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Bugs Are Prevalent

Statistics from the testing laboratories show that 48 
percent of the cryptographic modules and 27 percent 
of the cryptographic algorithms brought in for voluntary 
testing had security flaws that were corrected during 
testing.

Without this program, the federal government would 
have had only a 50-50 chance of buying correctly 
implemented cryptography.

NIST Computer Security Division, 2008 Annual report

Software is a digital artifact — potential 
for much greater confidence in the 
correctness of our software than in the 
correctness of our bridges.

2
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Symbolic Simulation

Galois has developed tools for 
showing that different algorithm 
implementations compute the same 
values for all possible keys and inputs.

Tools use formal verification techniques 
including symbolic simulation, 
rewriting, and third-party SAT and 
SMT-solvers.

This talk: making symbolic simulation 
feasible for non-trivial programs. 3

ABC
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Example 4

int x, y;
...
if (x > y) {
  int tmp;
  tmp = x;
  x = y;
  y = tmp;
} else {
  ;
}
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Example 4

int x, y;
...
if (x > y) {
  int tmp;
  tmp = x;
  x = y;
  y = tmp;
} else {
  ;
}

x = X ∧ y = Y
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  x = y;
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}
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Example 4

int x, y;
...
if (x > y) {
  int tmp;
  tmp = x;
  x = y;
  y = tmp;
} else {
  ;
}

x = X ∧ y = Y

x = X ∧ y = Y ∧ tmp = X ∧ X > Y

x = Y ∧ y = Y ∧ tmp = X ∧ X > Y

x = Y ∧ y = X ∧ tmp = X ∧ X > Y

x = X ∧ y = Y ∧ X ≤ Y

  (x = Y ∧ y = X ∧ X > Y) ∨
(x = X ∧ y = Y ∧ X ≤ Y)
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Handling Errors 5

■ Some operations have undefined behavior

■ Memory access, division, etc.

■ Symbolic result has two parts

■ Value: in undefined cases, takes default value

■ Error flag: satisfiable for undefined cases

Thursday, May 9, 13
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6

■ Symbolic simulation yields repetitive terms

■ Sharing repeated sub-terms is critical

■ Want a DAG instead of a tree

■ Can do this at any level of abstraction

■ AIGs at the bit level (low-level but can be very 
compact)

■ Our own term data structure at the word level

Structural Hashing of Terms
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A Case Study: SHA Message Digest

SHA-384 is one variation of the 
standard SHA-2 message digest 
algorithm, part of Suite B.

Widely used for integrity verification, 
and part of the FIPS 180-2 standard.

A challenging target for verification, 
due to extensive bit-level operations, 
and the need to process arbitrarily long 
messages. 7

Thursday, May 9, 13



© 2013 Galois, Inc. All rights reserved.

8

■ Iterative application of a block digest function

■ Results of previous iterations feed into current

■ Block function involves many applications of a few 
primitives

■ Bitwise and, xor, inversion

■ Word rotation, addition

■ Bit-precise reasoning is critical

Structure of SHA-384
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9

■ We will work with two implementations

■ Reference specification (Cryptol, 178 lines)

■ Bouncy Castle (Java, 591 lines)

■ And two levels of models

■ Bit-level And-Inverter Graphs, with SAT solvers

■ Word-level terms, with SMT solvers

Implementations

Thursday, May 9, 13
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Path Merging 10

Goal: more efficient symbolic simulation
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Program-level Merging
 1: int ffs(int i) {
 2:   byte n = 0;
 3:   if ((i & 0xffff) == 0) {
 4:     n += 16; i >>= 16;
 5:   }
 6:   if ((i & 0x00ff) == 0) {
 7:     n += 8;  i >>= 8;
 8:   }
 9:   if ((i & 0x000f) == 0) {
10:     n += 4;  i >>= 4;
11:   }
12:   if ((i & 0x0003) == 0) {
13:     n += 2;  i >>= 2;
14:   }
15:   if (i != 0) {
16:     return (n+((i+1) & 0x01));
17:   }
18:   return 0;
19: }
20: ffs(x);
21: ffs(y);

11

■ Approach taken by simple symbolic 
simulators: only merge at end of 
program, if at all

■ Merge 1024 independent states at 
line 21

■ Total of 1023 merge operations
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Method-level Merging 12

■ Our first approach: merge before 
returning from a method

■ Merge 32 independent states at 
lines 20 and 21

■ Total of 62 merge operations

 1: int ffs(int i) {
 2:   byte n = 0;
 3:   if ((i & 0xffff) == 0) {
 4:     n += 16; i >>= 16;
 5:   }
 6:   if ((i & 0x00ff) == 0) {
 7:     n += 8;  i >>= 8;
 8:   }
 9:   if ((i & 0x000f) == 0) {
10:     n += 4;  i >>= 4;
11:   }
12:   if ((i & 0x0003) == 0) {
13:     n += 2;  i >>= 2;
14:   }
15:   if (i != 0) {
16:     return (n+((i+1) & 0x01));
17:   }
18:   return 0;
19: }
20: ffs(x);
21: ffs(y);
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Post-dominator Merging 13

■ Our current approach: similar to join 
points in dataflow analysis, abstract 
interpretation

■ Merge at every point in CFG that 
post-dominates more than one 
other point

■ Merge 2 independent states at lines 
5, 8, 11, 14, 19, twice each

■ Total of 10 merge operations

 1: int ffs(int i) {
 2:   byte n = 0;
 3:   if ((i & 0xffff) == 0) {
 4:     n += 16; i >>= 16;
 5:   }
 6:   if ((i & 0x00ff) == 0) {
 7:     n += 8;  i >>= 8;
 8:   }
 9:   if ((i & 0x000f) == 0) {
10:     n += 4;  i >>= 4;
11:   }
12:   if ((i & 0x0003) == 0) {
13:     n += 2;  i >>= 2;
14:   }
15:   if (i != 0) {
16:     return (n+((i+1) & 0x01));
17:   }
18:   return 0;
19: }
20: ffs(x);
21: ffs(y);
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14Symbolic Instruction Set

0: Iload 1
1: Istore 3
2: Iload 2
3: Istore 4
5: Iload 3
6: Iload 4
8: If_icmple 21

11: Iload 3
12: Istore 5
14: Iload 4
16: Istore 3
17: Iload 5
19: Istore 4

21: Iload 3
22: Ireturn

%entry.0  setCurrentBlock %0.0
%0.0      0: Iload 1
          1: Istore 3
          2: Iload 2
          3: Istore 4
          5: Iload 3
          6: Iload 4
          pushPending %0.1 [S[0] <= S[1]] [merge at %11.0]
          [setCurrentBlock %11.0]
%0.1      setCurrentBlock %21.0
%11.0     11: Iload 3
          12: Istore 5
          14: Iload 4
          16: Istore 3
          17: Iload 5
          19: Istore 4
          setCurrentBlock %21.0
%21.0     21: Iload 3
          returnVal
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© 2013 Galois, Inc. All rights reserved.

Path Merging Comparison 15

Approach FFS
AIG Nodes

FFS
Time

SHA384
AIG Nodes

SHA384
Time

Program-level

Method-level

Post-dominator

24018 2.75s

2311 0.41s 555942 10.2s

1022 0.18s 555942 4.8s
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Compositional Reasoning 16

Goal: more efficient symbolic simulation and proof
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Inlining Equivalent Subterms

1.Use forward symbolic simulation to unroll 
implementations, and generate terms that precisely 
describe results.

2.Show equivalence of two complete terms through 
rewriting, and off-the-shelf theorem provers, 
including abc or Yices.

17

Cryptol Model Java Model

ABC Rewriting Cryptol
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Abstracting Equivalent Terms

1.Use forward symbolic simulation to unroll 
implementations, and generate terms that abstractly 
describe results.

2.Show equivalence of two terms with uninterpreted 
functions through rewriting, and off-the-shelf 
theorem provers, including abc or Yices.

21

Cryptol Model Java Model

ABC Rewriting Cryptol
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1.Use forward symbolic simulation to unroll 
implementations, and generate terms that abstractly 
describe results.

2.Show equivalence of two terms with uninterpreted 
functions through rewriting, and off-the-shelf 
theorem provers, including abc or Yices.
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SHA-384 Block Loop Iteration
Decomposition Helpful 29

Approach Eq Model
Nodes

Decomposition
Steps Required

Verification
Time

No Composition (Bit)

Inlined (Bit)

No Composition (Word)

Inlined (Word)

Abstracted (Word)

13,008 None needed
Automatic (ABC) 1.13s

Ten manual steps
Proved using ABC 0.27s

41,316 None needed
Automatic (Yices) 2.01s

64,254 Ten manual steps
Proved using Yices 2.43s

10,579 Ten manual steps
Proved using Yices 0.26s
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© 2013 Galois, Inc. All rights reserved.

Full SHA-384 Block
Decomposition Necessary 30

Approach Eq Model
Nodes

Decomposition
Steps Required

Verification
Time

No Composition (Bit)

Inlined (Bit)

No Composition (Word)

Inlined (Word)

Abstracted (Word)

1,212,993 None needed
Automatic (ABC) >30m

Ten manual steps
Proved using ABC 26.5s

5,298,656 None needed
Automatic (Yices) >30m

9,986,526 Ten manual steps
Proved using Yices >30m

336,172 Ten manual steps
Proved using Yices >30m
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SAWScript:
Language for Compositional Verification 31

Goal: convenient and flexible access to 
simulator capabilities

SAWScript 2.0 Currently under development

Thursday, May 9, 13
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SAWScript Goals 32

■ Allow flexible coordination of software analysis

■ Somewhat like interactive theorem provers, 
but tailored to software verification

■ Strong emphasis on compositional reasoning

■ Enable the application of a wide variety of 
proof tools to programs written in numerous 
languages

Thursday, May 9, 13
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SAWScript Capabilities 33

■ Allows precise reasoning about behavior of both 
imperative and functional programs, including 
recursion, side effects

■ Method specifications are used in two ways:

■ As statements to be proven

■ As lemmas to help verify later methods

■ SAWScript has a simple tactic language for user 
control over verification steps

Thursday, May 9, 13
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Method
Specification Requirements

■ Consistent types for target program variables, including 
lengths for arrays

■ Assumptions on inputs

■ Which imperative references can alias other references

■ Expected results when function or method terminates

■ Optionally, postconditions at intermediate breakpoints 
within functions/methods

■ Tactics for performing verification on resulting term

34
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Example:
Ch Verification

ref_Ch : ([64], [64], [64]) -> [64];
ref_Ch <- extractCryptol “SHA384.cry” “Ch”;

ch_result <- verifyJava “org.bouncycastle.crypto.digests.SHA384Digest.Ch” (do {
  x <- var “x” long;
  y <- var “y” long;
  z <- var “z” long;
  return ref_Ch(x, y, z);
  verify abc;
})

java_Ch : ([16][64], [8][64]) -> [8][64];
java_Ch <- extractJava “org.bouncycastle.crypto.digests.SHA384Digest.Ch” pure;

verify (do {
  goal (\(a, b) -> java_Ch (a, b) == ref_Ch (a, b));
  abc;
})

35
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defaults

Multiple languages
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Pre-conditions

Proof tactics

Simplifying 
defaults

Multiple languages
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Example:
processBlock Verification

ref_Block : ([8][64], [16][64]) -> [8][64];
ref_Block <- extractCryptol “SHA384.cry” “block512”;

blockMeth = “org.bouncycastle.crypto.digests.SHA384Digest.processBlock”;

block_spec <- verifyJava blockMeth (do {
  this <- var “this” (class “org.bouncycastle.crypto.digests.SHA384Digest”);
  H1 <- field this “H1” long;
  ...
  H8 <- field this “H8” long;
  W <- field this “W” (array 80 long);
  override_uninterpreted [ ch_result, maj_result,
                           usig0_result, lsig0_result,
                           usig1_result, lsig1_result,
                         ];
  let H = [H1 H2 H3 H4 H5 H8 H7 H8];
  let H’ = ref_Block(H, W);
  updateField this “H1” (H’ @ 0);
  ...
  updateField this “H8” (H’ @ 7);
  verify yices;
})

36
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Composition

Post-conditions
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Summary 37

■ Symbolic simulation made practical:

■ Represent states efficiently but precisely

■ Merge paths whenever possible

■ Abstract over calls

■ With these techniques, equivalence checking scales to 
programs of thousands of lines, likely larger
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Thanks!
38
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