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MODEL-BASED DESIGN … FORMALIZED
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OPEN-META TOOL CHAIN
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MIND THE GAP …

• First-principles based models not always available or accurate

• High-fidelity analysis is cost prohibitive

• Design space exploration and optimization not tractable in 
high-dimensional spaces



DATA-DRIVEN AUGMENTATION

• First-principles based models not always available
• Data-driven models to bridge the epistemic gap

• High-fidelity analysis is cost prohibitive
• Data-driven surrogate models of high-fidelity analysis for 

performing design trades

• Design space exploration and optimization not tractable in 
high-dimensional spaces
• Sample-efficient exploration strategies util ize learned 

representation of design/performance space



A C C E L E R AT E D  A N A LY S I S  T H R O U G H  S U R R O G AT E  
M O D E LS

Accelerated design evaluation through use of AI-based (neural networks) surrogate models which 
once trained provide comparable result at a fraction of computational cost

CFD: ~5 hours

CAD: Manual Generation

FEA: ~1 hour

Mission: Uncertain Operations

SymCPS CAD: AI–generated

SymCPS CFD: <1 second 
(AI-acceleration)

SymCPS FEA: <1 second 
(AI-acceleration)

SymCPS Mission: Robust Design
6 hours per design 18 seconds per design

Source: Arun Ramamurthi, Siemens



P H Y S I C S  G U I D E D  S U R R O G AT E  M O D E L I N G

FEA to understand structural 
feasibi l i ty of a design

ratiofeasibility = σmax		/	σnominal

Challenges
● High accuracy and low computation cost
● Generalization, especially, for the design space we don’t 

have training data
● Interpretability for understanding and explaining results

Introduce intermediate physics-based variables in loss 
functions

Source: Peter Volgyesi, Vanderbilt



P H Y S I C S  G U I D E D  S U R R O G AT E  M O D E L I N G

• Set of neural network layers that extract latent features: G f

• Set of neural network layers that generates feasibi l i ty ratio: Gy (also	blackbox loss	function)

• Set of neural network layers associated with physics-based parameters: Gpgl

• and are the physics-related true and predicted parameters

Source: Peter Volgyesi, Vanderbilt



E X A M P L E  – U U V  H U L L  D E S I G N

Source: Peter Volgyesi, Vanderbilt

EXPECTED OUTPUT
• RatioFeasibi l i ty = σmax	 	/	σnominal

INTERMEDIATE PHYSICS-BASED VARIABLES
• σ1,2,3 : 	maximum principal stresses
• σ x ,y,z : maximum direct ional stresses
• σ xy,yz,xz : maximum plane stresses

In total,  9 intermediate PGL variable stresses

INPUTS

• E : Material Elasticity
• σ : Material Strength
• ν : Poisson Ratio

• ρ : material density
• r i : inner diameter
• t  : thickness
• l  :  cy l inder length
• phyd : hydraul ic pressure



R E S U LT S  – P L A I N  C A P S U L E  M O D E L

Source: Peter Volgyesi, Vanderbilt

*Al l  un i t s  i n  ps i

• Better performance for PGL, for original and less explored design spaces 

• Interpretability, because of physics-based intermediate variables



C O N S T R A I N E D  O P T I M I Z AT I O N  W I T H  N N ,  M L P,  A N D  
A C T I V E  L E A R N I N G

Source: Sanjai Narain, Peraton

Optimize 𝜙 𝑥, 𝑦 𝑠. 𝑡. 𝐹 𝑥 = 𝑦 ∧ 𝑃(𝑥, 𝑦)
• 𝑥, 𝑦 are vectors of discrete and continuous 

variables
• 𝐹 is a blackbox function e.g., a simulator or 

evaluator
• 𝜙 is an objective function and 𝑃 is a 

constraint. 
• 𝑃 can model recursive and fixed-point 

constraints
• 𝜙, 𝐹 and 𝑃 can be nonlinear

Conservative in number of function 
evaluations
• Learns 𝐹 in the part of its domain relevant to 

solving the problem
• Outperforms Bayesian optimization in sample 

efficiency



TAKEAWAYS
• What makes CPS design hard?

• Heterogeneous domains, multiple models, intractably large design spaces
• Multiple performance objectives, multiple constraints

• Synergizing model-based and data-driven approaches
• Automate synthesis for evaluation of design candidates 

• Model-based design automation
• Accelerate high-fidelity analyses through surrogate modeling techniques

• CFD, FEA – physics guided learning
• Scale design space exploration with data-driven ML

• Constraint guided optimization with NN, MILP, and active learning



THANK YOU!



UNDERPINNINGS
Model-based Design

Computational models that predict properties of cyber-physical systems 
“as designed” and “as built”. 
Challenge: Develop domain-specific abstraction layers for complex CPS that 
are evolvable, heterogeneous, yet semantically sound and supported by tools. 
Research directions: Domain-Specific Modeling Languages (DSML)

Metamodeling
Model-Integrated Computing tools

− Component-based Design 
Reusable units of knowledge (models) about CPS components.
Challenge: Understand composition of heterogeneous systems where 
system-level properties can be computed  from the properties of components.
Research directions: Formal semantics of DSMLs

Model Integration Languages
Component models and composition semantics



M O D E L - A N D  C O M P O N E N T- B A S E D  D E S I G N  P R O C E S S  
• Component Repository:

• For a system model S:

• The architecture of a system S  is a labelled graph GS , which is well formed if it 
satisfies a set of constraints F over GS derived from the semantics of the 
interaction types 

• The set of component types and composition  constraints define a design 
space:

• The goal of the design process is to synthesize   


