
String Solvers
for

Web Security
Vijay Ganesh

Affiliation: University of Waterloo

Vijay Ganesh

Software Engineering & SMT Solvers
An Indispensable Tactic for Most Strategies

Formal
Methods

Program
Analysis

Automatic
Testing

Program
Synthesis

Program
Reasoning
SAT/SMT
Solvers

2

Vijay Ganesh

Why a String Solver?
Efficient Analysis of String Programs

3

Programs that use strings
Errors attributable to

insufficient string analysis

Traditional Applications
C/C++ programs (string operations)

Memory-related Errors
Buffer overflow due overly long strings

Web Applications
PHP
JavaScript
String manipulation by Server or client-side code

Improper Sanitization
SQL injection
XSS scripting
JavaScript Eval with user/attacker-supplied strings

 Strings are heavily used in Web applications
 Web applications plagued by string-related errors
 An SMT solver that natively reasons about strings can lower analysis burden

•
•
•

Vijay Ganesh

Theory of Word Equations, Length and Membership

4

Symbol String Sort Number Sort

Constants Finite-length strings defined over a finite alphabet
Σ Integers

Variables Range over Σ* Range over integers

String functions
Concat: String × String ⇒ String
Length: String ⇒ Integer

Integer functions Addition: Integer × Integer ⇒ Integer

String predicates

Equality over string terms
(= : String × String ⇒ Bool)
membership in regular expressions/CFGs
(∈: String × regular-expression ⇒ Bool)
Contains predicate:
(Contains: String × String ⇒ Bool)

Integer
predicates

Equality over integer terms
(=: Integer × Integer ⇒ Bool)
Inequality over integer terms
(<: Integer × Integer ⇒ Bool)

Vijay Ganesh

Theory of Strings
Example Constraints

5

 X = concat(“SELECT msg FROM msgs WHERE topicid = ”,v)
AND

(X ∈ SQL_Grammar)

input ∈ RegExp([0-9]+)

X = concat (str_term1, str_term2, “c”)[1:42]
AND

X contains “abc”

Xa = aX, XabY = YbaX

•

•

•

•

Vijay Ganesh

Word Equations, Membership, and Length
What is Known

6

Result Person (Year) Notes

Undecidability of Quantified
Word Equations

Quine (1946) Multiplication reduced to concat

Undecidability of Quantified
Word Equations with single
alternation

Durnev (1996), G. (2012)
2-counter machines reduced to
words with single quantifier alter.

Decidability (PSPACE) of QF
Theory of Word Equations

Makanin (1977)
Plandowski (1996, 2002/06)

Makanin result very difficult
Simplified by Plandowski

Decidability (PSPACE-
complete) of QF Theory of
Word Equations + RE

Schultz (1992) RE membership predicate

QF word equations + Length()
(?)

Matiyasevich (1971) Unsolved

Vijay Ganesh

String Solver Problem Statement
Efficient Solver for Analysis of String Programs

7

Program Reasoning
Tool

String Program Specification

Program is Correct?
or Generate Tests

String
Solver

String Formulas

SAT/UNSAT

Vijay Ganesh

HAMPI String Solver

8

HAMPI
String Solver

String
Formulas

UNSAT

SAT

 X = concat(“SELECT...”,v) AND (X ∈ SQL_grammar)
 JavaScript, PHP, ... string expressions
 NP-complete
 ACM Distinguished Paper Award 2009
 Google Faculty Research Award 2011

•
•
•
•
•

TOSEM 2012
CAV 2011
ISSTA 2009

Vijay Ganesh

Rest of the Talk

 HAMPI string solver

 String equations and membership in regular expressions/CFGs
 How HAMPI works

 Experimental results

 Theoretical results

 Undecidability of forallexists fragment of word equations

 Conditional decidability results for word equations and length

 Open theoretical problems

 Z3-str

 A solver for string equations and length function

•

•
•

•

•

•

•

•

•

• 9

Vijay Ganesh

Theory of Strings
The Hampi Language

10

PHP/JavaScript/C++... HAMPI: Theory of Strings Notes

Var a;
$a = ‘name’

Var a : 1...20;
a = ‘name’

Bounded String Variables
String Constants

string_expr.” is ” concat(string_expr, “ is “); Concat Function

substr(string_expr,1,3) string_expr[1:3] Extract Function

assignments/strcmp
a = string_expr;
a /= string_expr;

equality
a = string_expr;
a /= string_expr;

Equality Predicate

Sanity check in regular expression RE
Sanity check in context-free grammar CFG

string_expr in RE
string_expr in SQL
string_expr NOT in SQL

Membership Predicate

string_expr contains a sub_str
string_expr does not contain a sub_str

string_expr contains sub_str
string_expr NOT?contains sub_str

Contains Predicate
(Substring Predicate)

Vijay Ganesh

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

11

Backend
DataBase

Malicious SQL Query

Unauthorized
Database Results

Buggy
Script

SELECT m FROM messages WHERE id=’1’ OR 1 = 1

Vijay Ganesh

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

12

if (input in regexp(“[0-9]+”))
 query := “SELECT m FROM messages WHERE id=‘ ” + input + “ ’ “)

Buggy Script

 input passes validation (regular expression check)

 query is syntactically-valid SQL

 query can potentially contain an attack substring
 (e.g., 1’ OR ‘1’ = ‘1)

•

•

•

Should be: “^[0-9]+$”

Vijay Ganesh

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

13

if (input in regexp(“[0-9]+”))
 query := “SELECT m FROM messages WHERE id=‘ ” + input + “ ’ “)

Program Reasoning Tool

Specification

Generate Tests/
Report Vulnerability

HAMPI

String Formulas

SAT/UNSAT

Vijay Ganesh

Expressing the Problem in HAMPI
SQL Injection Vulnerabilities

14

Var v : 12;

cfg SqlSmall := "SELECT ” [a-z]+ " FROM ” [a-z]+ " WHERE " Cond;

cfg Cond := Val "=" Val | Cond " OR " Cond;

cfg Val := [a-z]+ | "'” [a-z0-9]* "'" | [0-9]+;

val q := concat("SELECT msg FROM messages WHERE topicid='", v, "'");

assert q in SqlSmall;

assert q contains "OR ‘1'=‘1'";

SQL
Grammar

SQL Query

Input String

SQLI attack
conditions

“q is a valid SQL query”

“q contains an attack vector”

assert v in [0-9]+;

Vijay Ganesh

Hampi Key Conceptual Idea
Bounding, expressiveness and efficiency

15

Li
Complexity of
∅ = L1 ∩ ... ∩ Ln

Current Solvers

Context-free Undecidable n/a

Regular PSPACE-complete Quantified
Boolean Logic

Bounded NP-complete SAT
Efficient in practice

Vijay Ganesh

Hampi Key Idea: Bounded Logics
Testing, Analysis, Vulnerability Detection,...

16

Finding SAT assignment is key

Short assignments are sufficient

•

•

Bounding is sufficient

Bounded logics easier to decide

•

•

Vijay Ganesh

HAMPI Solver Motivating Example
SQL Injection Vulnerabilities

17

Var v : 12;

cfg SqlSmall := "SELECT ” [a-z]+ " FROM ” [a-z]+ " WHERE " Cond;

cfg Cond := Val "=" Val | Cond " OR " Cond;

cfg Val := [a-z]+ | "'” [a-z0-9]* "'" | [0-9]+;

val q := concat("SELECT msg FROM messages WHERE topicid='", v, "'");

assert q in SqlSmall;

assert q contains "OR ‘1'=‘1'";

SQL
Grammar

SQL Query

Input String

SQLI attack
conditions

“q is a valid SQL query”

“q contains an attack vector”

assert v in [0-9]+;

Vijay Ganesh

How Hampi Works
Bird’s Eye View: Strings into Bit-vectors

18

Hampi

Find a 4-char string v:
 (v) is in E
 (v) contains ()()

•
•

var v : 4;

cfg E := “()” | E E | “(“ E
“)”;

val q := concat(“(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v =)()(

Bit-vector
Constraints

Bit-vector
Solution

Normalizer

Vijay Ganesh

How Hampi Works
Unroll Bounded CFGs into Regular Exp.

19

Bound(E,6)
([()() + (())]) +
()[()() + (())] +
[()() + (())]()

Hampivar v : 4;

cfg E := “()” | E E | “(“ E
“)”;

val q := concat(“(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v =)()(

Bit-vector
Constraints

Bit-vector
Solution

Normalizer

Bound Auto-derived

Vijay Ganesh

STP Bit-vector & Array Solver

20

STP Solver
Program

Expressions
(x = z+2 OR

mem[i] + y <= 01)

UNSAT

SAT

 Bit-vector or machine arithmetic
 Arrays for memory
 C/C++/Java expressions
 NP-complete

•
•
•
•

Vijay Ganesh

Impact of STP: Notable Projects

21

Category Research Project Project Leader/Institution

Formal Methods
ACL2 Theorem Prover + STP
Verification-aware Design Checker
Java PathFinder Model Checker

Eric Smith & David Dill/Stanford
Jacob Chang & David Dill/Stanford
Mehlitz & Pasareanu/NASA

Program Analysis
BitBlaze & WebBlaze
BAP

Dawn Song et al./Berkeley
David Brumley/CMU

Automatic Testing
Security

Klee, EXE
SmartFuzz
Kudzu
S2E & Cloud9

Engler & Cadar/Stanford
Molnar & Wagner/Berkeley
Saxena & Song/Berkeley
Bucur & Candea/EPFL

Hardware Bounded
Model-cheking (BMC)

Blue-spec BMC
BMC

Katelman & Dave/MIT
Haimed/NVIDIA

 Played an important role in the development of symbolic testing techniques
 100+ reliability and security projects

•
•

Vijay Ganesh

How Hampi Works
Bird’s Eye View: Strings into Bit-vectors

22

Hampi

Find a 4-char string v:
 (v) is in E
 (v) contains ()()

•
•

var v : 4;

cfg E := “()” | E E | “(“ E
“)”;

val q := concat(“(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v =)()(

Bit-vector
Constraints

Bit-vector
Solution

Normalizer

Vijay Ganesh

How Hampi Works
Unroll Bounded CFGs into Regular Exp.

23

var v : 4;

cfg E := “()” | E E | “(“ E
“)”;

val q := concat(“(“, v, ”)”);

assert q in E;
assert q contains “()()”;

Auto-derive
lower/upper bounds

[L,B]
on CFG

[6,6]

cfg E := “()” | E E | “(“ E
“)”

Look for
minimal length string “()”

Step 1:

Step 2:

Vijay Ganesh

How Hampi Works
Unroll Bounded CFGs into Regular Exp.

24

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct Partitions

[4,2]
[2,4]
[3,3]
[5,1]
[1,5]

[1,4,1]

Step 3:

Length: 6

Min. length constant: ”()”

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct RE

(())()
()(())
((()))

Step 4:

Length: 6

Min. length constant: ”()”

Vijay Ganesh

Unroll Bounded CFGs into Regular Exp.
Managing Exponential Blow-up

25

 Memoize common sub-expressions

 Lots of redundant sub-expression in commonly occurring regular expressions

 Works well in practice

•

•

•

cfg E := “()” | E E | “(“ E “)”

Recursively
expand

non-terminals:

Construct RE

(())()
()(())
((()))

...

Length: 6

Min. length constant: ”()”

Vijay Ganesh

How Hampi Works
Converting Regular Exp. into Bit-vectors

26

 (v) � ()[()() + (())] + [()() + (())]() + ([()() + (())])

Formula �1 Formula �2 Formula �3

Encode regular expressions recursively
•  Alphabet { (,) } 0, 1
•  constant bit-vector constant
•  union + disjunction
•  concatenation conjunction �
•  Kleene star * conjunction ��
• �Membership, equality equality�

B[0]=0��	�
�����	�
����	�
����	�
����	�
���…

Vijay Ganesh

How Hampi Works
Decoder converts Bit-vectors to Strings

27

Hampi

Find a 4-char string v:
 (v) is in E
 (v) contains ()()

•
•

var v : 4;

cfg E := “()” | E E | “(“ E
“)”;

val q := concat(“(“, v, ”)”);

assert q in E;
assert q contains “()()”;

STP Encoder

STP Decoder
STP

String Solution
v =)()(

Bit-vector
Constraints

Bit-vector
Solution

Normalizer

Vijay Ganesh

HAMPI: Result 1
Static SQL Injection Analysis

28

0.01

0.1

1

10

100

1000

1 10 100 1000 10000 100000

T
im

e
To

 S
ol

ve
 (

se
c)

Grammar Size (# of productions)

 1367 string constraints from Wasserman & Su [PLDI’07]
 Hampi scales to large grammars
 Hampi solved 99.7% of constraints in < 1sec
 All solvable constraints had short solutions

•
•
•
•

Vijay Ganesh

HAMPI: Result 2
Security Testing and XSS

29

 Attackers inject client-side script into web pages

 Somehow circumvent same-origin policy in websites

 echo “Thank you $my_poster for using the message board”;

 Unsanitized $my_poster

 Can be JavaScript

 Execution can be bad

•

•

•

•

•

•

Vijay Ganesh

HAMPI: Result 2
Security Testing

30

 Hampi used to build Ardilla security tester [Kiezun et al., ICSE’09]

 60 new vulnerabilities on 5 PHP applications (300+ kLOC)
 23 SQL injection
 37 cross-site scripting (XSS)

•

•
•
• 5 added to

US National Vulnerability DB

 46% of constraints solved in < 1 second per constraint

 100% of constraints solved in <10 seconds per constraint

•

•

HAMPI: Result 3
Comparison with Competing Tools

31
av

er
ag

e
tim

e
(se

c.)

 0 10 20 30 40 50
 0

 5

 10

 15

 20

 25

Hampi

CFGAnalyzer

string size (characters)

 HAMPI vs. CFGAnalyzer (U. Munich): HAMPI ~7x faster for strings of size 50+
 HAMPI vs. Rex (Microsoft Research): HAMPI ~100x faster for strings of size 100+
 HAMPI vs. DPRLE (U. Virginia): HAMPI ~1000x faster for strings of size 100+

•
•
•

Vijay Ganesh

How to Automatically Crash Programs?
KLEE: Concolic Execution-based Tester

32

Problem: Automatically generate crashing tests given only the code

Symbolic Execution
Engine
with

Implicit Spec

Program

Crashing
Tests

STP

Formulas

SAT/UNSAT

Automatic
Tester

Vijay Ganesh

HAMPI: Result 4
Helping KLEE Pierce Parsers

33

Symbolic Execution
Engine
with

Implicit Spec

Crashing
Tests

STP

Formulas

SAT/UNSAT

KLEE

Parser

Semantic Core

Generate Input
Using HAMPI;

Mark Partially Symbolic

Vijay Ganesh

Impact of Hampi: Notable Projects

34

Category Research Project Project Leader/Institution

Static Analysis SQL-injection vulnerabilities Wasserman & Su/UC, Davis

Security Testing
Ardilla for PHP (SQL injections,
cross-site scripting) Kiezun & Ernst/MIT

Concolic Testing
Klee
Kudzu
NoTamper

Engler & Cadar/Stanford
Saxena & Song/Berkeley
Bisht & Venkatakrishnan/U Chicago

New Solvers Kaluza Saxena & Song/Berkeley

Vijay Ganesh

Rest of the Talk

 HAMPI string solver

 String equations and membership in regular expressions/CFGs
 How HAMPI works

 Experimental results

 Theoretical results

 Undecidability of forallexists fragment of word equations

 Conditional decidability results for word equations and length

 Open theoretical problems

 Z3-str

 A solver for string equations and length function

•

•
•

•

•

•

•

•

•

• 35

Vijay Ganesh

Theory of Word Equations, Length and Membership

36

Symbol String Sort Number Sort

Constants
Finite-length strings defined over a finite alphabet
Σ Integers

Variables Range over Σ* Range over integers

String functions
Concat: String × String ⇒ String
Length: String ⇒ Integer

Integer functions Addition: Integer × Integer ⇒ Integer

String predicates

Equality over string terms
(= : String × String ⇒ Bool)
membership in regular expressions/CFGs
(∈: String × regular-expression ⇒ Bool)

Integer
predicates

Equality over integer terms
(=: Integer × Integer ⇒ Bool)
Inequality over integer terms
(<: Integer × Integer ⇒ Bool)

Vijay Ganesh

Word Equations, Reg Exp, and Length
What is known

37

Result Person (Year) Notes

Undecidability of Quantified
Word Equations

Quine (1946) Multiplication reduced to concat

Undecidability of Quantified
Word Equations with single
alternation

Durnev (1996), G. (2012)
2-counter machines reduced to
words with single quantifier alter.

Decidability (PSPACE) of QF
Theory of Word Equations

Makanin (1977)
Plandowski (1996, 2002/06)

Makanin result very difficult
Simplified by Plandowski

Decidability (PSPACE-
complete) of QF Theory of
Word Equations + RE

Schultz (1992) RE membership predicate

QF word equations + Length()
(?)

Matiyasevich (1971) Unsolved

Vijay Ganesh

Theory of Word Equations and Length
Our Results (HVC 2012)

38

Decidability/Und
ecidability Result

Undecidability

 Theorem:

The forall-exists fragment of quantifier-free word equations in undecidable.

Proof Sketch:
 Reduction from the halting problem for 2-counter machines to SAT problem for forall-

exists fragment of word equations

 Intuition is to encode computational histories of 2-counter machines into strings

Conditional
decidability

 Theorem:

The quantifier-free theory of word equations and length is decidable, if word equations
can be converted into solved form

 Theorem:

The quantifier-free theory of word equations with length and regular expressions
membership is decidable, if word equations can be converted into solved form

•

•

•

•

•

Vijay Ganesh

Rest of the Talk

 HAMPI string solver

 String equations and membership in regular expressions/CFGs
 How HAMPI works

 Experimental results

 Theoretical results

 Undecidability of forallexists fragment of word equations

 Conditional decidability results for word equations and length

 Open theoretical problems

 Z3-str

 A solver for string equations and length function

•

•
•

•

•

•

•

•

•

• 39

Vijay Ganesh

Z3-str String Solver*

40

Z3-str
String Solver

String
Formulas

UNSAT

SAT

 Quantifier-free theory of word equations and length function
 Status: unknown
 Our partial decidability technique

 Given a word equation partition its solutions space into finite buckets
 Leverage Z3 for identifying equivalent expressions and length consistency checks
 Approximate by heuristically solving “overlapping” equations

* Joint work with Xiangyu Zhang and Yunhui Zheng (Purdue University)

•
•
•

•
•
•

Vijay Ganesh

Z3-str String Solver*

41

 Quantifier-free theory of word equations and length function
 Status: unknown
 Our partial decidability technique

 Given a word equation partition its solutions space into finite buckets
 Leverage Z3 for identifying equivalent expressions and length consistency checks
 Approximate by heuristically solving “overlapping” equations

* Joint work with Xiangyu Zhang and Yunhui Zheng (Purdue University)

•
•
•

•
•
•

Xa

=
aX

aa

=
aa

a

=
a

X

=
a

a

X

, ,

Vijay Ganesh

Related Work (Practice)

42

Tool Name
Project
Leader/Institution

Comparison with HAMPI

Rex
Bjorner, Tillman, Vornkov et al.
(Microsoft Research, Redmond)

 HAMPI
 + Length+Replace(s1,s2,s3)

 - CFG
 Translation to int. linear arith. (Z3)

Mona Karlund et al. (U. of Aarhus)
 Can encode HAMPI & Rex
 User work
 Automata-based
 Non-elementary

DPRLE Hooimeijer (U. of Virginia) Regular expression constraints

•

•

•
•
•
•

•

Vijay Ganesh

Some Future Directions

43

 A Predictive Theory for CDCL SAT solvers and DPLL(T)?

 Attack-resistance programs

 Can we define a mathematical notion of partial reliability?

 Expanding the scope of testing

 Automatic counter-example construction for math conjectures

 Open problems regarding theories of strings

 Is the SAT problem for word equations in NP? Is the quantifier-free theory of
word equations and length decidable?

 Richer string solvers

 All-in-one: integrating word equations, length and membership into SMT

•

•

•

•

•

•

•

•

•

Vijay Ganesh

Key Contributions
https://ece.uwaterloo.ca/~vganesh

Name Key Concept Impact Pubs

STP
Bit-vector & Array Solver1,2

Abstraction-refinement
for Solving Concolic Testing

CAV 2007
CCS 2006
TISSEC 2008

HAMPI
String Solver1 App-driven Bounding for Solving Analysis of

Web Apps

ISSTA 20093

TOSEM 2012
CAV 2011

(Un)Decidability
results for Strings

Reduction from two-counter
machine halting problem HVC 2012

Taint-based Fuzzing
Information flow is cheaper than
concolic

Scales better than
concolic ICSE 2009

Automatic Input Rectification Acceptability Envelope:
Fix the input, not the program

New way of
approaching SE

ICSE 2012

44

 STP won the SMTCOMP 2006 and 2010 competitions for bit-vector solvers
 HAMPI: ACM Best Paper Award 2009
 Google Award 2011
 Retargetable Compiler (DATE 1999)
 Proof-producing decision procedures (TACAS 2003)
 Error-finding in ARBAC policies (CCS 2011)
 Programmatic SAT Solvers (SAT 2012)

1.
2.
3.
4.
5.
6.
7.

