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Why a String Solver?
Efficient Analysis of String Programs
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Programs that use strings
Errors attributable to 

insufficient string analysis

Traditional Applications
C/C++ programs (string operations)

Memory-related Errors
Buffer overflow due overly long strings

Web Applications
PHP
JavaScript
String manipulation by Server or client-side code

Improper Sanitization
SQL injection 
XSS scripting
JavaScript Eval with user/attacker-supplied strings

 Strings are heavily used in Web applications
 Web applications plagued by string-related errors
 An SMT solver that natively reasons about strings can lower analysis burden

•
•
•
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Theory of Word Equations, Length and Membership
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Symbol String Sort Number Sort

Constants Finite-length strings defined over a finite alphabet
Σ Integers

Variables Range over Σ* Range over integers

String functions
Concat: String × String ⇒ String 
Length: String ⇒ Integer

Integer functions Addition: Integer × Integer ⇒ Integer

String predicates

Equality over string terms
(= : String × String ⇒ Bool)
membership in regular expressions/CFGs
(∈: String × regular-expression ⇒ Bool)
Contains predicate:
(Contains: String × String ⇒ Bool)

Integer
predicates

Equality over integer terms 
(=: Integer × Integer ⇒ Bool)
Inequality over integer terms
(<: Integer × Integer ⇒ Bool)
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Theory of Strings
Example Constraints
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 X = concat(“SELECT msg FROM msgs WHERE topicid = ”,v)
AND 

(X  ∈ SQL_Grammar)

input  ∈ RegExp([0-9]+)

X = concat (str_term1, str_term2, “c”)[1:42]
AND

X contains “abc”

Xa = aX, XabY = YbaX

•

•

•

•



Vijay Ganesh

Word Equations, Membership, and Length
What is Known
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Result Person (Year) Notes

Undecidability of Quantified
Word Equations

Quine (1946) Multiplication reduced to concat

Undecidability of Quantified
Word Equations with single
alternation

Durnev (1996), G. (2012)
2-counter machines reduced to
words with single quantifier alter.

Decidability (PSPACE) of QF
Theory of Word Equations

Makanin (1977)
Plandowski (1996, 2002/06)

Makanin result very difficult
Simplified by Plandowski

Decidability (PSPACE-
complete) of QF Theory of
Word Equations + RE

Schultz (1992) RE membership predicate

QF word equations + Length()
(?)

Matiyasevich (1971) Unsolved
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String Solver Problem Statement
Efficient Solver for Analysis of String Programs
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Program Reasoning 
Tool

String Program Specification

Program is Correct?
or Generate Tests

String
Solver

String Formulas

SAT/UNSAT
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HAMPI String Solver
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HAMPI 
String Solver

String
Formulas

UNSAT

SAT

 X = concat(“SELECT...”,v) AND (X  ∈ SQL_grammar)
 JavaScript, PHP, ... string expressions
 NP-complete
 ACM Distinguished Paper Award 2009 
 Google Faculty Research Award 2011

•
•
•
•
•

TOSEM 2012
CAV 2011
ISSTA 2009
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Rest of the Talk

 HAMPI string solver

 String equations and membership in regular expressions/CFGs
 How HAMPI works

 Experimental results

 Theoretical results

 Undecidability of forallexists fragment of word equations

 Conditional decidability results for word equations and length

 Open theoretical problems

 Z3-str

 A solver for string equations and length function

•

•
•

•

•

•

•

•

•
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Theory of Strings
The Hampi Language
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PHP/JavaScript/C++... HAMPI: Theory of Strings Notes

Var a;
$a = ‘name’

Var a : 1...20; 
a = ‘name’

Bounded String Variables
String Constants

string_expr.” is ” concat(string_expr, “ is “); Concat Function

substr(string_expr,1,3) string_expr[1:3] Extract Function

assignments/strcmp
a = string_expr;
a /= string_expr;

equality
a = string_expr;
a /= string_expr;

Equality Predicate

Sanity check in regular expression RE
Sanity check in context-free grammar CFG

string_expr in RE 
string_expr in SQL
string_expr NOT in SQL

Membership Predicate

string_expr contains a sub_str
string_expr does not contain a sub_str

string_expr contains sub_str
string_expr NOT?contains sub_str

Contains Predicate
(Substring Predicate)
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HAMPI Solver Motivating Example
SQL Injection Vulnerabilities
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Backend
DataBase

Malicious SQL Query

Unauthorized 
Database Results

Buggy
Script

SELECT m FROM messages WHERE id=’1’ OR 1 = 1
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HAMPI Solver Motivating Example
SQL Injection Vulnerabilities
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if (input in regexp(“[0-9]+”))
  query := “SELECT m FROM messages WHERE id=‘ ” + input +  “ ’ “)

Buggy Script

 input passes validation (regular expression check)

 query is syntactically-valid SQL

 query can potentially contain an attack substring
  (e.g., 1’ OR ‘1’ = ‘1)

•

•

•

Should be:  “^[0-9]+$”
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HAMPI Solver Motivating Example
SQL Injection Vulnerabilities
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if (input in regexp(“[0-9]+”))
  query := “SELECT m FROM messages WHERE id=‘ ” + input +  “ ’ “)

Program Reasoning Tool

Specification

Generate Tests/
Report Vulnerability

HAMPI

String Formulas

SAT/UNSAT
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Expressing the Problem in HAMPI
SQL Injection Vulnerabilities
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Var v : 12; 

 

cfg SqlSmall := "SELECT ” [a-z]+ " FROM ” [a-z]+ " WHERE " Cond; 

cfg Cond := Val "=" Val | Cond " OR " Cond; 

cfg Val := [a-z]+ | "'” [a-z0-9]* "'" | [0-9]+; 

 

val q := concat("SELECT msg FROM messages WHERE topicid='", v, "'"); 

 

assert q in SqlSmall;     

assert q contains "OR ‘1'=‘1'"; 

  

SQL 
Grammar 

SQL Query 

Input String 

SQLI attack 
conditions 

“q is a valid SQL query” 

“q contains an attack vector” 

assert v in [0-9]+;
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Hampi Key Conceptual Idea
Bounding, expressiveness and efficiency
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Li
Complexity of
∅ = L1 ∩ ... ∩ Ln

Current Solvers

Context-free Undecidable n/a

Regular PSPACE-complete Quantified 
Boolean Logic

Bounded NP-complete SAT
Efficient in practice
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Hampi Key Idea: Bounded Logics
Testing, Analysis, Vulnerability Detection,...
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Finding SAT assignment is key

Short assignments are sufficient

•

•

Bounding is sufficient

Bounded logics easier to decide

•

•
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HAMPI Solver Motivating Example
SQL Injection Vulnerabilities
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Var v : 12; 

 

cfg SqlSmall := "SELECT ” [a-z]+ " FROM ” [a-z]+ " WHERE " Cond; 

cfg Cond := Val "=" Val | Cond " OR " Cond; 

cfg Val := [a-z]+ | "'” [a-z0-9]* "'" | [0-9]+; 

 

val q := concat("SELECT msg FROM messages WHERE topicid='", v, "'"); 

 

assert q in SqlSmall;     

assert q contains "OR ‘1'=‘1'"; 

  

SQL 
Grammar 

SQL Query 

Input String 

SQLI attack 
conditions 

“q is a valid SQL query” 

“q contains an attack vector” 

assert v in [0-9]+;
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How Hampi Works
Bird’s Eye View: Strings into Bit-vectors
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Hampi

Find a 4-char string v:
 (v) is in E
 (v) contains ()()

•
•

var v : 4;

cfg E := “()” | E E | “(“ E
“)”;

val q := concat( “(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v = )()(

Bit-vector 
Constraints

Bit-vector 
Solution

Normalizer
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How Hampi Works
Unroll Bounded CFGs into Regular Exp.
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Bound(E,6)  
([()() + (())]) +
()[()() + (())] +
[()() + (())]()

Hampivar v : 4;

cfg E := “()” | E E | “(“ E
“)”;

val q := concat( “(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v = )()(

Bit-vector 
Constraints

Bit-vector 
Solution

Normalizer

Bound Auto-derived
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STP Bit-vector & Array Solver

20

STP Solver
Program

Expressions
(x = z+2 OR

mem[i] + y <= 01)

UNSAT

SAT

 Bit-vector or machine arithmetic
  Arrays for memory
 C/C++/Java expressions
 NP-complete

•
•
•
•
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Impact of STP: Notable Projects
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Category Research Project Project Leader/Institution

Formal Methods
ACL2 Theorem Prover + STP
Verification-aware Design Checker
Java PathFinder Model Checker

Eric Smith & David Dill/Stanford
Jacob Chang & David Dill/Stanford
Mehlitz & Pasareanu/NASA

Program Analysis
BitBlaze & WebBlaze
BAP

Dawn Song et al./Berkeley
David Brumley/CMU

Automatic Testing
Security

Klee, EXE
SmartFuzz
Kudzu
S2E & Cloud9

Engler & Cadar/Stanford
Molnar & Wagner/Berkeley
Saxena & Song/Berkeley
Bucur & Candea/EPFL

Hardware Bounded
Model-cheking (BMC)

Blue-spec BMC
BMC

Katelman & Dave/MIT
Haimed/NVIDIA

 Played an important role in the development of  symbolic testing techniques
 100+ reliability and security projects

•
•
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How Hampi Works
Bird’s Eye View: Strings into Bit-vectors
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Hampi

Find a 4-char string v:
 (v) is in E
 (v) contains ()()

•
•

var v : 4;

cfg E := “()” | E E | “(“ E
“)”;

val q := concat( “(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v = )()(

Bit-vector 
Constraints

Bit-vector 
Solution

Normalizer
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How Hampi Works
Unroll Bounded CFGs into Regular Exp.
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var v : 4;

cfg E := “()” | E E | “(“ E
“)”;

val q := concat( “(“, v, ”)”);

assert q in E;
assert q contains “()()”;

Auto-derive 
lower/upper bounds

[L,B]
on CFG

[6,6]

cfg E := “()” | E E | “(“ E
“)”

Look for 
minimal length string “()”

Step 1:

Step 2:
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How Hampi Works
Unroll Bounded CFGs into Regular Exp.
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cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct Partitions

[4,2]
[2,4]
[3,3]
[5,1]
[1,5]

[1,4,1]

Step 3:

Length: 6

Min. length constant: ”()”

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct RE

(())()
()(())
((()))

Step 4:

Length: 6

Min. length constant: ”()”
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Unroll Bounded CFGs into Regular Exp.
Managing Exponential Blow-up
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 Memoize common sub-expressions

 Lots of redundant sub-expression in commonly occurring regular expressions

 Works well in practice

•

•

•

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct RE

(())()
()(())
((()))

...

Length: 6

Min. length constant: ”()”
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How Hampi Works
Converting Regular Exp. into Bit-vectors
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 ( v ) � ()[()() + (())] + [()() + (())]() + ([()() + (())]) 

Formula �1     Formula �2     Formula �3 

Encode regular expressions recursively
•  Alphabet { (, ) }  0, 1
•  constant            bit-vector constant
•  union +            disjunction  
•  concatenation  conjunction �
•  Kleene star *   conjunction ��
• �Membership, equality equality�

B[0]=0��	�
�����	�
����	�
����	�
����	�
���…  
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How Hampi Works
Decoder converts Bit-vectors to Strings
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Hampi

Find a 4-char string v:
 (v) is in E
 (v) contains ()()

•
•

var v : 4;

cfg E := “()” | E E | “(“ E
“)”;

val q := concat( “(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v = )()(

Bit-vector 
Constraints

Bit-vector 
Solution

Normalizer
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HAMPI: Result 1
Static SQL Injection Analysis

28

0.01 

0.1 

1 

10 

100 

1000 

1 10 100 1000 10000 100000 

T
im

e 
To

 S
ol

ve
 (

se
c)

 

Grammar Size (# of productions) 

 1367 string constraints from Wasserman & Su [PLDI’07]  
 Hampi scales to large grammars
 Hampi solved 99.7% of constraints in < 1sec
 All solvable constraints had short solutions

•
•
•
•
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HAMPI: Result 2
Security Testing and XSS
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 Attackers inject client-side script into web pages

 Somehow circumvent same-origin policy in websites

 echo “Thank you $my_poster for using the message board”;

 Unsanitized $my_poster

 Can be JavaScript

 Execution can be bad

•

•

•

•

•

•
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HAMPI: Result 2
Security Testing
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 Hampi used to build Ardilla security tester [Kiezun et al., ICSE’09]

 60 new vulnerabilities on 5 PHP applications (300+ kLOC)
 23 SQL injection
 37 cross-site scripting (XSS)

•

•
•
• 5 added to 

US National Vulnerability DB

 46% of constraints solved in < 1 second per constraint

 100% of constraints solved in <10 seconds per constraint

•

•



HAMPI: Result 3
Comparison with Competing Tools
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Hampi

CFGAnalyzer

string size (characters)

 HAMPI vs. CFGAnalyzer (U. Munich): HAMPI ~7x faster for strings of size 50+
 HAMPI vs. Rex (Microsoft Research): HAMPI ~100x faster for strings of size 100+
 HAMPI vs. DPRLE (U. Virginia): HAMPI ~1000x faster for strings of size 100+

•
•
•
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How to Automatically Crash Programs?
KLEE: Concolic Execution-based Tester
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Problem:  Automatically generate crashing tests given only the code

Symbolic Execution
Engine
with

Implicit Spec

Program

Crashing
Tests

STP

Formulas

SAT/UNSAT

Automatic
Tester
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HAMPI: Result 4
Helping KLEE Pierce Parsers
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Symbolic Execution
Engine
with

Implicit Spec

Crashing
Tests

STP

Formulas

SAT/UNSAT

KLEE

Parser

Semantic Core

Generate Input
Using HAMPI;

Mark Partially Symbolic
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Impact of Hampi: Notable Projects
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Category Research Project Project Leader/Institution

Static Analysis SQL-injection vulnerabilities Wasserman & Su/UC, Davis

Security Testing
Ardilla for PHP (SQL injections,
cross-site scripting) Kiezun & Ernst/MIT

Concolic Testing
Klee
Kudzu
NoTamper

Engler & Cadar/Stanford
Saxena & Song/Berkeley
Bisht & Venkatakrishnan/U Chicago

New Solvers Kaluza Saxena & Song/Berkeley
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Rest of the Talk

 HAMPI string solver

 String equations and membership in regular expressions/CFGs
 How HAMPI works

 Experimental results

 Theoretical results

 Undecidability of forallexists fragment of word equations

 Conditional decidability results for word equations and length

 Open theoretical problems

 Z3-str

 A solver for string equations and length function

•

•
•

•

•

•

•

•

•

• 35
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Theory of Word Equations, Length and Membership
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Symbol String Sort Number Sort

Constants
Finite-length strings defined over a finite alphabet
Σ Integers

Variables Range over Σ* Range over integers

String functions
Concat: String × String ⇒ String 
Length: String ⇒ Integer

Integer functions Addition: Integer × Integer ⇒ Integer

String predicates

Equality over string terms
(= : String × String ⇒ Bool)
membership in regular expressions/CFGs
(∈: String × regular-expression ⇒ Bool)

Integer
predicates

Equality over integer terms 
(=: Integer × Integer ⇒ Bool)
Inequality over integer terms
(<: Integer × Integer ⇒ Bool)
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Word Equations, Reg Exp, and Length
What is known
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Result Person (Year) Notes

Undecidability of Quantified
Word Equations

Quine (1946) Multiplication reduced to concat

Undecidability of Quantified
Word Equations with single
alternation

Durnev (1996), G. (2012)
2-counter machines reduced to
words with single quantifier alter.

Decidability (PSPACE) of QF
Theory of Word Equations

Makanin (1977)
Plandowski (1996, 2002/06)

Makanin result very difficult
Simplified by Plandowski

Decidability (PSPACE-
complete) of QF Theory of
Word Equations + RE

Schultz (1992) RE membership predicate

QF word equations + Length()
(?)

Matiyasevich (1971) Unsolved
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Theory of Word Equations and Length
Our Results (HVC 2012)
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Decidability/Und
ecidability Result

Undecidability

 Theorem: 

The forall-exists fragment of quantifier-free word equations in undecidable.

Proof Sketch:
 Reduction from the halting problem for 2-counter machines to SAT problem for forall-

exists fragment of word equations

 Intuition is to encode computational histories of 2-counter machines into strings

Conditional
decidability

 Theorem: 

The quantifier-free theory of word equations and length is decidable, if word equations
can be converted into solved form

 Theorem: 

The quantifier-free theory of word equations with length and regular expressions
membership is decidable, if word equations can be converted into solved form

•

•

•

•

•
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Rest of the Talk

 HAMPI string solver

 String equations and membership in regular expressions/CFGs
 How HAMPI works

 Experimental results

 Theoretical results

 Undecidability of forallexists fragment of word equations

 Conditional decidability results for word equations and length

 Open theoretical problems

 Z3-str

 A solver for string equations and length function

•

•
•

•

•

•

•

•

•

• 39
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Z3-str String Solver*
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Z3-str
String Solver

String
Formulas

UNSAT

SAT

 Quantifier-free theory of word equations and length function
 Status: unknown
 Our partial decidability technique

 Given a word equation partition its solutions space into finite buckets
 Leverage Z3 for identifying equivalent expressions and length consistency checks
 Approximate by heuristically solving “overlapping” equations

* Joint work with Xiangyu Zhang and Yunhui Zheng (Purdue University)

•
•
•

•
•
•
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Z3-str String Solver*
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 Quantifier-free theory of word equations and length function
 Status: unknown
 Our partial decidability technique

 Given a word equation partition its solutions space into finite buckets
 Leverage Z3 for identifying equivalent expressions and length consistency checks
 Approximate by heuristically solving “overlapping” equations

* Joint work with Xiangyu Zhang and Yunhui Zheng (Purdue University)

•
•
•

•
•
•

Xa

=
aX

aa

=
aa

a

=
a

X

=
a

a

X

, ,
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Related Work (Practice)
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Tool Name
Project
Leader/Institution

Comparison with HAMPI

Rex
Bjorner, Tillman, Vornkov et al.
(Microsoft Research, Redmond)

 HAMPI 
  + Length+Replace(s1,s2,s3)

   - CFG
 Translation to int. linear arith. (Z3)

Mona Karlund et al. (U. of Aarhus)
 Can encode HAMPI & Rex
 User work
 Automata-based
 Non-elementary

DPRLE Hooimeijer (U. of Virginia)  Regular expression constraints

•

•

•
•
•
•

•
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Some Future Directions
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 A Predictive Theory for CDCL SAT solvers and DPLL(T)?

 Attack-resistance programs

 Can we define a mathematical notion of partial reliability?

 Expanding the scope of testing

 Automatic counter-example construction for math conjectures

 Open problems regarding theories of strings

 Is the SAT problem for word equations in NP? Is the quantifier-free theory of
word equations and length decidable?

 Richer string solvers

 All-in-one: integrating word equations, length and membership into SMT

•

•

•

•

•

•

•

•

•
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Key Contributions
https://ece.uwaterloo.ca/~vganesh

Name Key Concept Impact Pubs

STP 
Bit-vector & Array Solver1,2

Abstraction-refinement 
for Solving Concolic Testing

CAV 2007
CCS 2006
TISSEC 2008

HAMPI 
String Solver1 App-driven Bounding for Solving Analysis of 

Web Apps

ISSTA 20093

TOSEM 2012
CAV 2011

(Un)Decidability 
results for Strings

Reduction from two-counter
machine halting problem HVC 2012

Taint-based Fuzzing
Information flow is cheaper than
concolic

Scales better than
concolic ICSE 2009

Automatic Input Rectification Acceptability Envelope:
Fix the input, not the program

New way of
approaching SE

ICSE 2012

44

 STP won the SMTCOMP 2006 and 2010 competitions for bit-vector solvers
 HAMPI: ACM Best Paper Award 2009 
 Google Award 2011
 Retargetable Compiler (DATE 1999)
 Proof-producing decision procedures (TACAS 2003)
 Error-finding in ARBAC policies (CCS 2011)
 Programmatic SAT Solvers (SAT 2012)

1.
2.
3.
4.
5.
6.
7.


