
Structured Orchestration of Data and Computation

William Cook
Jayadev Misra
David Kitchin

John Thywissen

Department of Computer Science
University of Texas at Austin

http://orc.csres.utexas.edu

05/08/2012
HCSS, Annapolis

A Big Vision:
Software Challenge in the next two decades

• Design Methodology
• Build it cheap
• Build it reliable: Correctness, Fault-tolerance
• Build it for evolution

• Security

Orc

• Orc addressesDesign: as a component integration system.

Components:

• from many vendors
• for many platforms
• written in many languages
• may run concurrently and in real-time

• Preliminary work on Security.

Evolution of Orc

• Web-service Integration

• Component Integration

• Structured Concurrent Programming

Web-service Integration: Internet Scripting

• Contact two airlines simultaneously for price quotes.

• Buy a ticket if the quote is at most $300.

• Buy the cheapest ticket if both quotes are above $300.

• Buy a ticket if the other airline does not give a timely quote.

• Notify client if neither airline provides a timely quote.

-

Component Integration

• Combineanykind of component, not just web services

• Small components: add two numbers, print a file ...

• Large components: Linux, MSword, email server, file server ...

• Time-based components: for real-time computation

• Actuators, sensors, humans as components

• Fast and Slow components

• Short-lived and Long-lived components

• Written in any language for any platform

Concurrency

• Component integration: typically sequential using objects

• Concurrency is ubiquitous

• Magnitude higher in complexity than sequential programming

• No generally accepted method to tame complexity

• May affect security

Traditional approaches to handling Concurrency

• Adding concurrency to serial languages:

• Threads with mutual exclusion using semaphore.

• Transaction.

• Process Networks.

Structured Concurrent Programming

• Structured Sequential Programming: Dijkstra circa 1968
Component Integration in a sequential world.

• Structured Concurrent Programming:
Component Integration in a concurrent world.

OrcBasics

• Site: Basic service or component.

• Concurrencycombinatorsfor integrating sites.

• Theory includes nothing other than the combinators.

No notion of data type, thread, process, channel,
synchronization, parallelism· · ·

New concepts are programmed using new sites.

Examples of Sites

• + − ∗ && || = ...

• Println, Random, Prompt, Email ...

• Mutable Ref, Semaphore, Channel, ...

• Timer

• External Services:Google Search, MySpace, CNN, ...

• Any Java Class instance, Any Orc Program

• Factory sites; Sites that create sites: Semaphore, Channel ...

• Humans
...

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

Structure of Orc Expression

• Simple: just a site call,CNN(d)
Publishes the value returned by the site.

• Compositionof two Orc expressions:

do f andg in parallel f | g Symmetric composition
for all x from f do g f >x> g Sequential composition
for somex from g do f f <x< g Pruning
if f halts without publishing dog f ; g Otherwise

Symmetric composition:f | g

• Evaluate f and g independently.

• Publish all values from both.

• No direct communication or interaction betweenf and g.
They can communicate only through sites.

Example: CNN(d) | BBC(d)

Callsboth CNN and BBC simultaneously.
Publishes values returned by both sites. (0, 1 or 2 values)

Sequential composition:f >x> g

For all values published byf do g.
Publish only the values fromg.

• CNN(d) >x> Email(address, x)

• Call CNN(d).
• Bind result (if any) tox.
• Call Email(address, x).
• Publish the value, if any, returned byEmail.

• (CNN(d) | BBC(d)) >x> Email(address, x)

• May call Email twice.
• Publishes up to two values fromEmail.

Notation: f ≫ g for f >x> g, if x is unused ing.

Schematic of Sequential composition

Figure:Schematic off >x> g

Pruning: f <x< g

For some value published byg do f .

• Evaluate f and g in parallel.

• Site calls that needx are suspended.
Consider(M() | N(x)) <x< g

• When g returns a (first) value:

• Bind the value tox.
• Kill g.
• Resume suspended calls.

• Values published byf are the values of(f <x< g).

Example of Pruning

Email(address, x) <x< (CNN(d) | BBC(d))

Binds x to the first value fromCNN(d) | BBC(d).
Sends at most one email.

Otherwise: f ; g

Do f . If f haltswithout publishing then dog.

• An expression halts if
• its execution can take no more steps, and
• all called sites have either responded, or will never respond.

• A site call may respond with a value, indicate that it will never
respond (helpful), or do neither.

• All library sites in Orc are helpful.

Orc program

• Orc program has
• agoalexpression,
• a set of definitions.

• The goal expression is executed. Its execution

• callssites,
• publishesvalues.

Some Fundamental Sites

• Ift(b), Iff (b): booleanb,
Returns asignalif b is true/false; remainssilentotherwise.
Site is helpful: indicates when it will never respond.

• Rwait(t): integer t, t ≥ 0, returns a signalt time units later.

• stop : never responds. Same asIft(false) or Iff (true).

• signal : returns a signal immediately.
Same asIft(true) or Iff (false).

Example of a Definition: Metronome

Publish a signal every unit.

def Metronome() = signal
︸ ︷︷ ︸

S

| (Rwait(1) ≫ Metronome()
︸ ︷︷ ︸

R

)

S R

S R

Publish an unending string of Random digits

Metronome() ≫ Random(10)

Power of Orc

• Solve all known synchronization, communication problems

• Code objects, active objects

• Solve all known forms of real-time and periodic computaions

• Solve a limited kind transactions

• and, all combinations of the above

Orc Language vs. Orc Calculus

• Data Types: Number, Boolean, String, with Java operators

• Conditional Expression: if E then F else G

• Data structures: Tuple, List, Record

• Pattern Matching; Clausal Definition

• Function Closure

• Comingling functional and Orc expressions

• Class for active objects

Packet Reassembly Using Sequence Numbers

val ch = Table(s, lambda(_) = Channel())

def read() = in.get() >(n, v)> ch(n%s).put(v) ≫ read()

def write(i) = ch(i).get() >v> out.put(v) ≫ write((i + 1)%s)

{- The ongoing computation -}

read() | write(0)
{- With Multiple Readers -} read() | read() | write(0)

Some Typical Applications

• Map-Reduceusing a server farm

• Thread managementin an operating system

• Mashups(Internet Scripting)

• Reactive Programming:device controller

• Extended 911:
Using humans as components
Components join and leave
Real-time response

Some Very Large Applications

• Logistics

• Real time automotive software

• Large-scale hierarchical simulation

• Managing Olympic Games

• Smart City

Typical Computing Domains

• Software Integration within an organization

• Workflow

• Mediated Computing

• Perpetual Computing

• Rapid Prototyping

Current Status

• Strong Theoretical Basis

• An elegant programming language
• as good as functional on functional problems
• can work with mutable store, real-time dependent components
• concurrency
• hierarchical, modular, recursive

• Robust Implementation
• Run program through a Web browser or locally
• Web site:orc.csres.utexas.edu
• Several papers, Ph.D. thesis

• Several Chapters of a book

Concurrent orchestration in Haskell

John Launchbury and Trevor Elliott
Proceedings of the third ACM Haskell symposium on Haskell

Large Scale Deployment

• Industrial strength Implementation

• Distributed Implementation

• Partnering

