SYNERGIZING MODEL-BASED AND DATA-DRIVEN METHODS FOR CPS DESIGN

Sandeep Neema, Vanderbilt University

Source: Sanjai Narain, Peraton "AIMED: AI-Mediated Exploration of Design – An experience report," in DESTION/CPS Week 2023, May 09-12, San Antonio, TX

OUTLINE

- CPS design
- Model-based design & design automation
- Data-driven augmentation
- Takeaways

WHAT IS CPS DESIGN?

CPS Systems Engineer

CPS Researcher

MODEL-BASED DESIGN ... FORMALIZED

HOW MANY MODELS TO DESIGN A CPS?

VANDERBILT.

DESIGN AUTOMATION FOR CPS

OPEN-META TOOL CHAIN

VANDERBILT.

MIND THE GAP

First-principles based models not always available or accurate

High-fidelity analysis is cost prohibitive

 Design space exploration and optimization not tractable in high-dimensional spaces

DATA-DRIVEN AUGMENTATION

- First-principles based models not always available
 - Data-driven models to bridge the epistemic gap
- High-fidelity analysis is cost prohibitive
 - Data-driven surrogate models of high-fidelity analysis for performing design trades
- Design space exploration and optimization not tractable in high-dimensional spaces
 - Sample-efficient exploration strategies utilize learned representation of design/performance space

ACCELERATED ANALYSIS THROUGH SURROGATE MODELS

Accelerated design evaluation through use of AI-based (neural networks) surrogate models which once trained provide comparable result at a fraction of computational cost

V

PHYSICS GUIDED SURROGATE MODELING

 ϕ^{O} Query Parameter Set Requirement Ansys FAIL Oracle Backed to Oracle Catalog FAIL PASS

FEA to understand structural feasibility of a design

ratio_{feasibility} = $\sigma_{max} / \sigma_{nominal}$

Source: Peter Volgyesi, Vanderbilt

Challenges

- High accuracy and low computation cost
- Generalization, especially, for the design space we don't have training data
- Interpretability for understanding and explaining results

V

Introduce intermediate physics-based variables in loss functions VANDERBILT

PHYSICS GUIDED SURROGATE MODELING

- Set of neural network layers that extract latent features: G_f
- Set of neural network layers that generates feasibility ratio: Gy (also blackbox loss function)

$$\mathcal{L} = \frac{1}{n} \sum \mathcal{L}_y(y_i, \hat{y}_i)$$

• Set of neural network layers associated with physics-based parameters: G_{pgl}

$$\mathcal{L} = \frac{1}{n} \sum \mathcal{L}_y(y_i, \hat{y}_i) + \frac{\lambda_{pgl}}{n} \sum \mathcal{L}_{pgl}(z_i, \hat{(z)}_i)$$

• z_i and \hat{z}_i are the physics-related true and predicted parameters

EXAMPLE – UUV HULL DESIGN

INPUTS

- E : Material Elasticity
- σ : Material Strength
- v: Poisson Ratio
- *ρ* : material density
- r_i : inner diameter
- *t :* thickness
- /: cylinder length
- *p*_{hyd} : hydraulic pressure

EXPECTED OUTPUT

• Ratio_{Feasibility} = $\sigma_{max} / \sigma_{nominal}$

INTERMEDIATE PHYSICS-BASED VARIABLES

- $\sigma_{1,2,3}$: maximum principal stresses
- $\sigma_{_{X,Y,Z}}$: maximum directional stresses
- $\sigma_{_{XY,YZ,XZ}}$: maximum plane stresses

In total, 9 intermediate PGL variable stresses

RESULTS – PLAIN CAPSULE MODEL

		Black-bo	X		PGL			
Design Space	Avg MSE	Avg AE in $\%$	MAE 5%	MAE	Avg MSE	Avg AE in $\%$	MAE 5%	MAE
Regions with Traning Data	0.0001 <mark>395</mark>	2.2088	0.0750	9.4272	0.0000967	2.1767	0.0850	8.9565
Regions without Traning Data	$0.000\frac{5468}{5}$	8.6550	0.91	16.1248	0.0000684	3.0105	0.09	6.3226

• Better performance for PGL, for original and less explored design spaces

	$\operatorname{Ratio}_{\operatorname{Feasibility}}$	σ_{xy-max}	$\hat{\sigma}_{xy-max}$	Err_{Expl} %	σ_{yz-max}	$\hat{\sigma}_{yz-max}$	Err_{Expl} %	σ_{xz-max}	$\hat{\sigma}_{xz-max}$	Err_{Expl} %
Feasible Example	0.24	2522.07	2522.07	4.01	2512.36	2512.36	1.85	4861.82	4861.82	0. <mark>3</mark> 7
Non-feasible Example	1.8 <mark>2</mark>	18619.95	17919.50	3.76	18653.14	17955.92	3.74	37760.57	36176.86	<mark>4</mark> .19

*All units in psi

• Interpretability, because of physics-based intermediate variables

CONSTRAINED OPTIMIZATION WITH NN, MLP, AND ACTIVE LEARNING

Optimize $\phi(x, y)$ s.t. $F(x) = y \land P(x, y)$

- x, y are vectors of discrete and continuous variables
- *F* is a **blackbox** function e.g., a simulator or evaluator
- φ is an objective function and P is a constraint.
- *P* can model recursive and fixed-point constraints
- ϕ , *F* and *P* can be nonlinear

Conservative in number of function evaluations

- Learns *F* in the part of its domain relevant to solving the problem
- Outperforms Bayesian optimization in sample efficiency

TAKEAWAYS

- What makes CPS design hard?
 - Heterogeneous domains, multiple models, intractably large design spaces
 - Multiple performance objectives, multiple constraints
- Synergizing model-based and data-driven approaches
 - Automate synthesis for evaluation of design candidates
 - Model-based design automation
 - Accelerate high-fidelity analyses through surrogate modeling techniques
 - CFD, FEA physics guided learning
 - Scale design space exploration with data-driven ML
 - Constraint guided optimization with NN, MILP, and active learning

THANK YOU!

UNDERPINNINGS

Model-based Design Computational models that predict properties of cyber-physical systems "as designed" and "as built". **Challenge:** Develop **domain-specific abstraction layers** for complex CPS that are evolvable, heterogeneous, yet semantically sound and supported by tools. **Research directions:** Domain-Specific Modeling Languages (DSML) Metamodeling Model-Integrated Computing tools - Component-based Design Reusable units of knowledge (models) about CPS components. **Challenge:** Understand composition of heterogeneous systems where system-level properties can be computed from the properties of components. **Research directions:** Formal semantics of DSMLs Model Integration Languages Component models and composition semantics

MODEL- AND COMPONENT-BASED DESIGN PROCESS

- Component Rep<mark>ository:</mark>
- $A = \pi \sigma r^2 C = \{C_i(x, p)\}$
 - For a system model *S*:

 $C_S = comptypes(S)$ denotes the set of component model types instantiated in S

- The architecture of a system S is a labelled graph G_S , which is well formed if it satisfies a set of constraints Φ over G_S derived from the semantics of the interaction types
- The set of component types and composition constraints define a design space:

 $D \stackrel{\text{\tiny def}}{=} \{S | G_S \vDash \Phi, comptypes(S) \subseteq C\}$

• The goal of the design process is to synthesize

 $S \in D$ such that $S \parallel E \vDash R$

