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OUTLINE

« CPS design
 Model-based design & design automation
« Data-driven augmentation

« Takeaways
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WHAT IS GPS DESIGN?

CPS Researcher

CPS Systems Engineer

Components
& Subsystems

System Architecture
& Topology

Design Concerns

Motors ESC
Mission

Sensors & Payload

Quadcopters

Hexacopters

Hybrid

Fixed-wing

- Mission and System Requirements
- Structural integrity

-  Thermal management

- Manufacturing

-+ CPS/SW concerns ...

Planar

Articulated

Plant Model

Controller + Mission
Software

A

Design Concerns

SW/Process
requirements
Safety
Real-time
Cyber Security
+ilities ...
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MODEL-BASED DESIGN .. FORMALIZED

R Model-based E
Requirements Design Process Environment

S | System

Design goal: SIEER
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HOW MANY MODELS TO DESIGN A CPS2
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DESIGN AUTOMATION FOR CPS

Design process

Requirements

Design Space

omponent Model
MOd_eI Composition
Repositor

Multidisciplinary Verification, Testing and

No

Optimization

Testbench

Configuration

Testbench Testbench
Integration Template
Reposito

Yes |IS||E ER

Environment

\2

S — system model
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OPEN-META TOOL CHAIN

Requirements I ,|V|,
Design Space Repg—— . K—— AnalyticsTempl.
7 Architecture c::;“:ﬁ_::ill n
\ Exploration Tool 'I?ool .
Component Repo.[—)} “— Tool Comp. Lib.
Component | Design Space Model Analysis
Auth. Tool Auth. Tool Composition Tool Composition Tool
¢ analysis models
testbhench models
Dynamics
Mods.
T Static Explorationfl| | Dynamics Dynamics Safety Verificatiorfl| | Geometric FEA
Control B Testbench Testbenches Testbenches Testbenches Testbenches Testbenches
| Mods. kisymbolic) (sim. based) (stoch. hybrid (symbolic) (CAD based) (CFD, thermal,..)
sim. based)
]
CAD —
LEC II
Mods.

Suvivability
Testbenches
(multi-

abstraction)

Seed Design I
Mods.

Multi-Model Analytics - Progressive deepening

Y

v

Y v

Evidence-based Assurance Argumentation

(49z11BNSIA) paeOqySeq

Vv

VANDERBILT.




MIND THE GAP ..

» First-principles based models not always available or accurate

* High-fidelity analysis is cost prohibitive

« Design space exploration and optimization not tractable in
high-dimensional spaces
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DATA-DRIVEN AUGMENTATION

» First-principles based models not always available
« Data-driven models to bridge the epistemic gap

* High-fidelity analysis is cost prohibitive
« Data-driven surrogate models of high-fidelity analysis for
performing design trades

« Design space exploration and optimization not tractable in
high-dimensional spaces

« Sample-efficient exploration strategies utilize learned

representation of design/performance space V
VANDERBILT.




ACCELERATED ANALYSIS THROUGH SURROGATE
MODELS

Accelerated design evaluation through use of Al-based (neural networks) surrogate models which
once trained provide comparable result at a fraction of computational cost

Ll
Battery

Computation CAD: Manual Generation

c‘gﬁ,‘,};‘:i'z:'y (D % SymCPS CAD: Al-generated

¢
. S
i:g:;:: Q/ CFD: ~5 hours
Assembly
Metrics Analysis gD SymCPS CFD: <1 second

UuvV CFD (Al-acceleration)

Propeller .~
i 0 FEA: ~1 hour

Pressure SymCPS FEA: <1 second
Vessel FEA

1z (Al-acceleration)
HPR
Analysis
Mission: Uncertain Operations
Mission
Simulation

SymCPS Mission: Robust Design

.

Source: Arun Ramamurthi, Siemens VANDERBILT.




PHYSICS GUIDED SURROGATE MODELING

Query [I\] —
Parameter Set
Requirement | /A\NSYS FAIL
Oracle l \

Backed to
Oracle Catalog

FAIL
PASS

FEA to understand structural
feasibility of a design

ratlofeasibility = Omax / Onominal

Source: Peter Volgyesi, Vanderbilt

Simulation Y
Model l >
o] PGL Y .
X NN
min(Y — Y) given X
Challenges

 High accuracy and low computation cost

« Generalization, especially, for the design space we don’t

have training data
« Interpretability for understanding and explaining results

Introduce intermediate physics-based variables in loss

functions
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« Set of neural network layers that extract latent features: &G,

PHYSICS GUIDED SURROGATE MODELING

Feature

extractor
Gr(xi; 0f)

Stress predictor

Gy(-;6y)

Feasibility
Yi

- Set of neural network layers that generates feasibility ratio: ¢, (also blackbox loss function)

1 A
L= n Zﬁy(yz‘, Yi)

- Set of neural network layers associated with physics-based parameters: G,
1 Apal .
~ rg
L= - E Ly (ys, Ui) e E Lpgi(2i,(2)s)

« Z2; and 27; are the physics-related true and predicted parameters

Source: Peter Volgyesi, Vanderbilt
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INPUTS

: Material Elasticity
: Material Strength

: Poisson Ratio

VN < Q9 M

: material density
« r; i inner diameter

t : thickness

/ : cylinder length

Prya + hydraulic pressure

Source: Peter Volgyesi, Vanderbilt

UUV HULL DESIGN

EXPECTED OUTPUT

¢ RatloFeasibility = O-maX/O-nominal

INTERMEDIATE PHYSICS-BASED VARIABLES
* 0;,3: maximum principal stresses

* 0,,,: maximum directional stresses
* Oy,,.x.: Maximum plane stresses

In total, 9 intermediate PGL variable stresses

Vv

VANDERBILT.




RESULTS - PLAIN CAPSULE MODEL

Black-box PGL
Design Space Avg MSE Avg AE in % MAE 5% MAE ‘ Avg MSE Avg AEin % MAE 5% MAE
Regions with Traning Data 0.0001395 2.2088 0.0750 9.4272 | 0.0000967 2.1767 0.0850 8.9565
Regions without Traning Data  0.0005468 8.6550 0.91 16.1248 | 0.0000684 3.0105 0.09 6.3226

« Better performance for PGL, for original and less explored design spaces

a1 .1 I - 07 A (74 A
R'd't1()Fc:151|)|]1t,y ‘ Ozy—max Ozy—mazx Err Eaxpl A ‘ Oyz—max Oyz—max Err Eaxpl A’ I Oxz—max Ozz—mazx Ert Expl %

Feasible Example 0.24 2522.07  2522.07 4.01 2512.36  2512.36 1.85 4861.82  4861.82 0.37
Non-feasible Example 1.82 18619.95 17919.50 3.76 18653.14  17955.92 3.74 37760.57 36176.86 4.19

*All units in psi

« Interpretability, because of physics-based intermediate variables
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CONSTRAINED OPTIMIZATION WITH NN, MLP, AND

Optlmlze d(x,y)s.t. F(x) =y A P(x,y)
X,y are vectors of discrete and continuous
variables

* Fis ablackbox function e.g., a simulator or
evaluator
* ¢ is an objective function and P is a
constraint.
* P can model recursive and fixed-point
constraints
¢, F and P can be nonlinear

Conservative in number of function
evaluations
* Learns F in the part of its domain relevant to
solving the problem
* OQutperforms Bayesian optimization in sample
efficiency

Source: Sanjai Narain, Peraton

AGTIVE LEARNING

G (x) = Approximation to F(x)

“~ constructor

7
7’
&
7
s

/ MILP

via NN

X1, V1 =

P(x,y)

— o X0, Y0
\
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TAKEAWAYS

« What makes CPS design hard?
 Heterogeneous domains, multiple models, intractably large design spaces
« Multiple performance objectives, multiple constraints

« Synergizing model-based and data-driven approaches
« Automate synthesis for evaluation of design candidates
« Model-based design automation
« Accelerate high-fidelity analyses through surrogate modeling techniques
« CFD, FEA — physics guided learning
« Scale design space exploration with data-driven ML
« Constraint guided optimization with NN, MILP, and active learning
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THANK YOU!




Model-based Design

Computational models that predict properties of cyber-physical systems
“as designed” and “as built”.
Challenge: Develop domain-specific abstraction layers for complex CPS that
are evolvable, heterogeneous, yet semantically sound and supported by tools.
Research directions: Domain-Specific Modeling Languages (DSML)
Metamodeling
Model-Integrated Computing tools

- Component-based Design

Reusable units of knowledge (models) about CPS components.
Challenge: Understand composition of heterogeneous systems where
system-level properties can be computed from the properties of components.
Research directions: Formal semantics of DSMLs

Model Integration Languages

Component models and composition semantics
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MODEL- AND COMPONENT-BASED DESIGN PROCESS

* Component Repository:
C={C;(x,p)}
 For asystem model S:

Cs= comptypes(S) denotes the set of component
model types instantiated in S

The architecture of a system S is a labelled graph G, which is well formed if it

satisfies a set of constraints @ over Gs derived from the semantics of the
interaction types

The set of component types and composition constraints define a design
space:

D & {S|Gs E ®, comptypes(S) S C}
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e The goal of the design process is to synthesize SeDsuchthatS |E =R



