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Code Generation by Refinement

Requirements

Specification

semiformal link

Property-preserving 
refinements 
from design theories

Key ideas
• specifications
• refinement
• design theories
• composition

…

Code



Specifications and Morphisms/Interpretations

spec Partial-Order is
type E
op le: E, E → Boolean 
axiom reflx is    le(x,x)                               
axiom trans is    le(x,y) ∧ le(y,z) ⇒ le(x,z)
axiom antis is    le(x,y) ∧ le(y,x) ⇒ x = y
end-spec

spec Integer is
type Int
op ≤ : Int, Int → Boolean
op 0 : Int 
op _+_ : Int , Int → Int 
…
end-spec

Specification morphism:  a language translation that preserves provability

E ↦ Int
le ↦ ≤

axioms ↦ thms

le(x,x)    translates to    x ≤ x



Software Development by Refinement

Spec0

Spec1

Spec2

…
Specn

Code

denotes models for Spec0

models for Spec1
specification
refinement

models for Spec2

…

models for Specn•

code
generation

• a model (for Specn)

Code generation is accomplished via a logic morphism 
from SPEC to the logic of a programming language



Specification Language:  MetaSlang

• types: 
– products:  P,Q
– coproducts: P+Q
– function sorts: P→ Q
– subtypes defined using predicates:  P|I
– quotients defined using equivalence relations :  P/≡
– type axioms:  Even-integers = Integer | even?
– polymorphic types 

• function signatures 
• optional definitions, using patterns
• higher-order axioms and theorems 
• executable subset similar to ML



A = spec
type Even = Nat | even?
def  even? n = (n div 2 = 0)
op f : Even → Boolean
… f(expr) …
axiom fa(n:Even) f(n) ⇒ n>0
…

A � even?  is a well-defined function

A, context � even?(expr)

Proof 
Obligations

Even ↦ E
f ↦ g
…

B � g : E → Boolean

B � fa(n:E)  g(n) ⇒ n>0

B = spec   …



Assurance Aim

Let S0 → S1 → ••• → Sn be a derivation.

If (1) the proof obligations generated for each spec Si i=0,1,..,n are provable
and (2) the proof obligations generated for each morphism are provable 
and (3) the translation to executable code preserves the definitions

then (1) the executable code terminates on all legal inputs and 
(2) the code computes functions that satisfy the specified properties in S0. 

Concerns:
• correctness of the code generators and compilers
• correctness of underlying computation substrate



Composing Specifications:  the Colimit operation

spec TRANSITIVE -RELATION is
type E
op _tr_ : E, E → Boolean
axiom transitivity is 

a tr b ∧ b tr c ⇒ a tr c
end-spec

spec REFLEXIVE-RELATION is
type E
op _rr_ : E, E → Boolean
axiom reflexivity is  a rr a

end-spec

spec PREORDER-RELATION is
type E
op ≤ : E, E → Boolean
axiom reflexivity is 

a ≤ a
axiom transitivity is 

a ≤ b ∧ b ≤ c ⇒ a ≤ c
end-spec

spec BINARY-RELATION is
type E
op _br_ : E, E → Boolean

end-spec



Calculating a Colimit in SPEC

Collect equivalence classes of sorts and ops from all specs in the diagram.

E
br   

E 
rr

x rr x

E
tr

axiom x tr y ∧ y  tr z  ⇒ x tr z   

BINARY-RELATION REFLEXIVE-RELATION

TRANSITIVE-RELATION

po

PREORDER-RELATION

{E,E,E} rename E
{br, rr, tr} rename ≤

axiom x ≤ x
axiom x ≤ y ∧ y ≤ z  ⇒ x ≤ z



Structure of a Specification for Scheduling

Time, Quantity

Resource Task

Reservation
= Resource×Task×Time

1-Sort

po

Schedule
= Set(Reservation)

Set

Scheduler



Structuring a Spec via Colimits

Spec 1-SORT
type E

Spec LINEAR ORDER
type L
op ≤: L,L → Boolean
...

LINEAR ORDER GROUP

po

LINEAR ORDER + GROUP
{L→Time, ≤ → time-le}

extend
Spec TIME

type Time
op time-le 
...

LINEARLY ORDERED GROUP

rename

QUANTITY

coproduct

TIME + QUANTITY



Constructing Refinements

1. Library of Refinements

Set

Sequence

Resource

Transportation
Resource

Global
Search

Global Search
Algorithm

Scheduling0

Scheduling1

po

Scheduling2

po

Global
Search

Global Search
Algorithm Set

Sequence

Scheduling3

Context-dependent 
Simplification

• Rewrite Simplification
• Context-dependent Simplification
• Finite Differencing
• Case Analysis
• Partial Evaluation

2. Library of Refinement Generators

Scheduling4

Finite Differencing



Planware:  Synthesis of High Performance Schedulers

Planware Scheduler 
Generator

Customized Scheduler
(in MetaSlang)

20,000 LOC

Optimization and 
Code Generation

Customized Scheduler
(in CommonLisp)

88,000 LOC

Library of 
resource and task 

models

Model 
Construction 

Tool

Model of Scheduling 
Problem

890 linesTPFDD
Strategic Airlift
Aircrews
Fuel tracking
MOG

TPFDD data,
Resource data

C0    C2    C4    C6     C8

schedule

Customized 
Scheduler



Java Card Applet Generator

(automatic)

domain-
specific

language
(DSL)

GENERATORapplet
spec

applet
code

Java
Card

domain = smart cards
• ISO 7816 commands/responses
• cryptography
• personal identification numbers
• …

• productivity
• high assurance



Independent Certification

GENERATORapplet
spec

applet
code

CHECKER

yes/no

proof



FORGES: Stateflow to C

Stateflow
meta-model

Partial
Evaluator

C 
optimization

Stateflow
to C

off

on

e

e/c1
d[c2]

C code

Compiler based on a partial evaluator 
constructed with stepwise refinement 



Results
“The surprising result for us and Kestrel was the quality and 
size of the code generated. It has taken both dSpace and the 
MathWorks many years to develop their respective code 
generation tools. Kestrel took less than two years. In addition,
because it is based on an analytic approach to generating the 
code generator, it is relatively easy to extend the supported 
Stateflow language and create a new code generator.  We 
believe this approach is extremely promising and hope that 
commercial tool vendors will take notice.”

– Bill Milam, Ford Research



State Machine Foundations in Specware

1. Nature of State Machines and behavior
• discrete systems
• communication protocols
• hybrid systems
• resource systems
⇒ nodes represent activities and invariant structure

2. Systems Specification and Design
• contravariance of system versus environment
• system parameter as requirements on environment

Env1 p Agent1parameter,  
environment spec,
required services

body,
system/component/agent spec,
offered services

Env2 p Agent2



Evolving specifications (especs)

Key ideas that link state machine concepts with logical concepts

axioms, theoremsproperties

functions, valuesvariables

setsdatatypes

ModelState

1.  States are models (structures satisfying axioms)

2.  State transitions are finite model changes

Example:  Updating an array/finite-function A

true → A(3) := 4

A : {1,2,3} → Nat A : {1,2,3} → Nat

185A 485A



Evolving specifications (especs)

3.  Abstract states are sets of states
Specs denote sets of models
------------------------------------
Specs represent abstract states

4.  Abstract transitions are interpretations (in the opposite direction)!

x := e

pre(x) post(x)

correctness condition:
pre(x) ⊢ post(e)

spec before is
…

var x : …
ax pre(x)
…

end-spec

spec after is
…

var x : …
ax post(x)
…

end-spec

{e↤ x}



Especs, states, and computation

•
•

•

•

•

•
•

Base global spec

states/models 

denotes

One Loop Two abstract state specs

extends to



Guarded Commands

g(x) → x := e

pre(x) post(x)

is represented as the compound arrow: 

spec B is
…
var x : …
ax post(x)
…

end-spec

spec A is
…

var x : …
ax pre(x)
…

end-spec

{e↤ x}spec AB is
import A
ax g(x)

end-spec



Accord Specs and Refinement

Babs = 〈 specabs , behaviorabs 〉

Bcon = 〈 speccon , behaviorcon 〉



Espec Refinement

x0, y0
x := x0
y := y0

x = y → z := x

ax z = gcd(x0, y0)

y > x → y := y - x

x>y → x := x - y

z := gcd(x0, y0)

ax z = gcd(x0, y0)

behavior
refinement

(simulation)

One Loop Two

One Two

skipx0, y0

x0, y0 : Pos
z : Pos

spec
refinement

x0, y0 : Pos
x, y, z : Pos

ax gcd(x0, y0) = gcd(x, y)



Parametric Accord Specs and Refinement

Pabs-p  = 〈 specabs-p, behaviorabs-p 〉 Babs = 〈 specabs, behaviorabs 〉p

Pcon-p  = 〈 speccon-p, behaviorcon-p 〉 Bcon = 〈 speccon, behaviorcon 〉p



Refinement Theorem

If  A  → B
then every run/trace of B maps to a run/trace of A;

i.e. traces(B) ⊆ traces(A).

but, does B behave like A in all environments?

This theorem suffices for the case of showing that 
a computation satisfies an abstract property,
but more is needed to model computational refinement. 



Computational Refinement Theorem
p APA

If  A refines to B as in the figure
and progress conditions are satisfied

then traces(B) ⊆ traces(A)
and for every trace of A from initial state a0

there is a trace of B from an initial state b0
that maps to a0

i.e. for every environment in which A behaves properly, 
so does B

BpPB



System Composition Problem

Mission-Controller Comm-channel Radar
1000Hz 
max rate

500kHz 
max rate

Specify and compose a system comprised of a 
1. mission-controller component
2. radar unit
3. communication channel 



Mission-Controller

• Requests radar images frequently
• Requires a 5ms response time at most

MC-Env =
event RadarRequest : MC-Radar-Parameters required service

of the environment

Mission-Controller =
event RadarResult : MC-Radar-Response    
var res : MC-Radar-Response
var parms : MC-Radar-Parameters
var mc1 : Clock = 0

offered service
of the component

mc1 := 0,
!radarRequest(parms) 

mc1 ≤ 5msBA

?radarResult(res)



Radar Component
• Requires a minimum separation of request of 1ms (i.e. 1000Hz max rate)
• Offers a 0.5ms maximum response time

Radar-Env =
event RadarInfo : Radar-Response

Radar =
import Radar-Env
event GetSignal : Radar-Parameters
var radar-parms : Radar-Parameters
var radar-result : Radar-Response
vars rc1, rc2 : Clock = 0

1ms ≤ rc1 →
rc1 := 0, rc2 := 0, 
?GetSignal(radar-parms)

!RadarInfo(radar-result)

A B axiom  rc2 ≤ .5ms



Communication Channel/Connector
• Handles messages at rates up to 500kHz
• Offers a 0.001ms one-way transmission time

CC-Env1 =
output event out1 : Out1

CommunicationChannel =
import  CC-Env1, CC-Env2
input event in1 : In1
input event in2 : In2
var m : In1
var n : In2
const durRP : Time
vars c1, c2, c3 : Clock

CC-Env2 =
output event out2 : Out2

A

0.002ms + durRP ≤ c1 →
c1 := 0, 
?in1(m)

c2 := 0,
!out1(glue1(m))

B

C

D

!out2(glue2(n))

c1 ≤ .001msc3 ≤ .001ms

c3 := 0, 
?in2(n)

c2 ≤ durRP



System Composition Diagram

p

Mission-Controller

MC-Env

Comm-Channel

p

Radar

Radar-EnvCC-Env1 CC-Env2

p p

MC+CC+Radar



Simplified Colimit Mission-Control-System =
event RadarRequest : MC-Radar-Parameters
event RadarResult : MC-Radar-Response 
event GetSignal : Radar-Parameters 
event RadarInfo : Radar-Response 
var parms : MC-Radar-Parameters 
var rr : Radar-Response 
op glue1 : MC-Radar-Parameters → Radar-Parameters 
op glue2 : Radar-Response → MC-Radar-Response 
vars mc1, c1, c2, c3, rc1, rc2 : Clock

0.502ms ≤ c1 →
c1 := 0, mc1:=0,
radarRequest(parms)

1ms ≤ rc1 →
rc1 := 0, rc2 := 0, c2 := 0,
getSignal(glue1(parms))

A

B

C

D
axiom c1 ≤ .001ms 
axiom mc1 ≤ 5ms

axiom c2 ≤ .5ms
axiom mc1 ≤ 5ms
axiom  rc2 ≤ .5ms

c3 := 0, 
RadarInfo(rr)

axiom c3 ≤ .001ms
axiom mc1 ≤ 5ms

radarResult(glue2(rr))



Functional versus Behavioral Specifications

functional 
specifications

behavioral
specifications

product, sum, 
function, 

subtype, quotient

product, sum, 
function, 
extension

Module unitsSpecification units

axiomsaxioms 

proceduresfunctions
classestypes

import, parameterize, refine,
compose by colimit



Example: Points and Pixels

float x,y;
void clear(){ x = 0;  y=0 }
void move(x:float, y:float){ … }
…

Point

Color color; 
void clear() {super.clear(); color = null}
…

Pixel

extends



Classes, Inheritance, Implementations
Overriding is not semantically acceptable in Specware

Point-Interface

Point-Impl

d

Pixel-Interface

Pixel-Impl

d

Java Structure

Accord Structure

extends/inherits



Class Refinement
Overriding is not semantically acceptable in Specware

Point-Interface

Pixel-Interface

Point-Impl

d

Pixel-Impl

d



Issue:  How to Handle Nonfunctional and 
Cross-Cutting Concerns  wrt

Composition and Refinement?       

A concern is cross-cutting if its manifestation cuts across the
dominant hierarchical structure of a program/system.  

Examples
• Log all errors that arise during system execution
• Enforce a system-wide error-handling policy
• Disallow unauthorized data accesses
• Enforce timing and resource constraints on a system design



Policy Enforcement Approach

System

Refined
System

showing where the
policy applies requires 
sound static analysis

where and how 
does the policy 

apply?

Policy Constraint

Policy Conditions

What does the 
policy prescribe?



Security Design Patterns

“Design Patterns capture the essential structure and insight 
of a successful family of proven solutions to a recurring problem 
that arises within a certain context and system of forces.”

R. Blakely and C. Heath, Security Design Patterns, The Open Group,
2004   (http://www.opengroup.org/security/gsp.htm).



Design Pattern for Protected Systems
aka Reference Monitor

Local Network
with Users, 

Personnel Database

Client, Guard, 
Policy, Resource

Client, Resource,
policy axiom

Local Network 
with Access Control 

on Personnel Database
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