
Support for
Supertype Abstraction

in JML

Gary T. Leavens
University of Central Florida

Support from US National Science Foundation
HCSS, March 6, 2008

jmlspecs.org www.eecs.ucf.edu/~leavens

http://www.jmlspecs.org/
http://www.eecs.ucf.edu/~leavens

Outline

 JML Background

 Modular reasoning with supertype abstraction

Java Modeling Language—JML

 Formal specification language for Java
 Functional behavior

 Sequential

 Goals:
 Practical, effective for detailed designs

 Existing code

 Wide range of tools

 Hoare-style (Contracts)
 Method pre- and postconditions

 Type invariants

Many Tools, One Language

public class Animal implements Gendered {
// ...
protected /*@ spec_public @*/ int age = 0;
/*@ requires 0 <= a && a <= 150;

@ ensures age == a;
@ also
@ requires a < 0;
@ ensures age == \old(age); @*/

public void setAge(final int a) {
if (0 <= a) { age = a; }

}
}

ESC/Java2

Warnings

Daikon

Data trace file

JML Annotated Java

JACK, Jive, Krakatoa,
KeY, LOOP

Correctness proof
Class file

jml4c,
jmlc

Unit tests

jmlunit

jmldoc

Web pages

Bogor

Model
checkingXVP

jmle

Prototyping

Example JML Specification

public interface Gendered {

//@ model instance String gender;

//@ requires true;
//@ ensures \result == gender.equals(―female‖);
/*@ pure @*/ boolean isFemale();

}
method behavior specification

model field specification

Model of Method Specifications

output
post-state

input pre-state

pre

post

m()

T ⊳ (pre, post)

Specification of Model Field

public interface Gendered {

//@ model instance String gender;

//@ requires true;
//@ ensures \result == gender.equals(―female‖);
/*@ pure @*/ boolean isFemale();

}

Implementation of Model Field

public class Animal implements Gendered, /*…*/ {

protected boolean gen; //@ in gender;

/*@ protected represents gender
@ <- (gen ? ―female‖ : ―male‖);
@*/

public /*@ pure @*/ boolean isFemale()
{ return gen; }

// ...

correctness

Problem: Modular Reasoning with
Subtyping and Dynamic Dispatch
Reasoning about dynamic dispatch:

Gendered e = (Gendered)elems.next();
if (e.isFemale()) {

//@ assert e.gender.equals(―female‖);
// ...

}

 e could be any subtype (Animal, …)

 Different implementations

 Different specifications

Problem: Modularity

Reasoning about dynamic dispatch:

Gendered e = (Gendered)elems.next();
if (e.isFemale()) {

//@ assert e.gender.equals(―female‖);
// ...

}

 Verify for each subtype?

 Subtypes may be added later!

Methodology:
Supertype Abstraction
Reason using static type information:

Gendered e = (Gendered)elems.next();
if (e.isFemale()) {

//@ assert e.gender.equals(―female‖);
// ...

}

 Use specification from Gendered

 As if no subtyping

Modularity of
Supertype Abstraction
 Client reasoning ignores subtyping

 Implementations must be
behavioral subtypes

More Details:
Supertype Absraction in General

Use static type‘s specifications to reason about:

 Method calls,

 Invariants,

 History constraints,

 Initially predicates

Supertype Abstraction in General

T o = /* create a new object */;

//@ assume o.ext_invT;

/* … */

//@ assert ;
o.m();
//@ assume && o.ext_invT ;

o.ext_pre
T
m

o.ext_post
T
m

Supertype Abstraction‘s Soundness

Valid if:

 Invariants etc. hold as needed (in pre-states),
and

 Each subtype is a behavioral subtype

T o = /* create a new object */;

//@ assume o.ext_invT;

/* … */

//@ assert ;
o.m();
//@ assume && o.ext_invT;

Validity of Supertype Abstraction:
Client (Supertype) view

o.ext_pre
T
m

o.ext_post
T
m

/* body of constructor of T′ */

//@ assert o.ext_invT′;

/* … */

//@ assume && o.ext_invT′ ;
/* body of o.m(); */
//@ assert && o.ext_invT′ ;

Validity of Supertype Abstraction:
Implementation (Subtype) View

o.ext_post
T′
m

o.ext_pre
T′
m

Suppose T′ ≤ T. Then
T′ is a strong behavioral subtype of T
if and only if
whenever this has type T′ :

ext_invT′  ext_invT,

and for all instance methods m of T

⊒T′

Behavioral Subtyping for JML

ext_spec
T′
m ext_spec

T
m

Method Specification Refinement
with respect to T′

Notation:

(pre′, post′) ⊒T′ (pre, post)

details

Refinement with respect to T′

pre

post

Refinement with respect to T′

pre

post

pre′

Refinement with respect to T′

pre

post

pre′

post′

Proving Method Refinements

Theorem 1. Suppose T′ ≤ T, and
T′ ⊳ (pre′, post′), T ⊳ (pre, post) specify m.

Then (pre′, post′) ⊒T′ (pre, post)

if and only if:

Spec(T′) |- pre && (this instanceof T′)  pre′,

and

Spec(T′) |- \old(pre && (this instanceof T′))
 (post′  post).

Subproblem: Avoiding Proofs
by Specification Inheritance

NormalSetAge

Animal

ExceptionalSetAge

AgeGendered

Age and NormalSetAge

public interface Age {
//@ model instance int age;

}

public interface NormalSetAge implements Age {

/*@ requires 0 <= a && a <= 150;
@ ensures age == a; @*/

public void setAge(final int a);

}

ExceptionalSetAge

public interface ExceptionalSetAge
implements Age {

/*@ requires a < 0;
@ ensures age == \old(age); @*/

void setAge(final int a);

}

What about Animal?

 It‘s both

 Should obey both specifications

NormalSetAge

Animal

ExceptionalSetAge

Join of Specification Cases

pre′

post && post′

pre && pre′

pre

post

requires 0 <= a && a <= 150;
ensures age == a;

also
requires a < 0;
ensures age == \old(age);

means

requires (0 <= a && a <= 150) || a < 0 ;
ensures (\old(0 <= a && a <= 150) ==> age == a)

&& (\old(a < 0) ==> age == \old(age)) ;

Join of Specification Cases, ‗also‘

Join of Specification Cases, ⊔S

If T′ ⊳ (pre′, post′), T ⊳ (pre, post), S ≤ T′, S ≤ T,

then

(pre′, post′) ⊔S (pre, post)

= (p, q)

where p = pre′ || pre
and q = (\old(pre′) ==> post′)

&& (\old(pre) ==> post)
and S ⊳ (p, q)

Declared in T (without inheritance):
added_invT invariant

m‘s specification

Other Notations

supers(T) = {U | T  U }

methods(T) = { m | m declared in TT }

Model of Inheritance

T‘s Added Specifications

added_spec
T
m

 Methods: for all m  methods(supers(T))

= ⊔T { | Usupers(T) }

 Invariant:

ext_invT = ⋀ { added_invU | Usupers(T) }

Specification Inheritance‘s Meaning:
Extended Specification of T

ext_spec
T
m added_spec

U
m

also Makes Refinements

Theorem 2. Suppose \old is monotonic.
Suppose T′ ≤ T, and
T′ ⊳ (pre′, post′), T ⊳ (pre, post) specify m.

Then

(pre′, post′) ⊔T′ (pre, post) ⊒T′ (pre, post).

Proof: use Theorem 1.

also Makes Refinements

pre′

post && post′

pre && pre′

pre

post

post′

Specification Inheritance
Forces Behavioral Subtyping

Theorem 3. Suppose T′ ≤ T . Then
the extended specification of T′
is a strong behavioral subtype of
the extended specification of T.

Proof: Use Theorem 2 and
definition of extended specification.

Discussion

 Every subtype inherits

 Every subtype is a behavioral subtype
 Not all satisfiable

 Supertype must allow refinement

Unsatisfiable Refinements

pre′

post && post′

pre && pre′

pre

post

post′

example

Older Related Work

 Wills‘s Fresco [Wil92]
introduced specification inheritance.

 Wing‘s dissertation [Win83]
combined specification cases like also.

 Eiffel [Mey97] has behavioral subtyping
and a form of specification inheritance.

 America [Ame87] [Ame91] first
proved soundness with behavioral subtyping.

 See survey with Dhara [LD00].

Conclusions

 Supertype abstraction
allows modular reasoning.

 Supertype abstraction is valid if:
 methodology enforced, and

 subtypes are behavioral subtypes.

 JML‘s also makes refinements.

 Specification inheritance in JML
forces behavioral subtyping.

 Supertype abstraction
automatically valid in JML.

Acknowledgments

Thanks to David Naumann,
William Weihl, Krishna Kishore Dhara,
Cesare Tinelli, Don Pigiozzi, Barbara Liskov,
Jeannette Wing, Yoonsik Cheon, Al Baker,
Clyde Ruby, Tim Wahls, Patrice Chalin,
Curtis Clifton, David Cok, Joseph Kiniry,
Rustan Leino, Peter Müller,
Arnd Poetzsch-Heffter, Erik Poll, and
the rest of the JML community.

Join us at...

jmlspecs.org

http://www.jmlspecs.org/

References
[Ame87] Pierre America. Inheritance and subtyping in a parallel object-oriented language. In Jean Bezivin et al., editors, ECOOP ‘87, European Conference

on Object-Oriented Programming, Paris, France, pages 234–242, New York, NY, June 1987. Springer-Verlag. Lecture Notes in Computer Science,
volume 276.

[Ame91] Pierre America. Designing an object-oriented programming language with behavioural subtyping. In J. W. de Bakker, W. P. de Roever, and
G. Rozenberg, editors, Foundations of Object-Oriented Languages, REX School/Workshop, Noordwijkerhout, The Netherlands, May/June 1990,
volume 489 of Lecture Notes in Computer Science, pages 60–90. Springer-Verlag, New York, NY, 1991.

[BCC+05] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joeseph R. Kiniry, Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An overview of
JML tools and applications. International Journal on Software Tools for Technology Transfer, 7(3):212–232, June 2005.

[DL96] Krishna Kishore Dhara and Gary T. Leavens. Forcing behavioral subtyping through specification inheritance. In Proceedings of the 18th International
Conference on Software Engineering, Berlin, Germany, pages 258–267. IEEE Computer Society Press, March 1996. A corrected version is ISU CS TR
#95-20c, rlhttp://tinyurl.com/s2krg.

[FF01] Robert Bruce Findler and Matthias Felleisen. Contract soundness for object-oriented languages. In OOPSLA ‘01 Conference Proceedings, Object-
Oriented Programming, Systems, Languages, and Applications, October 14-18, 2001, Tampa Bay, Florida, USA, pages 1–15, October 2001.

[Hoa69] C. A. R. Hoare. An axiomatic basis for computer programming. Communications of the ACM, 12(10):576–580,583, October 1969.
[Hoa72] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica, 1(4):271–281, 1972.
[LD00] Gary T. Leavens and Krishna Kishore Dhara. Concepts of behavioral subtyping and a sketch of their extension to component-based systems. In

Gary T. Leavens and Murali Sitaraman, editors, Foundations of Component-Based Systems, chapter 6, pages 113–135. Cambridge University Press,
2000.

[Lei98] K. Rustan M. Leino. Data groups: Specifying the modification of extended state. In OOPSLA ‘98 Conference Proceedings, volume 33(10) of ACM
SIGPLAN Notices, pages 144–153. ACM, October 1998.

[LN06] Gary T. Leavens and David A. Naumann. Behavioral subtyping, specification inheritance, and modular reasoning. Technical Report 06-20b,
Department of Computer Science, Iowa State University, Ames, Iowa, 50011, September 2006.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM Transactions on Programming Languages and Systems, 16(6):1811–
1841, November 1994.

[Mey97] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, New York, NY, second edition, 1997.
[MPHL06] Peter Müller, Arnd Poetzsch-Heffter, and Gary T. Leavens. Modular invariants for layered object structures. Science of Computer Programming,

62(3):253– 286, October 2006.
[Mül02] Peter Müller. Modular Specification and Verification of Object-Oriented Programs, volume 2262 of Lecture Notes in Computer Science. Springer-

Verlag, 2002.
[Par05] Matthew J. Parkinson. Local reasoning for Java. Technical Report 654, University of Cambridge Computer Laboratory, November 2005. The

author‘s Ph.D. dissertation.
[PHM99] A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In S. D. Swierstra, editor, European Symposium on Programming

(ESOP ‘99), volume 1576 of Lecture Notes in Computer Science, pages 162–176. Springer-Verlag, 1999.
[Pie06] Cees Pierik. Validation Techniques for Object-Oriented Proof Outlines. PhD thesis, Universiteit Utrecht, 2006.
[SBC92] Susan Stepney, Rosalind Barden, and David Cooper, editors. Object Orientation in Z. Workshops in Computing. Springer-Verlag, Cambridge CB2

1LQ, UK, 1992.
[Wil92] Alan Wills. Specification in Fresco. In Stepney et al. [SBC92], chapter 11, pages 127–135.
[Win83] Jeannette Marie Wing. A two-tiered approach to specifying programs. Technical Report TR-299, Massachusetts Institute of Technology,

Laboratory for Computer Science, 1983.

