
Synthesis of a Complex
Software Vulnerability Analyzer

(SVA)

Kestrel Institute
Jim McDonald

March 7, 2002

Kestrel
Institute

Outline

� Goals
� Project strategy and flow
� Initial success
� Implementation of tool
� Demo
� Taxonomies
� Current vision

Kestrel
Institute

SVA Project Goals

� Build characterization
of vulnerabilities to
support automated
analysis
� Semantic rigor
� Organized / Modular
� Reusable
� Extendable

� Build inference &
analysis tools to detect
vulnerabilities
� Automation
� Mixed initiative

� Demonstrate detection
of real vulnerabilities

Kestrel
Institute

SVA Project strategy

Subtle flaws
� Elude smart compiler – buffer overflow detection increasingly tractable
� Multiple element interactions – possibly great complexity
� Handle protocol implementations – optimization can cloud interactions
� Typically require human assessment & guided search to assess impact

Subtle FlawsBuffer Overflow

Kestrel
Institute

SVA Project flow

Actual
flaw case

Semantic
taxonomy

Flaws
language

Automated
tools

Kestrel
Institute

August 8, 2000: real flaws

 2000.08.03, San Francisco

 I've discovered a pair of new capabilities in Java, one residing in the Java core and the
other in Netscape's Java distribution. The first (exploited in BOServerSocket
and BOSocket) allows Java to open a server which can be
accessed by arbitrary clients. The second (BOURLConnection and
BOURLInputStream) allows Java to access arbitrary URLs,
including local files.

[ed note: text taken from Dan Brumleve’s website]

As a demonstration, I've written BOHTTPD for Netscape Communicator. BOHTTPD
is a browser-resident web server and file-sharing tool that demonstrates these two problems
in Netscape Communicator. BOHTTPD will serve files from a directory of your choice,
and will also act as an HTTP/FTP proxy server. [ed note: “open door”]

Kestrel
Institute

Two days later

2000.08.05
 Right now I'm at the internet cafe (Club I) at 850 Folsom in San

Francisco (between 4th and 5th street). I'll be here until 2:00 a.m.
showing demos to anybody interested.

 A guy showed up here and made BOHTTPD multithreaded. This new
functionality is live right now…

 WHOA! I just saw a Windows 2000 system that was still running
BOHTTPD even after Netscape had been apparently terminated. Even
the "Task Manager" showed no trace. [ed note: “door stays open”]

[ed note: text taken from Dan Brumleve’s website]

Kestrel
Institute

Connecting flaw concepts to code

CERT BUGTRAQ

Code

queries

Mine rich
sources of

flaws

Select flaw
primitives

for a
language

Create tools
for making
queries on
(byte)code

Byte code

queries

Sensitive
Regions

Spoofable
Methods

Kestrel
Institute

Work with Brumleve’s “BO” attack

Sensitive
Regions

Spoofable
Methods

iadd
iload 3
pop
sipush 334
getfield [cn. Fn:t]
aload_0
…

public class Socket {
…
…
…
…
…
…
…
}

Data:

1031 Netscape
class files

Known Flaw

override non-final methods
in a region handling security

CERT

Known flaws prompt selection of
vulnerability primitives

Kestrel
Institute

Anatomy of the “BO” attack
public class BOHTTP extends Applet {
 …
 public void init () {
 …
 ess = new BOServerSocket(port);
 …
 }
 …
 public void run () {
 BOSocket client;
 …
 client = ess.accept.any();
 BOHTTPConnection ff = new BOHTTPConnection();
 …
 (new Thread(ff)).start();
 }
 …
}

Kestrel
Institute

Anatomy of the “BO” attack
public class BOServerSocket extends ServerSocket {
 …
 public BOSocket accept_any () throws IOException {
 BOSocket s = new BOSocket();
 try { implAccept(s); }
 catch (SecurityException se) { }
 return s;
 }
}

public class BOSocket extends Socket {
 public void close_real () throws IOException {
 super.close();
 }
 public void close () { }
}

Does Nothing!

Does Nothing!

Kestrel
Institute

protected final void implAccept (Socket socket) throws IOException
{ try
 { socket.impl.address = new InetAddress();
 socket.impl.fd = new FileDescriptor();
 impl.accept(socket.impl);
 SecurityManager securitymanager = System.getSecurityManager();
 if (securitymanager != null)
 { securitymanager.checkAccept(socket.getInetAddress().getHostAddress(),
 socket.getPort());
 return; }
 …
 catch (SecurityException securityexception)
 {

 }
}
public void close () throws IOException
{ impl.close }

Anatomy of the “BO” attack

accept_any from BOServerSocket can thwart!

socket.close();
throw securityexception;

Could be close from BOSocket!

Kestrel
Institute

Anatomy of the “BO” attack

Class BOURLConnection extends URLConnection {
 …
 public BOURLConnection (URL u) {
 super(u);
 connected = true;
 }
}

Class BOURLInputStream extends URLInputStream {
 …
 public BOURLInputStream (URLConnection uc)
 throws IOException {
 super(uc);
 open();
 }
}

Kestrel
Institute

Anatomy of the “BO” attack

class BOHTTPDConnection implements Runnable {
 …
 euc = new BOURLConnection(uu);
 euis = new BOURLInputStream(euc);
 while ((b = euis.read()) >= 0) os.write(b);
 …
}

Files exposed
across the net

Kestrel
Institute

Concepts lead to queries

 Find all spoofable methods

• Non-final methods that can be overridden

 Compute their traces

• Leverage from bytecode verifier

 Find all sensitive regions

• In particular, those handling security
mechanisms

 Look for invocations of spoofable methods that pass
through sensitive regions

Kestrel
Institute

Boolean
Integer
Function
If-then-else
Fun-app

Code synthesis

Base Specs

Target Code

public class Language {

 …

 …

}

Formal
specifications

analysis

Resource
Privilege
Protocol

public class Socket {

Specs for
Application

Domain

Library

Semi-automated
refinement

Analysis Tools

Kestrel
Institute

Formalizing the semantics

Spoofable invocations Sensitive regions

spec Spoofable_Invocation is
 op final? : method � Boolean
 op virtual? : invocation � Boolean
 op spoofable? : invocation � Boolean
 …
 end-spec

spec Sensitive_Region is
 sort Code_Region =
 {context : method,
 start : pc,
 end : pc,
 attributes : set CR_Attribute}
 sort CR_Attribute = | privileged
 | …
 …
 end-spec

Kestrel
Institute

public class Socket {
…
…
…
…
…
…
…
}

Initial queries on Brumleve’s code

New entries for the
semantic taxonomy

Known Flaw
“rediscovered”

Queries:

• Where are sensitive
regions R?

• Where are spoofable
methods M invoked?

•What is intersection?

Kestrel
Institute

Finding more than expected

public class Socket {
…
…
…
…
…
…
…
}

Known Flaw
“rediscovered”

Newly discovered Flaw
(one of 5 new ones;
exploitation assessment TBD)

Queries:

• spoofable methods

• sensitive regions

Kestrel
Institute

 Finding more than expected
From java.net.DatagramSocket :

public synchronized void receive (DatagramPacket datagrampacket)
 throws IOException
{
 SecurityManager securitymanager = System.getSecurityMaganager();
 synchronized(datagrampacket)
 { if (securitymanager != null) do
 { InetAddress inetaddress = new InetAddress();
 int I = impl.peek(inetaddress);
 try
 { securitymanager.checkConnect(inetaddress.getHostAddress(), I);
 break; }
 catch (SecurityException _ex)
 { DatagramPacket datagrampacket2 = new DatagramPacket (new byte[1], 1);
 impl.receive(datagrampacket2); }
 } while (true);
 impl.receive(datagrampacket);
 }
}

Kestrel
Institute

Current vision

Flaw
cases

Semantic
taxonomy

Flaws
language

Automated
tools

Specware Flawfinder™
WorkStation

• Sensitive regions

• Spoofable methods

• …

• Important app’s

• Common flaws

• …

• Q1

• Q2

Kestrel
Institute

Infrastructure

.class files

JCF structures

JVM structures

JVM spoof checker

isomorphi
c

JVM type checker

Dataflow
Engine

Transfer
functions

Kestrel
Institute

Performance

� Several Enhancements
� Multiple entries for curried functions
� Extensive use of hash codes
� Canonical print routines
� Various algorithmic improvements
� Multiple refinements of maps,

sequences, etc.

Kestrel
Institute

Multiple Refinements

 update access
Lists O(1) O(n)
Arrays O(N) O(1)
Trees O(logN) O(logN)

Many ways to implement maps

Kestrel
Institute

Which Refinement?

Map O(N**2) access

Map Tree

Map Array

Assume N updates followed by N
accesses:

List

O(N log N) access/update

O(N**2) update

Kestrel
Institute

Multiple Refinements!

List

Array

Tree

Map

Kestrel
Institute

Multiple Refinements!

List

Array

Tree

O(1) O(N)

 O(N) O(N)
updates accesses

O(N) O(N) O(N)

O(N) O(1)

O(logN) O(logN)

O(N) O(N) O(N)

Kestrel
Institute

Description of Demonstration

� Background:
� Show infrastructure for analyzing Java byte code

� Ideas:
� spoofable invocation – virtual invocation of non-final method

� sensitive region – try/catch/throw involving security, etc.

� Intersection is a vulnerability
� Demo:

� Write specs to instantiate these ideas
� Generate code to find and report vulnerabilities

Kestrel
Institute

Demo

Start Demo!

Kestrel
Institute

Taxonomies

� Semantically rich connections
Arrows embed one theory into another

� Exploited in semi-automated ways
Results for theories propagate

� Morphisms from one taxonomy node
into a domain theory provide leverage
for constructing the embedding of
children or sibling nodes

Kestrel
Institute

Taxonomies of Vulnerabilities

Developing a useful taxonomy of
vulnerabilities requires:

� Languages for describing flaws
� Theories to express properties of flaws
� Morphisms to relate those theories
� Power tools to exploit morphisms

Kestrel
Institute

Design by Classification

�

B� �

A

��C

D�

E

Refinements (green arrows) are
organized into a taxonomy

A

B

C

D

S0

S0
+

S0
++

S0
+++

S1

po

Refinements are accessed and applied
incrementally via a ladder construction

E

classifying the
structure of S0

applying the
refinement

D � E

Kestrel
Institute

Taxonomy of Collection Datatypes

PROTO-COLLECTION

PROTO-SEQ

PROTO-BAG

PROTO-SET

SEQ

BAG

BAG

LIST

SEQ

SET(TUPLE)

SET

BOUNDED-SET

BIT-VECTOR

ORDERED-SEQ

SET-OVER-LINEAR-ORDER

INDEXED-PARTITION

BOUNDED-SEQ

ARRAY

Kestrel
Institute

Taxonomy of Algorithm Theories

Problem Theory
(D|I ��R|O)

generate-and-test

Constraint Satisfaction
(R = set of maps) Global Structure

(R = set + recursive partition)
global search
binary Search

backtrack
branch-and-bound

Local Structure
(R = set + relation)

local search
hill climbing

simulated annealing
tabu search

Local Structure
(R = set + relation)
genetic algorithms

Local Poset Structure
(R = set + partial order)

Local Semilattice Structure
(R = semilattice)

GS-CSP
(R = recursively partitioned

 set of maps)

GS-Horn-CSP
(Horn-like Constraints)
constraint propagation

Monotone
 Deflationary Function

fixed point iteration

Integer
Linear

Programming
0-1 methods

Linear
Programming
simplex method

interior point
primal dual

Network Flow
specialized simplex

Ford-Fulkerson

Transportation
NW algorithm

Assignment Problem
Hungarian method

Divide-and-Conquer
divide-and-conquer

Problem Reduction
Generators

dynamic programming
branch-and-bound
game tree search

Complement
Reduction

sieves

Problem Reduction
Structure

Kestrel
Institute

 Synchronously Reusable
examples: transportation, washing machine
constraints: synchronized blocks of reservations
 min separation between blocks

 Exact Capacity
example: wafer oven
constraint: lb = ub on capacity

 Nonsharable
examples: berth, runway, crew
constraint: capacity = 1

Resource

Consumable
examples: fuel, crew time
constraint: cum. use ��cum. avail

cumulative
availability

cumulative
usage

time
time

time

time

Reusable

time

examples: parking lots, ramp space,
 parallel processors, power
constraints: upper bound on capacity
 finite usage intervals

Taxonomy of Resource Theories
(Start-time, Resource-type, Instantaneous demand, Precedes…)

(Duration, Finish-time, max/min-capacity,…)

(Separation)

Transportation Resource
examples: ship, aircraft, truck

(Origin, Destination, speed,
Duration = distance/speed)

Kestrel
Institute

Constructing Refinements

Scheduling0

Scheduling1

po

Scheduling2

po

1. Library of Refinements

Set

Sequence

Resource

Transportation
Resource

Global
Search

Global Search
Algorithm

• Rewrite Simplification
• Context-dependent Simplification
• Finite Differencing
• Case Analysis
• Partial Evaluation

2. Library of Refinement Generators

Global
Search

Global Search
Algorithm Set

Sequence

Scheduling3

Scheduling4

Context-dependent
Simplification

Finite Differencing

Kestrel
Institute

Languages for Vulnerabilities

� Ontology:
� Resource, Agent, Action, Manager, …
� Privilege, Authorization, Friend, Enemy, …
� Message, Channel, Send, Receive, Request, …
� File, Owner, Read, Write, Modify, …
� Process, Thread, Exception, Interrupt, …

� Modal, Meta, or Higher-Order Concepts
� Time, Knowledge, Necessity, Desirability, …
� Race, Deadlock, Cost, …

� Objectives
� Security, Reliability, Availability, Efficiency, …

Kestrel
Institute

Typical Expressions

� Requests(x, y, action) � trusts(y, x) �
 Executes(y, action)

� Receives(x, msg) �
 Believes(x, sent(author(msg), msg))

Kestrel
Institute

Theory of a Flaw

� Receives(x,request) � Validates(x,request) � Executes(x,request)

� Send(x,y,request) � author(request) = x

� Validates(x,request) �
 Friend(author(request),x) � � Dangerous(request)

� � Dangerous(send(x,y,z))

� Send(Intruder, Dupe, ‘Send(Dupe,Victim,bomb)’)

Kestrel
Institute

Morphisms

� Resource => Space, Processor, Data, …

� File => Unix-File, NT-File, …

� Privilege => Read, Write, Execute, …

� Read => fread, mmap, …

Kestrel
Institute

Towards a taxonomy

validation
error

configuration
error

synchronization
error

source
(authentication)

input

access
(permissions)

data
boundary
condition

Java

Capabilities
Classes

Java 2
Platform

Kestrel
Institute

Semantic Taxonomy of Flaws

FLAW

SPOOFINGLIE

TROJAN HORSEFORGERY

ALTERED MSG HDR

Boxes are theories.
Arrows are semantic!

B.O. EXAMPLE

Kestrel
Institute

Current vision

Flaw
cases

Semantic
taxonomy

Flaws
language

Automated
tools

Specware Flawfinder™
WorkStation

• Sensitive regions

• Spoofable methods

• …

• Important app’s

• Common flaws

• …

• Q1

• Q2

Kestrel
Institute

Questions

Kestrel
Institute

Software Development by Refinement

Spec0

Spec1

Spec2

 …
Specn

Code �

�

specification
refinement

 …

code
generation

models for Spec0

models for Spec1

Code generation is accomplished via a logic morphism
from SPEC to the logic of a programming language

models for Spec2

denotes

models for Specn

a model (for Specn)

Kestrel
Institute

Planware Refinements

po

Transportation
Scheduling 0

Resource

Transportation
Resource

Abstract
Scheduling

Task

Transportation
TasksTS 1

po

Set(A�B�C)

Indexed-Partition
map(A, Set(A�B�C))

po

TS2

TS3
po

Semilattice Attribute
of Task

Definite
Constraint

user chooses from the
Resource Taxonomy

user edits the
Spreadsheet

the rest is automatic!

Kestrel
Institute

Planware Refinements (con’t.)

po

TS4

TS5

DRO

Global Search
 with CP

Global Search
 program

TS6 Definite Constraints

Constraint
Propagation
algorithm

TS7
po

Context-Dependent
Simplification

TS8 Sort + n-attributes

n-tupleTS9
po

CommonLisp code

algorithm design
and

program optimizations

	Synthesis of a ComplexSoftware Vulnerability Analyzer(SVA)
	Outline
	SVA Project Goals
	SVA Project strategy
	SVA Project flow
	August 8, 2000: real flaws
	Two days later
	Connecting flaw concepts to code
	Work with Brumleve’s “BO” attack
	Anatomy of the “BO” attack
	Anatomy of the “BO” attack
	Anatomy of the “BO” attack
	Anatomy of the “BO” attack
	Anatomy of the “BO” attack
	Concepts lead to queries
	Code synthesis
	Formalizing the semantics
	Initial queries on Brumleve’s code
	Finding more than expected
	Finding more than expected
	Current vision
	Infrastructure
	Performance
	Multiple Refinements
	Which Refinement?
	Multiple Refinements!
	Multiple Refinements!
	Description of Demonstration
	Demo
	Taxonomies
	Taxonomies of Vulnerabilities
	Design by Classification
	Taxonomy of Algorithm Theories
	Constructing Refinements
	Languages for Vulnerabilities
	Typical Expressions
	Theory of a Flaw
	Morphisms
	Towards a taxonomy
	Semantic Taxonomy of Flaws
	Current vision
	Questions
	Software Development by Refinement
	Planware Refinements
	Planware Refinements (con’t.)

