
Page 15/9/2007 Kestrel Technology LLC

Theoretical Foundation of CodeHawk:

Abstract Interpretation

Arnaud Venet

Kestrel Technology

arnaud@kestreltechnology.com

CodeHawk Tutorial

Page 25/9/2007 Kestrel Technology LLC

Static Analysis

Code

Static

Analysis

Tool

List

of

defects

• Real bugs

• False alarms

Page 35/9/2007 Kestrel Technology LLC

Can we find all defects?

• Classic undecidability results in Computer Science

(halting problem)

• We require soundness (no defects are missed)

– A conservative approach is acceptable

• Abstract Interpretation is the enabling theory in

CodeHawk

– Sound

– Tunably precise

– Scalable

– “Generatively general”

Page 45/9/2007 Kestrel Technology LLC

Intuition

SW

Defects

All lines in the code

Abstract

Interpretation

Page 55/9/2007 Kestrel Technology LLC

Abstract Interpretation

• Computes an envelope of all data in the

program

• Mathematical assurance

• Static analyzers based on Abstract

interpretation are difficult to engineer

• KT’s expertise: building scalable and effective

abstract interpreters

Page 65/9/2007 Kestrel Technology LLC

Properties vs. defects

• An application might be defect-free but not
carry the desired property
– resource issues (memory, execution time)

– separation

– range of output data

– vulnerability to attack

– forbidden functionality

– compliance with a policy

• Abstract Interpretation covers those families of
properties as well

Page 75/9/2007 Kestrel Technology LLC

Soundness

Static Analyzer Wish List

Generality

Precision Scalability

Goal

• Experience

shows you can

have any

three.

• We want an

approach to

have all four.

Page 85/9/2007 Kestrel Technology LLC

Objectives

• Go over a detailed example

– Understand how the technology works

• Achievements and challenges in the

engineering of abstract interpreters

– What it means to build an analyzer based on

Abstract Interpretation

Page 95/9/2007 Kestrel Technology LLC

Detailed example

Page 105/9/2007 Kestrel Technology LLC

Buffer overflow

for(i = 0; i < 10; i++) {

if(message[i].kind == SHORT_CMD)

allocate_space (channel, 1000);

else

allocate_space (channel, 2000);

}

Can we exceed the channel’s buffer capacity?

Page 115/9/2007 Kestrel Technology LLC

Control Flow Graph

i = 0

i < 10 ?

i++

message[i].kind

== SHORT_CMD ?

allocate_space

(channel, 2000)

allocate_space

(channel, 1000)

stop

Page 125/9/2007 Kestrel Technology LLC

i = 0

i < 10 ?

i++

message[i].kind

== SHORT_CMD ?

allocate_space

(channel, 2000)

allocate_space

(channel, 1000)

stop

i = 0

i < 10 ?

i++

message[i].kind

== SHORT_CMD ?

allocate_space

(channel, 2000)

allocate_space

(channel, 1000)

stop

Analytic model of the code

i < 10 ?

i = 0

i++

M = M + 2000M = M + 1000

stop

M = 0

Page 135/9/2007 Kestrel Technology LLC

Analysis process intuition

• We mimic the execution of the program

• We collect all possible data values

Page 145/9/2007 Kestrel Technology LLC

Analyzing the model

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

i

M

Page 155/9/2007 Kestrel Technology LLC

Initially

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

i

M

Page 165/9/2007 Kestrel Technology LLC

Loop initialization

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

i

M

Page 175/9/2007 Kestrel Technology LLC

Loop entry

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

i

M

Page 185/9/2007 Kestrel Technology LLC

Analyzing a branching (1)

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

i

M

Page 195/9/2007 Kestrel Technology LLC

Analyzing a branching (2)

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

i

M

i

M

?

Page 205/9/2007 Kestrel Technology LLC

Accumulating all possible values

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

i

M

Page 215/9/2007 Kestrel Technology LLC

Abstraction of point clouds

• We want the analysis to terminate in

reasonable time

• We need a tractable representation of point

clouds in arbitrary dimensions

• Abstract Interpretation offers a broad choice of

such representations

• Example: convex polyhedra

– Compute the convex hull of a point cloud

Page 225/9/2007 Kestrel Technology LLC

Analyzing a branching

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

i

M

i

M

Page 235/9/2007 Kestrel Technology LLC

Convex hull

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

i

M

Page 245/9/2007 Kestrel Technology LLC

Iterating the loop analysis

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++
i

M

i

M

Page 255/9/2007 Kestrel Technology LLC

Building the loop invariant

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

i

M

Page 265/9/2007 Kestrel Technology LLC

Analyzing a branching

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

i

M

Page 275/9/2007 Kestrel Technology LLC

Analyzing a branching

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

i

M

i

M

Page 285/9/2007 Kestrel Technology LLC

Convex hull

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

i

M

Page 295/9/2007 Kestrel Technology LLC

Building the loop invariant

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++
i

M

i

M

Page 305/9/2007 Kestrel Technology LLC

Keeping iterating…

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

i

M

Page 315/9/2007 Kestrel Technology LLC

Passing to the limit

• We want this iterative process to end at some

point

• We need to converge when analyzing loops

• After some iteration steps, we use a widening

operation at loop entry to enforce convergence

Page 325/9/2007 Kestrel Technology LLC

Widening 

• Let a1, a2, …an, … be a sequence of

polyhedra, then the sequence

– w1 = a1

– wn+1 = wn  an+1

is ultimately stationary

• The widening is a join operation i.e.,

a  a  b & b  a  b

Page 335/9/2007 Kestrel Technology LLC

Widening for intervals

• [a, b]  [c, d] =

[if c < a then - else a, if b < d then + else b]

• Example:

[10, 20]  [11, 30] = [10, +]

Page 345/9/2007 Kestrel Technology LLC

Widening for polyhedra

• We eliminate the faces of the computed

convex envelope that are not stable

• Convergence is reached in at most N steps

where N is the number of faces of the

polyhedron at loop entry

Page 355/9/2007 Kestrel Technology LLC

Widening

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++
i

M

i

M

Page 365/9/2007 Kestrel Technology LLC

After widening

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

i

M

Page 375/9/2007 Kestrel Technology LLC

Detecting convergence

• Abstract iteration sequence

– F1 = P (initial polyhedron)

– Fn+1 = Fn if S(Fn)  Fn

Fn  S(Fn) otherwise

where S is the semantic transformer associated to

the loop body

• Theorem: if there exists N such that FN+1  FN,

then Fn = FN for n > N.

Page 385/9/2007 Kestrel Technology LLC

Convergence

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

i

M

The computation

has converged

Page 395/9/2007 Kestrel Technology LLC

We are not done yet…

• The analyzer has just proven that

1000 * i ≤ M ≤ 2000 * i

• But we have lost all information about the termination
condition 0 ≤ i ≤ 10

• Since we have obtained an envelope of all possible

values of the variables, if we run the computation

again we still get such an envelope

• The point is that this new envelope can be smaller

• This refinement step is called narrowing

Page 405/9/2007 Kestrel Technology LLC

Refinement

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

M

i

i

M

9

Page 415/9/2007 Kestrel Technology LLC

Analyzing a branching

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

i

i

M

9 i

i

M

9

Page 425/9/2007 Kestrel Technology LLC

Convex hull

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

i

M

9

Page 435/9/2007 Kestrel Technology LLC

Back to loop entry

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++ i

M

i

M

101

Page 445/9/2007 Kestrel Technology LLC

Narrowing

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

i

M

10

M

i

Page 455/9/2007 Kestrel Technology LLC

Refined loop invariant

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

M

i10

Page 465/9/2007 Kestrel Technology LLC

Invariant at loop exit

i = 0

i < 10 ?

M = M + 2000M = M + 1000

M = 0

stop

i++

M

i10

20,000

10,000

i  10

Page 475/9/2007 Kestrel Technology LLC

[]

Interpretation of the results

5,000 15,000 25,00010,000 20,000

Space allocated in the buffer

Buffer size:

Certain buffer

overflow
Possible buffer

overflow

No buffer

overflow

Page 485/9/2007 Kestrel Technology LLC

Achievements and

challenges

Page 495/9/2007 Kestrel Technology LLC

Assured static analyzers for NASA

• C Global Surveyor: verified array bound

compliance for NASA mission-critical software

– Mars Exploration Rovers: 550K LOC

– Deep Space 1: 280K LOC

– Mars Path Finder: 140K LOC

• Pointer analysis:

– International Space Station payload software

(major bug found)

Page 505/9/2007 Kestrel Technology LLC

What we observe

• No scalable and precise general-purpose

abstract interpreter

• PolySpace:

– Handles all kinds of runtime errors

– Decent precision (<20% false positives)

– Doesn’t scale (topped out at  40K LOC)

• Customization is the key

– Specialized for a property or a class of applications

– Manually crafted by experts

Page 515/9/2007 Kestrel Technology LLC

CodeHawk™

• Abstract Interpretation development platform/

static analyzer generator

• Automated generation of customized static

analyzers

– Leverage from pre-built analyzers

– Directly tunable by the end-user

Page 525/9/2007 Kestrel Technology LLC

Where CodeHawk stands

Application:

• architecture

• environment

• input range

• usage protocol

• …

Abstract

Interpretation:

• application

independent

• abstract model

• algorithms

difficult to

implement

• needs a lot of

expertise

C
o

d
e
H

a
w

k

Page 535/9/2007 Kestrel Technology LLC

Recent Applications

• Malware detection
– Customized analyzers for specific kinds of malware

– Naturally resistant to complex obfuscating
transformations

– Evaluated on NSA test case

• Library/Component analysis
– Proof of absence of buffer overflow in OpenSSH’s

dynamic buffer library

• Shared variables
– Protection policies for shared variables

– Evaluated on a Lockheed Martin/Maritime code

Page 545/9/2007 Kestrel Technology LLC

Conclusions

• Promising and proven technology
– key distinction for assurance: no false negatives

– can verify application properties as well as detect
defects

– can be tailored for various domains (e.g., malware)

• Not a silver bullet
– bullet generator; but each modeled domain offers

leverage

– required expertise still high outside of turnkey
libraries

