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Outline

 JML Background

 Modular reasoning with supertype abstraction



Java Modeling Language—JML

 Formal specification language for Java
 Functional behavior

 Sequential

 Goals:
 Practical, effective for detailed designs

 Existing code

 Wide range of tools

 Hoare-style (Contracts)
 Method pre- and postconditions 

 Type invariants



Many Tools, One Language

public class Animal implements Gendered {
// ...
protected /*@ spec_public @*/ int age = 0;
/*@    requires 0 <= a && a <= 150;

@    ensures age == a;
@ also
@    requires a < 0;
@    ensures age == \old(age);   @*/

public void setAge(final int a) {
if (0 <= a) { age = a; }

}
}
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Example JML Specification

public interface Gendered {

//@ model instance String gender;

//@ requires true;
//@ ensures \result == gender.equals(―female‖);
/*@ pure @*/ boolean isFemale();

}
method behavior specification

model field specification



Model of Method Specifications

output
post-state

input pre-state

pre

post

m()

T ⊳ (pre, post)



Specification of Model Field

public interface Gendered {

//@ model instance String gender;

//@ requires true;
//@ ensures \result == gender.equals(―female‖);
/*@ pure @*/ boolean isFemale();

}



Implementation of Model Field

public class Animal implements Gendered, /*…*/ {

protected boolean gen; //@ in gender;

/*@ protected represents gender
@                  <- (gen ? ―female‖ : ―male‖);
@*/

public /*@ pure @*/ boolean isFemale()
{ return gen; }

// ...

correctness



Problem: Modular Reasoning with 
Subtyping and Dynamic Dispatch
Reasoning about dynamic dispatch:

Gendered e = (Gendered)elems.next();
if (e.isFemale()) {

//@ assert e.gender.equals(―female‖);
// ...

}

 e could be any subtype (Animal, …)

 Different implementations

 Different specifications



Problem: Modularity

Reasoning about dynamic dispatch:

Gendered e = (Gendered)elems.next();
if (e.isFemale()) {

//@ assert e.gender.equals(―female‖);
// ...

}

 Verify for each subtype?

 Subtypes may be added later!



Methodology:
Supertype Abstraction
Reason using static type information:

Gendered e = (Gendered)elems.next();
if (e.isFemale()) {

//@ assert e.gender.equals(―female‖);
// ...

}

 Use specification from Gendered

 As if no subtyping



Modularity of
Supertype Abstraction
 Client reasoning ignores subtyping

 Implementations must be
behavioral subtypes



More Details:
Supertype Absraction in General

Use static type‘s specifications to reason about:

 Method calls,

 Invariants,

 History constraints,

 Initially predicates



Supertype Abstraction in General

T o = /* create a new object */;

//@ assume o.ext_invT;

/* … */

//@ assert ;
o.m();
//@ assume              && o.ext_invT ;

o.ext_pre
T
m

o.ext_post
T
m



Supertype Abstraction‘s Soundness

Valid if:

 Invariants etc. hold as needed (in pre-states), 
and

 Each subtype is a behavioral subtype



T o = /* create a new object */;

//@ assume o.ext_invT;

/* … */

//@ assert ;
o.m();
//@ assume              && o.ext_invT;

Validity of Supertype Abstraction:
Client (Supertype) view

o.ext_pre
T
m

o.ext_post
T
m



/*  body of constructor of T′ */

//@ assert o.ext_invT′;

/* … */

//@ assume             && o.ext_invT′ ;
/* body of o.m(); */
//@ assert              && o.ext_invT′ ;

Validity of Supertype Abstraction:
Implementation (Subtype) View

o.ext_post
T′ 
m

o.ext_pre
T′ 
m



Suppose T′ ≤ T.  Then
T′ is a strong behavioral subtype of T
if and only if
whenever this has type T′ :

ext_invT′  ext_invT,

and for all instance methods m of T

⊒T′

Behavioral Subtyping for JML

ext_spec
T′ 
m ext_spec

T
m



Method Specification Refinement 
with respect to T′

Notation:

(pre′, post′ ) ⊒T′ (pre, post ) 

details



Refinement with respect to T′

pre

post



Refinement with respect to T′

pre

post

pre′



Refinement with respect to T′

pre

post

pre′

post′



Proving Method Refinements

Theorem 1. Suppose T′ ≤ T, and
T′ ⊳ (pre′, post′ ), T ⊳ (pre, post ) specify m.

Then (pre′, post′ ) ⊒T′ (pre, post ) 

if and only if:

Spec(T′ ) |- pre && (this instanceof T′ )   pre′,

and

Spec(T′ ) |- \old(pre && (this instanceof T′ ))
 (post′  post ).



Subproblem: Avoiding Proofs 
by Specification Inheritance

NormalSetAge

Animal

ExceptionalSetAge

AgeGendered



Age and NormalSetAge

public interface Age {
//@ model instance int age;  

}

public interface NormalSetAge implements Age {

/*@  requires 0 <= a && a <= 150;
@ ensures age == a;    @*/

public void setAge(final int a);

}



ExceptionalSetAge

public interface ExceptionalSetAge
implements Age {

/*@   requires a < 0;
@ ensures age == \old(age);   @*/

void setAge(final int a);

}



What about Animal?

 It‘s both

 Should obey both specifications

NormalSetAge

Animal

ExceptionalSetAge



Join of Specification Cases

pre′

post && post′

pre && pre′

pre

post



requires 0 <= a && a <= 150;
ensures age == a;

also
requires a < 0;
ensures age == \old(age);

means

requires (0 <= a && a <= 150) || a < 0 ;
ensures (\old(0 <= a && a <= 150) ==> age == a)

&& (\old(a < 0) ==> age == \old(age)) ;

Join of Specification Cases, ‗also‘



Join of Specification Cases, ⊔S

If T′ ⊳ (pre′, post′ ), T ⊳ (pre, post ), S ≤ T′, S ≤ T,

then

(pre′, post′ ) ⊔S (pre, post ) 

= (p, q)

where p = pre′ || pre
and q = (\old(pre′ ) ==> post′ )

&& (\old(pre) ==> post )
and S ⊳ (p, q)



Declared in T (without inheritance):
added_invT invariant

m‘s specification

Other Notations

supers(T ) = {U | T  U }

methods(T ) = { m | m declared in TT }

Model of Inheritance

T‘s Added Specifications

added_spec
T
m



 Methods: for all m  methods(supers(T))

= ⊔T {                         | Usupers(T) }

 Invariant:

ext_invT = ⋀ { added_invU | Usupers(T) }

Specification Inheritance‘s Meaning:
Extended Specification of T

ext_spec
T
m added_spec

U
m



also Makes Refinements

Theorem 2. Suppose \old is monotonic.
Suppose T′ ≤ T, and
T′ ⊳ (pre′, post′ ), T ⊳ (pre, post ) specify m.

Then

(pre′, post′ ) ⊔T′ (pre, post )   ⊒T′ (pre, post ).

Proof: use Theorem 1.



also Makes Refinements

pre′

post && post′

pre && pre′

pre

post

post′



Specification Inheritance
Forces Behavioral Subtyping

Theorem 3. Suppose T′ ≤ T . Then
the extended specification of T′
is a strong behavioral subtype of
the extended specification of T.

Proof: Use Theorem 2 and
definition of extended specification.



Discussion

 Every subtype inherits

 Every subtype is a behavioral subtype
 Not all satisfiable

 Supertype must allow refinement



Unsatisfiable Refinements

pre′

post && post′

pre && pre′

pre

post

post′

example



Older Related Work

 Wills‘s Fresco [Wil92] 
introduced specification inheritance.

 Wing‘s dissertation [Win83]
combined specification cases like also.

 Eiffel [Mey97] has behavioral subtyping
and a form of specification inheritance.

 America [Ame87] [Ame91] first
proved soundness with behavioral subtyping.

 See survey with Dhara [LD00].



Conclusions

 Supertype abstraction
allows modular reasoning.

 Supertype abstraction is valid if:
 methodology enforced, and

 subtypes are behavioral subtypes.

 JML‘s also makes refinements.

 Specification inheritance in JML
forces behavioral subtyping.

 Supertype abstraction 
automatically valid in JML.
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