y0) = gcd(x, y)

Parametric Accord Specs and Refinement

Pabs-p = 〈 specabs-p, behaviorabs-p 〉 Babs = 〈 specabs, behaviorabs 〉p

Pcon-p = 〈 speccon-p, behaviorcon-p 〉 Bcon = 〈 speccon, behaviorcon 〉p

Refinement Theorem

If A → B
then every run/trace of B maps to a run/trace of A;

i.e. traces(B) ⊆ traces(A).

but, does B behave like A in all environments?

This theorem suffices for the case of showing that
a computation satisfies an abstract property,
but more is needed to model computational refinement.

Computational Refinement Theorem
p APA

If A refines to B as in the figure
and progress conditions are satisfied

then traces(B) ⊆ traces(A)
and for every trace of A from initial state a0

there is a trace of B from an initial state b0
that maps to a0

i.e. for every environment in which A behaves properly,
so does B

BpPB

System Composition Problem

Mission-Controller Comm-channel Radar
1000Hz
max rate

500kHz
max rate

Specify and compose a system comprised of a
1. mission-controller component
2. radar unit
3. communication channel

Mission-Controller

• Requests radar images frequently
• Requires a 5ms response time at most

MC-Env =
event RadarRequest : MC-Radar-Parameters required service

of the environment

Mission-Controller =
event RadarResult : MC-Radar-Response
var res : MC-Radar-Response
var parms : MC-Radar-Parameters
var mc1 : Clock = 0

offered service
of the component

mc1 := 0,
!radarRequest(parms)

mc1 ≤ 5msBA

?radarResult(res)

Radar Component
• Requires a minimum separation of request of 1ms (i.e. 1000Hz max rate)
• Offers a 0.5ms maximum response time

Radar-Env =
event RadarInfo : Radar-Response

Radar =
import Radar-Env
event GetSignal : Radar-Parameters
var radar-parms : Radar-Parameters
var radar-result : Radar-Response
vars rc1, rc2 : Clock = 0

1ms ≤ rc1 →
rc1 := 0, rc2 := 0,
?GetSignal(radar-parms)

!RadarInfo(radar-result)

A B axiom rc2 ≤ .5ms

Communication Channel/Connector
• Handles messages at rates up to 500kHz
• Offers a 0.001ms one-way transmission time

CC-Env1 =
output event out1 : Out1

CommunicationChannel =
import CC-Env1, CC-Env2
input event in1 : In1
input event in2 : In2
var m : In1
var n : In2
const durRP : Time
vars c1, c2, c3 : Clock

CC-Env2 =
output event out2 : Out2

A

0.002ms + durRP ≤ c1 →
c1 := 0,
?in1(m)

c2 := 0,
!out1(glue1(m))

B

C

D

!out2(glue2(n))

c1 ≤ .001msc3 ≤ .001ms

c3 := 0,
?in2(n)

c2 ≤ durRP

System Composition Diagram

p

Mission-Controller

MC-Env

Comm-Channel

p

Radar

Radar-EnvCC-Env1 CC-Env2

p p

MC+CC+Radar

Simplified Colimit Mission-Control-System =
event RadarRequest : MC-Radar-Parameters
event RadarResult : MC-Radar-Response
event GetSignal : Radar-Parameters
event RadarInfo : Radar-Response
var parms : MC-Radar-Parameters
var rr : Radar-Response
op glue1 : MC-Radar-Parameters → Radar-Parameters
op glue2 : Radar-Response → MC-Radar-Response
vars mc1, c1, c2, c3, rc1, rc2 : Clock

0.502ms ≤ c1 →
c1 := 0, mc1:=0,
radarRequest(parms)

1ms ≤ rc1 →
rc1 := 0, rc2 := 0, c2 := 0,
getSignal(glue1(parms))

A

B

C

D
axiom c1 ≤ .001ms
axiom mc1 ≤ 5ms

axiom c2 ≤ .5ms
axiom mc1 ≤ 5ms
axiom rc2 ≤ .5ms

c3 := 0,
RadarInfo(rr)

axiom c3 ≤ .001ms
axiom mc1 ≤ 5ms

radarResult(glue2(rr))

Functional versus Behavioral Specifications

functional
specifications

behavioral
specifications

product, sum,
function,

subtype, quotient

product, sum,
function,
extension

Module unitsSpecification units

axiomsaxioms

proceduresfunctions
classestypes

import, parameterize, refine,
compose by colimit

Example: Points and Pixels

float x,y;
void clear(){ x = 0; y=0 }
void move(x:float, y:float){ … }
…

Point

Color color;
void clear() {super.clear(); color = null}
…

Pixel

extends

Classes, Inheritance, Implementations
Overriding is not semantically acceptable in Specware

Point-Interface

Point-Impl

d

Pixel-Interface

Pixel-Impl

d

Java Structure

Accord Structure

extends/inherits

Class Refinement
Overriding is not semantically acceptable in Specware

Point-Interface

Pixel-Interface

Point-Impl

d

Pixel-Impl

d

Issue: How to Handle Nonfunctional and
Cross-Cutting Concerns wrt

Composition and Refinement?

A concern is cross-cutting if its manifestation cuts across the
dominant hierarchical structure of a program/system.

Examples
• Log all errors that arise during system execution
• Enforce a system-wide error-handling policy
• Disallow unauthorized data accesses
• Enforce timing and resource constraints on a system design

Policy Enforcement Approach

System

Refined
System

showing where the
policy applies requires
sound static analysis

where and how
does the policy

apply?

Policy Constraint

Policy Conditions

What does the
policy prescribe?

Security Design Patterns

“Design Patterns capture the essential structure and insight
of a successful family of proven solutions to a recurring problem
that arises within a certain context and system of forces.”

R. Blakely and C. Heath, Security Design Patterns, The Open Group,
2004 (http://www.opengroup.org/security/gsp.htm).

Design Pattern for Protected Systems
aka Reference Monitor

Local Network
with Users,

Personnel Database

Client, Guard,
Policy, Resource

Client, Resource,
policy axiom

Local Network
with Access Control

on Personnel Database

	Specware Technologies
	Code Generation by Refinement
	Specifications and Morphisms/Interpretations
	Software Development by Refinement
	Specification Language: MetaSlang
	Proof Obligations
	Assurance Aim
	Composing Specifications: the Colimit operation
	Calculating a Colimit in SPEC
	Structure of a Specification for Scheduling
	Constructing Refinements
	Java Card Applet Generator
	Independent Certification
	FORGES: Stateflow to C
	Results
	State Machine Foundations in Specware
	Evolving specifications (especs)
	Evolving specifications (especs)
	Especs, states, and computation
	Guarded Commands
	Accord Specs and Refinement
	Espec Refinement
	Parametric Accord Specs and Refinement
	Refinement Theorem
	Computational Refinement Theorem
	System Composition Problem
	Mission-Controller
	Radar Component
	Communication Channel/Connector
	System Composition Diagram
	Simplified Colimit
	Functional versus Behavioral Specifications
	Example: Points and Pixels
	Classes, Inheritance, Implementations
	Class Refinement
	Issue: How to Handle Nonfunctional and Cross-Cutting Concerns wrtComposition and Refinement?
	Policy Enforcement Approach
	Security Design Patterns
	Design Pattern for Protected Systemsaka Reference Monitor

