
Slide: 1 Copyright © 2016 AdaCore

S. Tucker Taft

HCSS 2016, Annapolis, MD

Director of Language Research

TQL-1 Qualification of a
Model-Based Code Generator

2016-05-11

QGen Qualification

Slide: 2 Copyright © 2016 AdaCore

Model-driven Development of Critical Software

•  An Automatic Code Generator (ACG) produces the source
code from a model-based specification

•  To avoid verifying the generated code the ACG must be
"Qualified" (i.e. Trusted) (or “Qualifiable”)

•  Qualification requires a rigorous and thorough verification
of the ACG

–  Extensive testing of the ACG with high exhaustiveness

Testing is a major cost in ACG qualification

2

Model
Automatic

Code
Generator

Source
Code

Slide: 3 Copyright © 2016 AdaCore

DO-178C, Tool Qualification Levels

Criteria 1: A tool whose output is part of the airborne software and thus could
insert an error.

Criteria 2: A tool that automates verification process(es) and thus could fail to
detect an error, and whose output is used to justify the elimination
or reduction of:

•  Verification process(es) other than that automated by the tool, or
•  Development process(es) that could have an impact on the airborne

software.
Criteria 3: A tool that, within the scope of its intended use, could fail to detect

an error.

Failure Condition is …

Level A: Catastrophic

Level B: Hazardous

Level C: Major

Level D: Minor

Slide: 4 Copyright © 2016 AdaCore

Advantages of TQL-1 tool with respect to TQL-4/5 verification tools

•  TQL-1 is about correctness by construction

•  TQL-4/5 implies a posteriori checks
–  DO-178C/331 Table A-5 (verification of the source code)

–  After the final model is verified it can find source code is not traceable/compliant
–  DO-178C/331 Table A-6 (testing)

–  After the final model is verified it can find executable is not robust/compliant
–  DO-178C/331 Table A-7 (coverage)

–  After the final model is verified it can find uncovered source code

•  A Posteriori verifications may require changes late in the project
–  User may need to modify (after source code generation)

–  The generated source code
–  The model
–  The tests
–  The requirements

–  Forced to change them not because of deficient design, but because of problems with
the code generation tools

Slide: 5 Copyright © 2016 AdaCore

Sidebar: What are DO-178C, DO-330, DO-331, DO-332, DO-333?

•  DO-178C Software Considerations in Airborne Systems
–  primary document by which the certification authorities such as FAA, EASA and

Transport Canada approve all commercial software-based aerospace systems.

Supplements to DO-178C:
•  DO-330 Software Tool Qualification Considerations

–  addressing qualification of tools for use in airborne software, both from a tool
developer’s and a tool user’s perspective

•  DO-331 Model-Based Development and Verification
–  addressing Model-Based Development (MBD) and verification and the ability to use

modeling techniques to improve development and verification while avoiding pitfalls
inherent in some modeling methods

•  DO-332 Object-Oriented Technology and Related Techniques
–  addressing object-oriented software and the conditions under which it may be used

•  DO-333 Formal Methods
–  addressing formal methods to complement (but not replace) testing

Slide: 6 Copyright © 2016 AdaCore

TQL-1 Qualification and DO-178C Objectives

•  TQL-1 ensures that …
–  Tool Operational Requirements define all translation rules from model to the Source Code
–  Generated source code is

–  Compliant to a defined coding standard
–  Verifiable and Traceable

–  No unintended function or structure

•  DO-178C Objectives and TQL-1 qualification
–  Remove some review/analysis objectives of generated code (A-5)
–  Automate or remove some low-level testing (A-6)

–  Automate or remove some structural coverage analysis on source (A-7)

! SAVE MONEY

Slide: 7 Copyright © 2016 AdaCore

Source Code Verification Objectives: Shared Responsibility with User

•  Tool Vendor: TQL-1 Tool verification ensures correctness of the translation
–  Tool Operational Requirements analysis and reviews
–  Code generated from models corresponds to that defined in TORs

–  Verify syntax and semantics of generated code comply with models
–  Equivalence between TORs and Simulink/Stateflow semantics is validated by the

tool developer through simulation test cases

–  Source Code complies with coding standard defined in TORs

•  Tool User: TQL-1 Validation for project (DO-330, 6.2.1)
–  Qualifiable vs. Qualified
–  “Tool Operational Requirements are sufficient and correct to eliminate, reduce, or

automate the process(es) identified in the PSAC”

–  “The tool meets the needs of the software life cycle process in the tool operational
environment”

Slide: 8 Copyright © 2016 AdaCore

1994
T

TQL-1 Code Generator
Architecture Overview

Slide: 9 Copyright © 2016 AdaCore

Qualifiable Code Generator architecture

Slide: 10 Copyright © 2016 AdaCore

Detailed Code Generator architecture

MDL/SLX
Importer

Decoration
file Importer Preprocessor Sequencer

Code Model
Generator

(CMG)
Optimiser Expander

Geneauto Metamodel API
(Automatically Generated)

Core MOF API
(Manually Written)

Matlab
Decoration

File Exporter

Overall Size:
•  50K SLOC Handwritten
•  50K SLOC Generated from Metamodel
I.e. BIG for highest level of assurance (think $50/SLOC)

Slide: 11 Copyright © 2016 AdaCore

TQL1 Qualification: Requirements-Based Testing Model for Tools

Tool Operational
Requirements

(TORs)

Tool
Requirements

(TRs)

Test Cases

Test Procedures

Source Code

implemented by

allocated on
Tool Architecture

implemented by
implemented by

verified by

implemented by
implemented by

Slide: 12 Copyright © 2016 AdaCore

DO-178C Requirements-Based Testing Model for Airborne System

By Steven H. VanderLeest - Own work, CC BY-SA 3.0, https://
commons.wikimedia.org/w/index.php?curid=27610716

TQL-1 testing model is
essentially identical, where:
TOR = HLR and TR = LLR

Slide: 13 Copyright © 2016 AdaCore

Approach for defining Tool Operational Requirements (TORs = HLRs)

•  TORs define transformations between input model and target language in steps
–  TORs define the transformation between input model and intermediate language

–  Generic functionality
–  Generic parameters
–  Accepted combinations (types, dimensions, block parameters)

–  TORs to define transformations within the intermediate language
–  Optimizations

•  Removal of intermediate variables,…
–  Expansions

•  Typing, loops according to dimensions,…
–  TORs to define the representation in the target language (C or Ada)

–  Relation between generic and concrete patterns
–  Language-specific transformations

•  For example, use of specific ++ operator in C

•  TORs defining the transformation between the input model and the target language in
a single step are too complex

•  TORs are self-contained
–  Defined semantics
–  Do not refer to Simulink/Stateflow documentation

–  Although obviously based on it
–  Tests verify that behavior of the generated source code is equivalent to the simulation

TOR-Type-1

TOR-Type-2

TOR-Type-3

Slide: 14 Copyright © 2016 AdaCore

Intermediate P language

•  Goal
–  Used to define abstract patterns of code

–  High-level language that abstracts aspects of dimensionality and concrete typing

•  Why
–  Define clear semantics

–  Do not refer to Simulink/Stateflow documentation
–  Compact

–  Simplifies writing and understanding requirements
–  Remove details

–  Reduce combinatorial explosion
–  Pattern applies to every type (uint8, int8,…) and every dimension (scalar, vector,

matrix)
•  And their combinations

–  Reuse among target languages
–  C, Ada,...

Slide: 15 Copyright © 2016 AdaCore

Tool Operational Requirements using intermediate P language

•  Transformation between input model and intermediate P language
–  Expected generic pattern of code
–  Generic parameters

–  Types of ports, types of parameters, values of parameters
–  Set of supported cases (combination of parameters)

•  Transformations within the intermediate P language
–  Source pattern " target pattern
–  We no longer have genericity on dimensions: scalar/vector/matrix have separate TORs
–  We still have genericity on operators and base types
–  No language-specific expansions

•  Transformations between intermediate P language and target language (C or Ada)
–  Regular printing rules
–  We are allowed to do intermediate expansion to account for language specific rules:

–  P language a++;
–  Ada-specific P language a := a + 1;

•  Exceptional blocks specified in natural language
–  Virtual Subsystems that shall be inlined
–  Goto/From blocks

TO
R

-T
yp

e-
1

TO
R

-T
yp

e-
2

TO
R

-T
yp

e-
3

Slide: 16 Copyright © 2016 AdaCore

Example of TORs: Functional for Saturation (supported configuration)

A legal Saturation block shall have 1 input, 1 output and the
"UpperLimit" and "LowerLimit" parameter.
The base types of input port and output port shall coincide.
If the input and output are scalar then "UpperLimit" and "LowerLimit”
shall be scalars.
If the input and output are vectors or matrices then "UpperLimit" and
"LowerLimit” shall be either scalars or have the same dimensions as the
block’s output.
"UpperLimit” shall be greater than or equal to "LowerLimit”. TOR.1

TOR-Type-1

Slide: 17 Copyright © 2016 AdaCore

Example of TORs: Functional for Saturation (scalar case)

The Saturation block imposes upper and lower limits on an input signal.
The block output is equal to the input value when the input value is
within the range specified by the “LowerLimit” and “UpperLimit”
parameters, “LowerLimit” when the input value is lower than
“LowerLimit”, and “UpperLimit” when the input value is greater than
“UpperLimit”.

if the block’s output is scalar then the generated code model shall be:

 if in < Params.LowerLimit
 out = Params.LowerLimit
 else
 if in > Params.UpperLimit
 out = Params.UpperLimit
 else
 out = in

TOR.2

TOR-Type-1

Slide: 18 Copyright © 2016 AdaCore

Example of TORs: Functional for Saturation (non scalar case)

The Saturation block imposes upper and lower limits on an input signal.
The block output is equal to the input value when the input value is
within the range specified by the “LowerLimit” and “UpperLimit”
parameters, “LowerLimit” when the input value is lower than
“LowerLimit”, and “UpperLimit” when the input value is greater than
“UpperLimit”.

if the block’s output is a vector or a matrix and LowerLimit and
UpperLimit are of the same dimension then the generated code model
shall follow the pattern specified in TOR.4 where:

Code_Fragment is:

 if in < Params.LowerLimit
 out = Params.LowerLimit
 else
 if in > Params.UpperLimit
 out = Params.UpperLimit
 else
 out = in

Dims are the dimensions of output port
Indexed_Expressions are: in, out, Params.LowerLimit, Params.UpperLimit

TOR.3

TOR-Type-1

Slide: 19 Copyright © 2016 AdaCore

Example of TORs: Expansion

The expansion of a code fragment for multidimensional data is
parameterized by the following aspects:

•  A code model fragment: Code_Fragment
•  List of dimensions: Dims
•  List of sub-expressions that are to be indexed in Code_Fragment:

Indexed_Expressions

The following transformation shall be performed:

1.  The code model fragment Code_Fragment shall be wrapped into N

RangeIterationStatements, where N is the number of dimensions in
Dims. N can only be 1 or 2.

2.  The iteration ranges are 0 .. Dims (K) - 1, where K = 1 .. N
3.  Each occurrence of an iterable expression in Indexed_Expressions

shall be suffixed with M indices, where M is the dimensionality of
the given Indexed_Expression and index values set to appropriate
index variables

4.  A literal non-scalar expression in Indexed_Expressions (block
parameters only) shall be copied to a new variable named
<block_name>_<parameter_Name>. Then, each occurrence of the given
expression in Indexed_Expressions shall be replaced by the
appropriate indexed variable expression

TOR.4

TOR-Type-2

Slide: 20 Copyright © 2016 AdaCore

Example of TOR: Optimization

A variable that is assigned but never read shall be removed TOR.N

A variable that is assigned once shall be removed if the following
conditions are true:
 - It is assigned in a simple assignment
 - The assignment is not for a single element of a vector or a matrix
 - The assignment is not for a component in a structure
 - The variable is not the out argument of a subprogram call TOR.N+1

1

In1

2

In2

1

Out1

3

In3

Sum1_out1 = In1 + In2
Sum2_out1 = Sum1_out1 + In3
Out1 = Sum2_out1

Out1 = In1 + In2 + In3

TOR.N+1

TOR-Type-2

Slide: 21 Copyright © 2016 AdaCore

Example of TOR: target code pattern

The C code generated for an if statement that
contains an else alternative:

 if <condition>
 <if_statements>
 else
 <else_statements>

shall have the following pattern:

 if (<condition>) {
 <if_statements>
 } else {
 <else_statements>
 }

where:
<condition> is the controlling boolean
expression of the if statement
<if_statements> is the sequence of statements
if the condition evaluates to True
<else_statements> is the sequence of statements
if the condition evaluates to False

TOR.M

if (A > 100) {
 Out1 = In1;
} else {
 Out1 = In2;
}

If A > 100
 Out1 = In1
else
 Out1 = In2

TOR.M

TOR-Type-3

Slide: 22 Copyright © 2016 AdaCore

Types of Tool Operational Requirements

•  Contains
–  Specification of transformations

•  How
–  MDL/SLX Importer

–  Natural language
–  Preprocessor

–  Natural language + Contracts
–  Sequencer

–  Natural language + Contracts
–  Code Model Generator

–  Natural language + pseudo-code in P language
–  Optimizer

–  Natural language
–  Expander

–  Natural language
–  Printer

–  Natural language

MDL/SLX
Importer Preprocessor Sequencer

Code Model
Generator

(CMG)
Optimizer Expander Printer

TOR-Type-1
(functionality)

TOR-Type-2
(optimization and expansion)

TOR-Type-3
(code patterns)

Slide: 23 Copyright © 2016 AdaCore

Example of Tool Requirements (TRs = LLRs): Configuration for “Saturate” block

•  TR.1.1 checks the configuration for two different Simulink blocks
–  Saturation
–  Saturation Dynamic

The supported configuration of a Saturate block shall have:
•  Either 3 inputs and 1 output, or 1 input, 1 output and the

"UpperLimit" and "LowerLimit" parameters
•  The base types of all input ports and output port shall coincide
•  In the Saturation Dynamic block, "Saturate On Integer Overflow" flag

shall be turned off (MISRA constraint)

TR.1.1

If the input and output of a Saturation block are vectors or matrices
then "UpperLimit" and "LowerLimit” shall be either scalars or have the
same dimensions as the block’s output.

If the input and output of a Saturation block are scalar then
"UpperLimit" and "LowerLimit” shall be scalars.

"UpperLimit” shall be greater than or equal to "LowerLimit”.

TR.1.2

TR.1.3

TR.1.4

Slide: 24 Copyright © 2016 AdaCore

Requirement-Based Testing

•  Types of tests
–  TOR-based test cases -- High Level Requirements based testing
–  TR-based test cases -- Low Level Requirements based testing

•  TOR-based test cases (DO-330, table T-6, obj. 1 & 2)
–  Expected code from Simulink models

–  Input: Simulink models
–  Expected output: Check against expected code patterns and behavior

–  Combination of test cases with reduced and large number of blocks
–  One or more test cases per test procedure
–  Requirement-based testing

•  TR-based test cases (DO-330, table T-6, obj. 3 & 4)
–  Check behavior based on internal model representation (at intermediate steps)
–  Expected behavior of subprogram

–  Input: cannot express as Simulink model
–  Output: cannot express as behavior of output code

–  Requirement-based testing based on internal context

Slide: 25 Copyright © 2016 AdaCore

TOR-based (High-Level-Requirement-based) testing

•  Verify behavior of individual blocks
–  Individual test cases for each block and each configuration

•  Verify optimization rules

•  Verify generated code

•  Verify composition of blocks
–  Tester defines the expected result

–  Simulation used as oracle

Slide: 26 Copyright © 2016 AdaCore

TR-based test cases: Difficulties in performing unit testing of low-level
requirements

•  Input
–  Cannot express as Simulink model
–  Internal models are difficult to generate

•  Output
–  Cannot express as behavior of output code

–  Generated internal models are difficult to verify

•  Traceability
–  How to ensure that a concrete test case is exercised by a concrete test procedure

•  Coverage
–  How to ensure that all test cases have been exercised

•  Expressiveness
–  Compare state before and after the subprogram execution

Summary &
Future Work

Related
Work

Validat
ion

Contribut
ions

Challen
ges

Context &
Motivation

Unit Testing vs. Integration Testing

27

Unit
TestingInput Output

Integration
Testing

Input Output

User
Language Ti−1 TiMi

Source
CodeTi+1

Integration testing is widely preferred to unit testing

Objective
Achieve unit testing exhaustiveness using only integration tests

Unit Testing Integration Testing

Test Data
Editor/Viewer Internal languages have no editors User language has a good editor

Test Data
Complexity Intermediate languages are complex User language is simpler, has higher abstraction

Test
Exhaustiveness

Achievable thanks to isolation of
units

Hard to achieve with no visibility on the internals
of the tool

Mi+1

 Unit testing vs. Integration Testing

Slide: 28 Copyright © 2016 AdaCore

TR-based test cases: Approach to handling low-level requirements “unit” testing

•  We need to define:
–  Equivalence class definition

–  Characterization of the input relevant to the test case
–  Oracle

–  Output validity criteria
–  The way to decide the pass/fail verdict

•  Test procedures can be:
–  End-to-end (from Simulink to code) tests

–  Covering a set of test cases at different phases
–  Unit tests

–  Covering a set of test cases for a given TR

•  Executable expression of test cases
–  Instrument code of the tool, so at execution time we can

–  Log the occurrence of test cases (traceability and coverage)
–  Check (test oracle) the expected result of the test case

–  Tool does not have instrumentation in production mode
–  Equivalence between instrumented and non-instrumented version

–  Execute the test procedures in both modes and check that generated code is exactly the
same

Slide: 29 Copyright © 2016 AdaCore

Instrumentation for Test Case Evaluation

Log which equivalence classes are covered
by the input data

Evaluate the test oracles of the covered test
cases

Subprogram
Under Test

control
flow

instrumentation

instrumentation

All instrumentation is
marked as ghost code
Compiler produces
ghost code only when
assertions are enabled.

Slide: 30 Copyright © 2016 AdaCore

Instrumentation for Test Case Evaluation

 for TC of Test_Cases loop
 if TC.Equivalence_Class then
 TC.Covered := True;
 Log (TC.Id & “ Covered”);
 end if;
 end loop;

 for TC of Test_Cases loop
 if TC.Covered then
 if not TC.Oracle then
 Log (TC.Id & “ Failed”);
 end if;
 end if;
 end loop;

Subprogram
Under Test

control
flow

instrumentation

instrumentation

Slide: 31 Copyright © 2016 AdaCore

Instrumentation for Test Case Evaluation

function Equivalence_Class (T : Process_Goto_From_TC1)
 return Boolean is
-- Input model contains “Goto” blocks
 Goto_Blocks_In_Model : Element_Sequence'Class :=
 Model.Get_Blocks_Of_Type (“Goto”);
begin
 if Goto_Blocks_In_Model.Length > 0 then
 T.Goto_Blocks.Append (Goto_Blocks_In_Model);
 return True;
 else
 return False;
 end if;
end Equivalence_Class;

function Oracle (T : Process_Goto_From_TC1)
 return Boolean is
-- Check that all “Goto” blocks become null and are no longer
-- contained in the model
begin
 return (for all B of T.Goto_Blocks =>
 B.Is_Null and then
 not Model.Contained_Elements.Contains (B));
end Oracle;

Preprocessor

control
flow

instrumentation

instrumentation

Slide: 32 Copyright © 2016 AdaCore

Instrumentation for Test Case Evaluation

function Equivalence_Class (T : TC1) return Boolean is
 (B.Inports (1).Is_Vector and then B.UpperLimit.Is_Scalar);

function Equivalence_Class (T : TC2) return Boolean is
 (B.Inports (1).Is_Vector and then B.UpperLimit.Is_Vector);

function Equivalence_Class (T : TC3) return Boolean is
 (B.Inports (1).Is_Matrix and then B.UpperLimit.Is_Matrix
 and then (for some V in B.UpperLimit =>
 V.Is_Infinity));

...

Test Oracle does not have to be automatic. It might be:
 - Printing the intermediate code model, validating it
and setting it as a test baseline
 - Validating the final generated code because it has a
structure very similar to the code model, and setting it
as a test baseline

Code Model
Generator

control
flow

instrumentation

instrumentation

Slide: 33 Copyright © 2016 AdaCore

function Sqrt (X : Integer) return Integer with
 Test_Case =>
 (Name => “TC1”, Mode => Nominal,
 Requires => X = 1,
 Ensures => Sqrt’Result = 1),
 Test_Case =>
 (Name => “TC2”, Mode => Nominal,
 Requires => X > 1,
 Ensures => Sqrt’Result ** 2 <= X
 and then
 (Sqrt’Result + 1) ** 2 > X);

•  Test cases are expressed as:
–  Executable form

–  Test objective =>
•  Evaluated at subprogram

entry
–  Test oracles =>

•  Evaluated at subprogram
exit

–  Manual verifications
–  If applying the previous are

difficult

•  Traceability and coverage
–  Logging occurrences of requires and

ensures
–  Requires

–  Evidences of coverage of test
cases

–  Ensures
–  Test case results

TR-based test cases: Implementation

Trace for a test with Sqrt (5):

Sqrt.TC1.Requires False
Sqrt.TC2.Requires True
Sqrt.TC1.Ensures Not Applicable
Sqrt.TC2.Ensures True

Slide: 34 Copyright © 2016 AdaCore

TR-based test cases: Implementation (II)

•  Some flexibility
–  Instead of Test_Case we can use Contract_Case, Precondition, Postcondition

•  Expressiveness
–  We can save and check state using a separate verification package

•  Use “Ghost” Code throughout
–  Ghost code removed when compiled in no-assertions mode

•  Example using Executable Preconditions/Postconditions:

procedure Preprocess (SB : SystemBlock’Class) with
 Pre => Preprocess_Verif.Preprocess_Test_Cases_Requires (SB),
 Post => Preprocess_Verif.Preprocess_Test_Cases_Ensures (SB);
-- Routines called in the pre- and post-conditions can store any required data within
-- internal variables and check their status after execution of Preprocess

Procedure to eliminate GoTo blocks. Test case is:
 - Requires: There exists a GoTo block
 - Ensures: That GoTo block becomes null and is removed from the model

Summary &
Future Work

Related
Work

Validat
ion

Contribut
ions

Challen
ges

Context &
Motivation 35

Unit Test
Requirements

Integration
Test Input Ti−1 TiMi Mi+1 MNTi+1

tri,jtri,jtri,j tri,jtri,jtoi,j

Unit Test
Oracles

Integration Test
Execution

Unit Test Requirements

Integration
Tests tr0,0 tr0,1 tr0,2 to0,0 to0,1 to0,2 tr1,0 tr1,1 to1,0 to1,1 tr2,0 tr2,1 to2,0 to2,1

Test0 SAT – – PASS – – – SAT – PASS – SAT – PASS

Test1 – – SAT – – PASS – SAT – PASS – SAT – PASS

Test2 – – SAT – – FAIL SAT – PASS – – SAT – PASS

Test3 – – – – – – SAT SAT PASS PASS – SAT – FAIL

Test4 SAT – – PASS – – – SAT – PASS – SAT – PASS

Non-covered
Unit Test Case

Non-covered
Unit Test Case

Unit Test
Failure

Unit Test
Failure

 Integrated Unit Testing

Slide: 36 Copyright © 2016 AdaCore

TQL-1 Qualification Approach – Building Trust in Code Generator

•  Structure of Tool (Operational) Requirements reflects Multi-Pass
structure of Code Generator

–  Input, Transformation(s), Optimization(s), Output

•  Conventional Unit Testing of Multi-Pass Code Generator is painful
–  Difficult to create inputs and check outputs of individual passes

•  Integration Testing is generally easier
–  can use normal Models as Input; generated Source Code as output

•  Instrument Code Generator with “ghost” code to use Integration
Testing to accomplish Unit Testing

–  Monitor inputs during Integration Testing to be sure all relevant Test Cases go through
each pass

–  Can check completeness and uniqueness of input classification, so each input gets
exactly one classification

–  Use Oracle to create expected output based on input classification and check for match

•  Coverage Testing now at Test Case level
–  Verify that all interesting test cases were executed

•  Approach applicable to other multi-pass tools such as Compilers

