
HCSS 2012

N. Shankar Static Previrtualization 1/39

Static Previrtualization1

N. Shankar

Computer Science Laboratory
SRI International
Menlo Park, CA

May 9, 2012

1Funded by the Maryland Procurement Office Contract No. R21.002.10 and
NASA Cooperative Agreement NNX08AY53A. Joint work with Drew Dean,
Bruno Dutertre, Ashish Gehani, Gregory Malecha, Ian Mason, Sam Owre,
Hassen Säıdi.

The View from the Top

The modern hardware/software/communication stack is an
unprecedented success.

Complex applications are now easier to write.

But this simplicity comes at a cost
MiniBlog – “Simple” PHP blogging application

683 lines of PHP code
Depends on PHP & MySQL

PHP – Programming language interpreter

625,000 lines of C
Depends on LibC

LibC – C standard runtime library

650,000 lines of C
Depends on Linux kernel

Linux Kernel – Operating System

15 million lines of code!

N. Shankar Static Previrtualization 3/39

A House of Cards? [Wikipedia]

N. Shankar Static Previrtualization 4/39

Firefox Package Dependencies

N. Shankar Static Previrtualization 5/39

The Problem

Software stack growing in size

More functionality
More hardware supported
Diverse application needs
Complex and numerous device drivers
Less robust to change

Adverse security implications

More code to analyze
Increasingly complex interactions
Same time-to-market
→

Reduced relative code coverage
Greater diversity of exploits
Wider attack surface
Larger consequences

N. Shankar Static Previrtualization 6/39

Static Previrtualization: A Principled Approach

Shrink the software by specializing it to a specific deployment

Target full software stack and address all code growth.

Specialize software stack to

Specific applications
Specific hardware/deployment configuration

Kernel modules trimmed
Device drivers trimmed
Libraries trimmed

Applicable to

Specialized application servers
Custom libraries

N. Shankar Static Previrtualization 7/39

Comparison

N. Shankar Static Previrtualization 8/39

Partial Evaluation

A practical application of Kleene’s s-m-n theorem for
optimizating code by specializing it to specific arguments

i n t a t o i s t r c a t (char ∗ s t r 1 , char ∗ s t r 2){
re tu rn a t o i (s t r c a t (s t r 1 , s t r 2)) ;

}
. . .
char ∗pad = ” 000 ” ;
i = a t o i s t r c a t (mystr , pad) ;

The atoi strcat invocation can be replaced by

a t o i s t r c a t 1 0 0 0 (a r g v [1])

where

i n t a t o i s t r c a t 1 0 0 0 (char ∗ s t r 1){
re tu rn 1000 ∗ a t o i (s t r 1) ;

}

N. Shankar Static Previrtualization 9/39

Partial Evaluation

Fixes specific parameters

Interpreter + program → object code
Specializer + interpreter → compiler
Specializer + specializer → compiler-compiler

Partial evaluation of common system calls

Improved performance (McNamee, 2001)

Customized runtimes via partial evaluation

Application developer / user knows needs
Operating system designer does not
(Howell, 1998)

N. Shankar Static Previrtualization 10/39

Static Previrtualization

Application system calls partially evaluated

Resulting code is

Compact
Efficient
Portable
Isolatable
Less vulnerable to attack
More amenable to static analysis

LiveCD or virtual appliance, but without redundant software

N. Shankar Static Previrtualization 11/39

Project Background

Tried package minimization: Reduces footprint but granularity
is too coarse

Evaluated existing partial evaluation technology:

CMix-II (Henning Makholm)
Tempo (Charles Consel)

The technology is impressive but not current with
language/architecture changes (C99 or 64-bit machines)

More recently, we switched to LLVM

We have developed a previrtualization/monitoring toolchain
called Occam based on LLVM

It has been applied to web servers and PHP/MiniBlog

N. Shankar Static Previrtualization 12/39

Reducing Functionality with Occam

Program: thttpd

Size: 11,322 lines

Problems
Uses potentially dangerous functions like listen , connect, etc.
Reads configuration data from the command line.

Solutions
Limit the ways that dangerous functions can be called.
Compile configuration data into the program.

N. Shankar Static Previrtualization 13/39

Partial Evaluation of LLVM Bitcode

Low Level Virtual Machine (LLVM) is a typed,
machine-independent intermediate format (IF, called bitcode)
due to Adve and Lattner.

The IF uses static single assignment on typed registers.

Many languages have front-ends to generate LLVM, e.g., Ada,
C, C++, Objective C, Haskell.

Analyzers and code-generators can be driven from LLVM.

glibc could not be directly converted to bitcode, but uClibc
was adequate for this purpose.

Simple forms of partial evaluation on LLVM have been
explored:

Fujita uses cloning and LLVM’s optimizer
Smowton and Hand inline file data

N. Shankar Static Previrtualization 14/39

Workflow

N. Shankar Static Previrtualization 15/39

Outline of Talk

1 Reduce the “functionality” of a system

nweb is a simple webserver.
It doesn’t need to be able to listen on arbitrary ports.
Make configuration options static.

2 Overcome static analysis

Miniblog should never send email, so that functionality should
not be in the system.
We need to cut it out, since mail is in the PHP standard library
(compiled into the interpreter!).

3 Monitor systems and enforce dynamic policies

Log function calls as the program runs.
Check security properties.

N. Shankar Static Previrtualization 16/39

Module Previrtualization Overview

main.bc
(llvm)main.c a.out

Previrtualization

(0) compile (4) link

(1) “partial evaluation” (2) specialize

(3) reduction

N. Shankar Static Previrtualization 17/39

Partial Evaluation

Simplify the program as much as possible, want to expose
constants.

foo(int x, int y) {
bar(x, 1 + 2);

bar(2*5, y);

}

bar(int a, int b)

{ ...a...b...}

foo(int x, int y) {
bar(x, 3);
bar(10, y);

}

bar(int a, int b)

{ ...a...b... }

Use LLVM’s -O3.

N. Shankar Static Previrtualization 18/39

Specialization

Specialize functions when they take constant arguments.

foo(int x, int y) {
bar(x, 3);

bar(10, y);

}

bar(int a, int b)

{ ...a...b... }

foo(int x, int y) {
bar’(x);
bar”(y);
}

bar’(int a)
{ ...a...3... }

bar”(int b)
{ ...10...b... }

bar(int a, int b)

{ ...a...b... }

Clone functions and inline constants in a custom LLVM pass.

N. Shankar Static Previrtualization 19/39

Reduction

Eliminate unused code.

foo(int x, int y) {
bar’(x);

bar’’(y);

}

bar’(int a)

{ ...a...3... }
bar’’(int b)

{ ...10...b... }

bar(int a, int b)

{ ...a...b... }

foo(int x, int y) {
bar’(x);

bar’’(y);

}

bar’(int a)

{ ...a...3... }

bar’’(int b)

{ ...10...b... }

LLVM dead-code/global elimination pass.

N. Shankar Static Previrtualization 20/39

Reduction

Eliminate unused code.

foo(int x, int y) {
bar’(x);

bar’’(y);

}

bar’(int a)

{ ...a...3... }
bar’’(int b)

{ ...10...b... }

bar(int a, int b)
{ ...a...b... }

foo(int x, int y) {
bar’(x);

bar’’(y);

}

bar’(int a)

{ ...a...3... }

bar’’(int b)

{ ...10...b... }

LLVM dead-code/global elimination pass.

N. Shankar Static Previrtualization 20/39

thttpd Previrtualization

1 Specialization of command line parameters

2 Partial evaluation by optimization

3 Aggressive specialization of dangerous functions

4 Dead-code elimination

5 Goto 2!

N. Shankar Static Previrtualization 21/39

Cross-module Previrtualization

lib.bc

lib.red.bc

lib.spec.bc

lib.rw

cli.iface cli.bc

cli.rw.bc cli.min.bc

(3) rewrite

(1) interface

(2) specialize

(4) previrt
(4) previrt

Client Module

N. Shankar Static Previrtualization 22/39

Callgraphs: Before

sprintf

strlen

write

open

close

exit

web

read

log

strncmp

getpid

__errno_location

main
strcmp

printf

puts

chdir

fork
signal

setpgrp

socket

atoi

htonl

htons

bind

listen

accept

N. Shankar Static Previrtualization 23/39

Callgraphs: Before & After

getpid__errno_location

sprintf

atoi
htons

accept

main

chdir

printf

exit(0x4)

fork

signal(0x11,?)

signal(0x1,?)

close

setpgrp

open

strlen

write

socket(0x2,0x1,0x0)

log(0x2A,?,?,0x0)

htonl(0x0)

bind(?,?,0x10) listen(?,0x40)

read

log(0x2B,?,?,?)

strncmp

exit(0x1)

exit(0x3)

N. Shankar Static Previrtualization 24/39

Performance of Previrtualized Software

●●● ●● ●●

●●● ● ●● ●

nw
eb

nw
eb

 (
pr

ev
ir

t)

4600 4800 5000 5200

Previrtualized nweb Performance

Requests / Second

P
ro

gr
am

nweb performance before previrtualization.

N. Shankar Static Previrtualization 25/39

Performance of Previrtualized Software (thttpd)

●

th
ttp

d
th

ttp
d

(p
re

vi
rt

)

6250 6300 6350 6400

Previrtualized thttpd Performance

Requests / Second

P
ro

gr
am

thttpd performance after previrtualization.

N. Shankar Static Previrtualization 26/39

Size of Previrtualized Software

lib
c

lib
cr

yp
t

previrt
full

LLVM Module Size (KB)

0 200 400 600 800 1000

LLVM Library Module Sizes

78% reduction

N. Shankar Static Previrtualization 27/39

Size of Previrtualized Software

th
ttp

d
lib

c
lib

cr
yp

t

previrt
optimized
minimal

LLVM Module Size

Module Size (KB)

M
od

ul
e

0 50 100 150 200 250

N. Shankar Static Previrtualization 28/39

Limits of Compile-time Analysis

We can’t automatically determine reachable code in all cases

Cross-language or cross-binary calls
Indirect function calls & static approximations (PHP problem)
Function pointers and binary compatibility

PHP built-in functions are implemented as a large
function table.

Static analysis has to say that all of these are reachable.
Lets the bad in with the good.

PHP Snippet

const z e n d f u n c t i o n e n t r y b a s i c f u n c t i o n s [] =
{ . . . PHP FE(system , a r g i n f o s y s t e m) , . . . } ;
PHP FUNCTION(system)
{ p h p e x e c e x (INTERNAL FUNCTION PARAM PASSTHRU , 1) ; }

N. Shankar Static Previrtualization 29/39

Solution

1 “Statically analyze” the PHP code and determine the
functions that it will call.

For relatively static applications this can be done with a
grep-like static analysis.
Miniblog requires about 46 PHP functions out of the 1028
functions that a minimal PHP install would have.

2 Implement a transformation that will replace these unused
functions with a simple exit (1).

Previrtualize the result to remove all the unnecessary code.

N. Shankar Static Previrtualization 30/39

Specifying Rewrites

We can specify subs the same way that we refer to
specializations.

Remove system Function

z i f s y s t e m (?) => f a i l

fail is a keyword meaning call exit (1).

Question marks specify wildcard arguments; here we stub all
calls to zif system .

Also support integer constants, so we can reject some calls but
not others.

N. Shankar Static Previrtualization 31/39

Rewriting Code

Small transformation pass to replace function bodies.

zif system

zif system(char* cmd)

{ system(cmd); }

system(char* cmd)

{ libc code }

zif system

zif system(char* cmd)
{ exit(1); }

zif system’(char* cmd)

{ system(cmd); }

system(char* cmd)

{ libc code }

Implemented as a custom LLVM transformation pass.

N. Shankar Static Previrtualization 32/39

Reusing the Previrtualization Hammer

Remove dead code using previrtualization.

zif system

zif system(char* cmd)

{ exit(1); }

zif system’(char* cmd)

{ system(cmd); }

system(char* cmd)

{ libc code }

zif system

zif system(char* cmd)

{ exit(1); }

Reduce to an already solved problem!

N. Shankar Static Previrtualization 33/39

Reusing the Previrtualization Hammer

Remove dead code using previrtualization.

zif system

zif system(char* cmd)

{ exit(1); }

zif system’(char* cmd)
{ system(cmd); }

system(char* cmd)
{ libc code }

zif system

zif system(char* cmd)

{ exit(1); }

Reduce to an already solved problem!

N. Shankar Static Previrtualization 33/39

PHP/Miniblog Previrtualization

Remove dangerous PHP functions:

system

mail

etc.

Previrtualization removes unused dependencies.

N. Shankar Static Previrtualization 34/39

Approach

Extend the enforcement mechanism.

An implementation of Aspect-Oriented Programming for
LLVM.

Monitor when execution enters/exits a function.
Support access to function arguments and return values.
Support conditional monitoring.

Allowing exit (1) on certain parameters.

Monitored binaries can be run without monitors.

N. Shankar Static Previrtualization 35/39

Does Previrtualization Increase Security?

Many attacks exploit buffer overflow and format string
vulnerabilities to inject code or invoke existing functionality.

Protections like StackGuard have a runtime cost.

Attacks like return-to-libc and return-oriented
programming (ROP) can be defeated by address space layout
randomization (ASLR) on 64-bit machines.

Even through previrtualization introduces more potential
attack sequences for ROP, this is dwarfed by the entropy
introduced by 64 bits.

The bigger gain is that many potential vulnerabilities are
pruned by previrtualization.

Specifically, vulnerabilities in start-up code are unavailable in
the previrtualized application.

N. Shankar Static Previrtualization 36/39

Related Work

Massalin’s Synthesis kernel used partial evaluation for a form
of run-time code generation for efficiency.

McNamee, et al. optimized frequently used system calls with
PE.

Fujita exploited the LLVM optimizer for intra-module partial
evaluation

Smowton and Hand used this technique for inlining file data.

Turnkey Linux distributes coarsely pruned appliances for
several applications, including a JeOS (Just enough Operating
System) stack.

N. Shankar Static Previrtualization 37/39

Future Work

Improve the previrtualization toolchain

Deeper partial evaluation

Kernel previrtualization: Compiled FreeBSD with clang

Inter-application previrtualization

Adding security checks and monitoring during previrtualization

VM previrtualization

Other platforms: Android

Previrtualization as a service.

N. Shankar Static Previrtualization 38/39

Conclusions

Occam is a tool for previrtualization

Program specialization to reduce functionality.
Partial evaluation through optimization.
Works well for generic platforms, e.g., languages with large
libraries like PHP.

Monitoring program execution

Monitors can be placed around functions and modify both
inputs and outputs.
Monitors can be arbitrary C++ code and can maintain state
between calls.
Aspect-oriented programming

These techniques can be used for shrinking and wrapping the
software stack for each deployment

N. Shankar Static Previrtualization 39/39

