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Model-driven Development of Critical Software 

•  An Automatic Code Generator (ACG) produces the source 
code from a model-based specification 

•  To avoid verifying the generated code the ACG must be 
"Qualified" (i.e. Trusted) (or “Qualifiable”) 

•  Qualification requires a rigorous and thorough verification 
of the ACG  

–  Extensive testing of the ACG with high exhaustiveness 

Testing is a major cost in ACG qualification 
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DO-178C, Tool Qualification Levels 

Criteria 1: A tool whose output is part of the airborne software and thus could 
insert an error.  

Criteria 2: A tool that automates verification process(es) and thus could fail to 
detect an error, and whose output is used to justify the elimination 
or reduction of:  

•  Verification process(es) other than that automated by the tool, or  
•  Development process(es) that could have an impact on the airborne 

software.  
Criteria 3: A tool that, within the scope of its intended use, could fail to detect 

an error.  
 

Failure Condition is … 

Level A: Catastrophic 

Level B: Hazardous 

Level C: Major 

Level D: Minor  
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Advantages of TQL-1 tool with respect to TQL-4/5 verification tools 

•  TQL-1 is about correctness by construction 

•  TQL-4/5 implies a posteriori checks 
–  DO-178C/331 Table A-5 (verification of the source code) 

–  After the final model is verified it can find source code is not traceable/compliant 
–  DO-178C/331 Table A-6 (testing) 

–  After the final model is verified it can find executable is not robust/compliant 
–  DO-178C/331 Table A-7 (coverage) 

–  After the final model is verified it can find uncovered source code 

•  A Posteriori verifications may require changes late in the project 
–  User may need to modify (after source code generation) 

–  The generated source code 
–  The model 
–  The tests 
–  The requirements 

–  Forced to change them not because of deficient design, but because of problems with 
the code generation tools 



Slide: 5 Copyright © 2016 AdaCore 

Sidebar: What are DO-178C, DO-330, DO-331, DO-332, DO-333? 

•  DO-178C  Software Considerations in Airborne Systems 
–  primary document by which the certification authorities such as FAA, EASA and 

Transport Canada approve all commercial software-based aerospace systems.  

Supplements to DO-178C: 
•  DO-330  Software Tool Qualification Considerations 

–  addressing qualification of tools for use in airborne software, both from a tool 
developer’s and a tool user’s perspective 

•  DO-331  Model-Based Development and Verification 
–  addressing Model-Based Development (MBD) and verification and the ability to use 

modeling techniques to improve development and verification while avoiding pitfalls 
inherent in some modeling methods 

•  DO-332  Object-Oriented Technology and Related Techniques 
–  addressing object-oriented software and the conditions under which it may be used 

•  DO-333  Formal Methods  
–  addressing formal methods to complement (but not replace) testing 
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TQL-1 Qualification and DO-178C Objectives 

•  TQL-1 ensures that … 
–  Tool Operational Requirements define all translation rules from model to the Source Code 
–  Generated source code is 

–  Compliant to a defined coding standard 
–  Verifiable and Traceable 

–  No unintended function or structure 

•  DO-178C Objectives and TQL-1 qualification 
–  Remove some review/analysis objectives of generated code (A-5) 
–  Automate or remove some low-level testing (A-6) 

–  Automate or remove some structural coverage analysis on source (A-7) 

! SAVE MONEY 
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Source Code Verification Objectives: Shared Responsibility with User 

•  Tool Vendor: TQL-1 Tool verification ensures correctness of the translation 
–  Tool Operational Requirements analysis and reviews 
–  Code generated from models corresponds to that defined in TORs 

–  Verify syntax and semantics of generated code comply with models 
–  Equivalence between TORs and Simulink/Stateflow semantics is validated by the 

tool developer through simulation test cases 

–  Source Code complies with coding standard defined in TORs 

•  Tool User: TQL-1 Validation for project (DO-330, 6.2.1) 
–  Qualifiable vs. Qualified 
–  “Tool Operational Requirements are sufficient and correct to eliminate, reduce, or 

automate the process(es) identified in the PSAC” 

–  “The tool meets the needs of the software life cycle process in the tool operational 
environment” 
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1994 
T 

TQL-1 Code Generator 
Architecture Overview 



Slide: 9 Copyright © 2016 AdaCore 

Qualifiable Code Generator architecture 
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Detailed Code Generator architecture 

MDL/SLX 
Importer 

Decoration 
file Importer Preprocessor Sequencer 

Code Model 
Generator 

(CMG) 
Optimiser Expander 

Geneauto Metamodel API 
(Automatically Generated) 

Core MOF API 
(Manually Written) 

Matlab 
Decoration 

File Exporter 

Overall Size:  
•  50K SLOC Handwritten 
•  50K SLOC Generated from Metamodel 
I.e. BIG for highest level of assurance (think $50/SLOC) 
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TQL1 Qualification: Requirements-Based Testing Model for Tools 

Tool Operational 
Requirements 

(TORs) 

Tool 
Requirements 

(TRs) 

Test Cases 

Test Procedures 

Source Code 

implemented by 

allocated on 
Tool Architecture 

implemented by 
implemented by 

verified by 

implemented by 
implemented by 
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DO-178C Requirements-Based Testing Model for Airborne System 

By Steven H. VanderLeest - Own work, CC BY-SA 3.0, https://
commons.wikimedia.org/w/index.php?curid=27610716 

TQL-1 testing model is 
essentially identical, where:  
TOR = HLR and TR = LLR 
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Approach for defining Tool Operational Requirements (TORs = HLRs) 

•  TORs define transformations between input model and target language in steps 
–  TORs define the transformation between input model and intermediate language 

–  Generic functionality 
–  Generic parameters 
–  Accepted combinations (types, dimensions, block parameters) 

–  TORs to define transformations within the intermediate language 
–  Optimizations 

•  Removal of intermediate variables,… 
–  Expansions 

•  Typing, loops according to dimensions,… 
–  TORs to define the representation in the target language (C or Ada) 

–  Relation between generic and concrete patterns 
–  Language-specific transformations 

•  For example, use of specific ++ operator in C 

•  TORs defining the transformation between the input model and the target language in 
a single step are too complex 

•  TORs are self-contained 
–  Defined semantics 
–  Do not refer to Simulink/Stateflow documentation 

–  Although obviously based on it 
–  Tests verify that behavior of the generated source code is equivalent to the simulation 

TOR-Type-1 

TOR-Type-2 

TOR-Type-3 
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Intermediate P language 

•  Goal 
–  Used to define abstract patterns of code 

–  High-level language that abstracts aspects of dimensionality and concrete typing 

•  Why 
–  Define clear semantics 

–  Do not refer to Simulink/Stateflow documentation 
–  Compact 

–  Simplifies writing and understanding requirements 
–  Remove details 

–  Reduce combinatorial explosion 
–  Pattern applies to every type (uint8, int8,…) and every dimension (scalar, vector, 

matrix) 
•  And their combinations 

–  Reuse among target languages 
–  C, Ada,... 
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Tool Operational Requirements using intermediate P language 

•  Transformation between input model and intermediate P language 
–  Expected generic pattern of code 
–  Generic parameters 

–  Types of ports, types of parameters, values of parameters 
–  Set of supported cases (combination of parameters) 

•  Transformations within the intermediate P language 
–  Source pattern " target pattern 
–  We no longer have genericity on dimensions: scalar/vector/matrix have separate TORs 
–  We still have genericity on operators and base types 
–  No language-specific expansions 

•  Transformations between intermediate P language and target language (C or Ada) 
–  Regular printing rules 
–  We are allowed to do intermediate expansion to account for language specific rules: 

–  P language   a++; 
–  Ada-specific P language  a := a + 1; 

•  Exceptional blocks specified in natural language 
–  Virtual Subsystems that shall be inlined 
–  Goto/From blocks 

TO
R

-T
yp

e-
1 

TO
R

-T
yp

e-
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TO
R

-T
yp

e-
3 
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Example of TORs: Functional for Saturation (supported configuration) 

A legal Saturation block shall have 1 input, 1 output and the 
"UpperLimit" and "LowerLimit" parameter. 
The base types of input port and output port shall coincide. 
If the input and output are scalar then "UpperLimit" and "LowerLimit” 
shall be scalars. 
If the input and output are vectors or matrices then "UpperLimit" and 
"LowerLimit” shall be either scalars or have the same dimensions as the 
block’s output. 
"UpperLimit” shall be greater than or equal to "LowerLimit”. TOR.1 

TOR-Type-1 
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Example of TORs: Functional for Saturation (scalar case) 

The Saturation block imposes upper and lower limits on an input signal. 
The block output is equal to the input value when the input value is 
within the range specified by the “LowerLimit” and “UpperLimit” 
parameters, “LowerLimit” when the input value is lower than 
“LowerLimit”, and “UpperLimit” when the input value is greater than 
“UpperLimit”. 
 
if the block’s output is scalar then the generated code model shall be: 
 
   if in < Params.LowerLimit 
      out = Params.LowerLimit 
   else 
      if in > Params.UpperLimit 
         out = Params.UpperLimit 
      else 
         out = in 

TOR.2 

TOR-Type-1 
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Example of TORs: Functional for Saturation (non scalar case) 

The Saturation block imposes upper and lower limits on an input signal. 
The block output is equal to the input value when the input value is 
within the range specified by the “LowerLimit” and “UpperLimit” 
parameters, “LowerLimit” when the input value is lower than 
“LowerLimit”, and “UpperLimit” when the input value is greater than 
“UpperLimit”. 
 
if the block’s output is a vector or a matrix and LowerLimit and 
UpperLimit are of the same dimension then the generated code model 
shall follow the pattern specified in TOR.4 where: 
 
Code_Fragment is: 
 
   if in < Params.LowerLimit 
      out = Params.LowerLimit 
   else 
      if in > Params.UpperLimit 
         out = Params.UpperLimit 
      else 
         out = in 
 
Dims are the dimensions of output port 
Indexed_Expressions are: in, out, Params.LowerLimit, Params.UpperLimit 

TOR.3 

TOR-Type-1 
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Example of TORs: Expansion 

The expansion of a code fragment for multidimensional data is 
parameterized by the following aspects: 
 
•  A code model fragment: Code_Fragment 
•  List of dimensions: Dims 
•  List of sub-expressions that are to be indexed in Code_Fragment: 

Indexed_Expressions 
 
The following transformation shall be performed: 
 
1.  The code model fragment Code_Fragment shall be wrapped into N 

RangeIterationStatements, where N is the number of dimensions in 
Dims. N can only be 1 or 2. 

2.  The iteration ranges are 0 .. Dims (K) - 1, where K = 1 .. N 
3.  Each occurrence of an iterable expression in Indexed_Expressions 

shall be suffixed with M indices, where M is the dimensionality of 
the given Indexed_Expression and index values set to appropriate 
index variables 

4.  A literal non-scalar expression in Indexed_Expressions (block 
parameters only) shall be copied to a new variable named 
<block_name>_<parameter_Name>. Then, each occurrence of the given 
expression in Indexed_Expressions shall be replaced by the 
appropriate indexed variable expression 

TOR.4 

TOR-Type-2 
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Example of TOR: Optimization 

A variable that is assigned but never read shall be removed TOR.N 

A variable that is assigned once shall be removed if the following 
conditions are true: 
 - It is assigned in a simple assignment 
 - The assignment is not for a single element of a vector or a matrix 
 - The assignment is not for a component in a structure 
 - The variable is not the out argument of a subprogram call TOR.N+1 

1

In1

2

In2

1

Out1

3

In3

Sum1_out1 = In1 + In2 
Sum2_out1 = Sum1_out1 + In3 
Out1 = Sum2_out1 

Out1 = In1 + In2 + In3 

TOR.N+1 

TOR-Type-2 
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Example of TOR: target code pattern 

The C code generated for an if statement that 
contains an else alternative: 
 
   if <condition> 
      <if_statements> 
   else 
      <else_statements> 
 
shall have the following pattern: 
 
   if (<condition>) { 
      <if_statements> 
   } else { 
      <else_statements> 
   } 
 
where: 
<condition> is the controlling boolean 
expression of the if statement 
<if_statements> is the sequence of statements 
if the condition evaluates to True 
<else_statements> is the sequence of statements 
if the condition evaluates to False 

TOR.M 

if (A > 100) { 
   Out1 = In1; 
} else { 
   Out1 = In2; 
} 

If A > 100 
   Out1 = In1 
else 
   Out1 = In2 

TOR.M 

TOR-Type-3 
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Types of Tool Operational Requirements 

•  Contains 
–  Specification of transformations 

•  How 
–  MDL/SLX Importer 

–  Natural language 
–  Preprocessor 

–  Natural language + Contracts 
–  Sequencer 

–  Natural language + Contracts 
–  Code Model Generator 

–  Natural language + pseudo-code in P language 
–  Optimizer 

–  Natural language 
–  Expander 

–  Natural language 
–  Printer 

–  Natural language 

MDL/SLX 
Importer Preprocessor Sequencer 

Code Model 
Generator 

(CMG) 
Optimizer Expander Printer 

TOR-Type-1 
(functionality) 

TOR-Type-2 
(optimization and expansion) 

TOR-Type-3 
(code patterns) 
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Example of Tool Requirements (TRs = LLRs): Configuration for “Saturate” block 

•  TR.1.1 checks the configuration for two different Simulink blocks 
–  Saturation 
–  Saturation Dynamic 

The supported configuration of a Saturate block shall have: 
•  Either 3 inputs and 1 output, or 1 input, 1 output and the 

"UpperLimit" and "LowerLimit" parameters 
•  The base types of all input ports and output port shall coincide 
•  In the Saturation Dynamic block, "Saturate On Integer Overflow" flag 

shall be turned off (MISRA constraint) 

TR.1.1 

If the input and output of a Saturation block are vectors or matrices 
then "UpperLimit" and "LowerLimit” shall be either scalars or have the 
same dimensions as the block’s output. 

If the input and output of a Saturation block are scalar then 
"UpperLimit" and "LowerLimit” shall be scalars. 

"UpperLimit” shall be greater than or equal to "LowerLimit”. 

TR.1.2 

TR.1.3 

TR.1.4 
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Requirement-Based Testing 

•  Types of tests 
–  TOR-based test cases  --  High Level Requirements based testing 
–  TR-based test cases  --  Low Level Requirements based testing 

•  TOR-based test cases (DO-330, table T-6, obj. 1 & 2) 
–  Expected code from Simulink models 

–  Input: Simulink models 
–  Expected output: Check against expected code patterns and behavior 

–  Combination of test cases with reduced and large number of blocks 
–  One or more test cases per test procedure 
–  Requirement-based testing 

•  TR-based test cases (DO-330, table T-6, obj. 3 & 4) 
–  Check behavior based on internal model representation (at intermediate steps) 
–  Expected behavior of subprogram 

–  Input: cannot express as Simulink model 
–  Output: cannot express as behavior of output code 

–  Requirement-based testing based on internal context 
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TOR-based (High-Level-Requirement-based) testing 

•  Verify behavior of individual blocks 
–  Individual test cases for each block and each configuration 

•  Verify optimization rules 

•  Verify generated code 

•  Verify composition of blocks 
–  Tester defines the expected result 

–  Simulation used as oracle 
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TR-based test cases: Difficulties in performing unit testing of low-level 
requirements 

•  Input 
–  Cannot express as Simulink model 
–  Internal models are difficult to generate 

•  Output 
–  Cannot express as behavior of output code 

–  Generated internal models are difficult to verify 

•  Traceability 
–  How to ensure that a concrete test case is exercised by a concrete test procedure 

•  Coverage 
–  How to ensure that all test cases have been exercised 

•  Expressiveness 
–  Compare state before and after the subprogram execution 
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Unit 
TestingInput Output

Integration 
Testing

Input Output

User 
Language Ti−1 TiMi

Source 
CodeTi+1

 
Integration testing is widely preferred to unit testing 

 
 

Objective 
Achieve unit testing exhaustiveness using only integration tests 

Unit Testing Integration Testing 

Test Data 
Editor/Viewer Internal languages have no editors User language has a good editor 

Test Data 
Complexity Intermediate languages are complex User language is simpler, has higher abstraction 

Test 
Exhaustiveness 

Achievable thanks to isolation of 
units 

Hard to achieve with no visibility on the internals 
of the tool 

Mi+1

 
 Unit testing vs. Integration Testing 
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TR-based test cases: Approach to handling low-level requirements “unit” testing 

•  We need to define: 
–  Equivalence class definition 

–  Characterization of the input relevant to the test case 
–  Oracle 

–  Output validity criteria 
–  The way to decide the pass/fail verdict 

•  Test procedures can be: 
–  End-to-end (from Simulink to code) tests 

–  Covering a set of test cases at different phases 
–  Unit tests 

–  Covering a set of test cases for a given TR 

•  Executable expression of test cases 
–  Instrument code of the tool, so at execution time we can 

–  Log the occurrence of test cases (traceability and coverage) 
–  Check (test oracle) the expected result of the test case 

–  Tool does not have instrumentation in production mode 
–  Equivalence between instrumented and non-instrumented version 

–  Execute the test procedures in both modes and check that generated code is exactly the 
same 
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Instrumentation for Test Case Evaluation 

Log which equivalence classes are covered 
by the input data 

Evaluate the test oracles of the covered test 
cases 

Subprogram 
Under Test 

control 
flow 

instrumentation 

instrumentation 

All instrumentation is 
marked as ghost code 
Compiler produces 
ghost code only when 
assertions are enabled. 
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Instrumentation for Test Case Evaluation 

 
   for TC of Test_Cases loop 
      if TC.Equivalence_Class then 
         TC.Covered := True; 
         Log (TC.Id & “ Covered”); 
      end if; 
   end loop; 

   for TC of Test_Cases loop 
      if TC.Covered then 
         if not TC.Oracle then 
            Log (TC.Id & “ Failed”); 
         end if; 
      end if; 
   end loop; 

Subprogram 
Under Test 

control 
flow 

instrumentation 

instrumentation 
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Instrumentation for Test Case Evaluation 

function Equivalence_Class (T : Process_Goto_From_TC1) 
                                        return Boolean is 
-- Input model contains “Goto” blocks 
   Goto_Blocks_In_Model : Element_Sequence'Class := 
        Model.Get_Blocks_Of_Type (“Goto”); 
begin 
   if Goto_Blocks_In_Model.Length > 0 then 
      T.Goto_Blocks.Append (Goto_Blocks_In_Model); 
      return True; 
   else 
      return False; 
   end if; 
end Equivalence_Class; 

function Oracle (T : Process_Goto_From_TC1) 
                                        return Boolean is 
-- Check that all “Goto” blocks become null and are no longer 
-- contained in the model 
begin 
   return (for all B of T.Goto_Blocks => 
             B.Is_Null and then 
               not Model.Contained_Elements.Contains (B)); 
end Oracle; 

Preprocessor 

control 
flow 

instrumentation 

instrumentation 
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Instrumentation for Test Case Evaluation 

function Equivalence_Class (T : TC1) return Boolean is 
  (B.Inports (1).Is_Vector and then B.UpperLimit.Is_Scalar); 
 
function Equivalence_Class (T : TC2) return Boolean is 
  (B.Inports (1).Is_Vector and then B.UpperLimit.Is_Vector); 
 
function Equivalence_Class (T : TC3) return Boolean is 
  (B.Inports (1).Is_Matrix and then B.UpperLimit.Is_Matrix 
     and then (for some V in B.UpperLimit => 
                   V.Is_Infinity)); 
 
... 

Test Oracle does not have to be automatic. It might be: 
 - Printing the intermediate code model, validating it 
and setting it as a test baseline 
 - Validating the final generated code because it has a 
structure very similar to the code model, and setting it 
as a test baseline 

Code Model 
Generator 

control 
flow 

instrumentation 

instrumentation 
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function Sqrt (X : Integer) return Integer with 
  Test_Case => 
    (Name => “TC1”, Mode => Nominal, 
     Requires => X = 1, 
     Ensures  => Sqrt’Result = 1), 
  Test_Case => 
    (Name => “TC2”, Mode => Nominal, 
     Requires => X > 1, 
     Ensures  => Sqrt’Result ** 2 <= X 
                    and then 
                 (Sqrt’Result + 1) ** 2 > X); 

•  Test cases are expressed as: 
–  Executable form 

–  Test objective => 
•  Evaluated at subprogram 

entry 
–  Test oracles => 

•  Evaluated at subprogram 
exit 

–  Manual verifications 
–  If applying the previous are 

difficult 

•  Traceability and coverage 
–  Logging occurrences of requires and 

ensures 
–  Requires 

–  Evidences of coverage of test 
cases 

–  Ensures 
–  Test case results 

TR-based test cases: Implementation 

Trace for a test with Sqrt (5): 
 
Sqrt.TC1.Requires     False 
Sqrt.TC2.Requires     True 
Sqrt.TC1.Ensures      Not Applicable 
Sqrt.TC2.Ensures      True 
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TR-based test cases: Implementation (II) 

•  Some flexibility 
–  Instead of Test_Case we can use Contract_Case, Precondition, Postcondition 

•  Expressiveness 
–  We can save and check state using a separate verification package 

•  Use “Ghost” Code throughout 
–  Ghost code removed when compiled in no-assertions mode 

•  Example using Executable Preconditions/Postconditions: 

procedure Preprocess (SB : SystemBlock’Class) with 
   Pre  => Preprocess_Verif.Preprocess_Test_Cases_Requires (SB), 
   Post => Preprocess_Verif.Preprocess_Test_Cases_Ensures (SB); 
--  Routines called in the pre- and post-conditions can store any required data within 
--  internal variables and check their status after execution of Preprocess 

Procedure to eliminate GoTo blocks. Test case is: 
 - Requires: There exists a GoTo block 
 - Ensures: That GoTo block becomes null and is removed from the model 
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Unit Test 
Requirements

Integration 
Test Input Ti−1 TiMi Mi+1 MNTi+1

tri,jtri,jtri,j tri,jtri,jtoi,j

Unit Test 
Oracles

Integration Test 
Execution

Unit Test Requirements

Integration 
Tests tr0,0 tr0,1 tr0,2 to0,0 to0,1 to0,2 tr1,0 tr1,1 to1,0 to1,1 tr2,0 tr2,1 to2,0 to2,1

Test0 SAT – – PASS – – – SAT – PASS – SAT – PASS

Test1 – – SAT – – PASS – SAT – PASS – SAT – PASS

Test2 – – SAT – – FAIL SAT – PASS – – SAT – PASS

Test3 – – – – – – SAT SAT PASS PASS – SAT – FAIL

Test4 SAT – – PASS – – – SAT – PASS – SAT – PASS

Non-covered 
Unit Test Case

Non-covered 
Unit Test Case

Unit Test 
Failure

Unit Test 
Failure

 
 Integrated Unit Testing 
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TQL-1 Qualification Approach – Building Trust in Code Generator 

•  Structure of Tool (Operational) Requirements reflects Multi-Pass 
structure of Code Generator 

–  Input, Transformation(s), Optimization(s), Output 

•  Conventional Unit Testing of Multi-Pass Code Generator is painful 
–  Difficult to create inputs and check outputs of individual passes 

•  Integration Testing is generally easier 
–  can use normal Models as Input; generated Source Code as output 

•  Instrument Code Generator with “ghost” code to use Integration 
Testing to accomplish Unit Testing 

–  Monitor inputs during Integration Testing to be sure all relevant Test Cases go through 
each pass 

–  Can check completeness and uniqueness of input classification, so each input gets 
exactly one classification 

–  Use Oracle to create expected output based on input classification and check for match 

•  Coverage Testing now at Test Case level 
–  Verify that all interesting test cases were executed 

•  Approach applicable to other multi-pass tools such as Compilers 


