
© 2013 Galois, Inc. All rights reserved.

Techniques for Scalable
Symbolic Simulation
Aaron Tomb (Galois)
Sean Weaver (DoD)
HCSS | May 2013
The team, past and present:
Sally Browning, Kyle Carter, Ledah Casburn, Iavor Diatchki, Trevor Elliot, Levent
Erkok, Sigbjorn Finne, Adam Foltzer, Andy Gill, Fergus Henderson, Joe Hendrix,
Brian Huffman, Joe Hurd, John Launchbury, Brian Ledger, Jeff Lewis, Lee Pike,
John Matthews, Thomas Nordin, Mark Shields, Joel Stanley, Frank Seaton Taylor,
Jim Teisher, Aaron Tomb, Mark Tullsen, Philip Weaver, Adam Wick, Edward Yang

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Bugs Are Prevalent

Statistics from the testing laboratories show that 48
percent of the cryptographic modules and 27 percent
of the cryptographic algorithms brought in for voluntary
testing had security flaws that were corrected during
testing.

Without this program, the federal government would
have had only a 50-50 chance of buying correctly
implemented cryptography.

NIST Computer Security Division, 2008 Annual report

Software is a digital artifact — potential
for much greater confidence in the
correctness of our software than in the
correctness of our bridges.

2

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Symbolic Simulation

Galois has developed tools for
showing that different algorithm
implementations compute the same
values for all possible keys and inputs.

Tools use formal verification techniques
including symbolic simulation,
rewriting, and third-party SAT and
SMT-solvers.

This talk: making symbolic simulation
feasible for non-trivial programs. 3

ABC

Thursday, May 9, 13

file://localhost/Users/jhendrix/projects/hcss_abstract/Vigene%CC%80re_square_shading.svg
file://localhost/Users/jhendrix/projects/hcss_abstract/Vigene%CC%80re_square_shading.svg

© 2013 Galois, Inc. All rights reserved.

Example 4

int x, y;
...
if (x > y) {
 int tmp;
 tmp = x;
 x = y;
 y = tmp;
} else {
 ;
}

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Example 4

int x, y;
...
if (x > y) {
 int tmp;
 tmp = x;
 x = y;
 y = tmp;
} else {
 ;
}

x = X ∧ y = Y

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Example 4

int x, y;
...
if (x > y) {
 int tmp;
 tmp = x;
 x = y;
 y = tmp;
} else {
 ;
}

x = X ∧ y = Y

x = X ∧ y = Y ∧ tmp = X ∧ X > Y

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Example 4

int x, y;
...
if (x > y) {
 int tmp;
 tmp = x;
 x = y;
 y = tmp;
} else {
 ;
}

x = X ∧ y = Y

x = X ∧ y = Y ∧ tmp = X ∧ X > Y

x = Y ∧ y = Y ∧ tmp = X ∧ X > Y

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Example 4

int x, y;
...
if (x > y) {
 int tmp;
 tmp = x;
 x = y;
 y = tmp;
} else {
 ;
}

x = X ∧ y = Y

x = X ∧ y = Y ∧ tmp = X ∧ X > Y

x = Y ∧ y = Y ∧ tmp = X ∧ X > Y

x = Y ∧ y = X ∧ tmp = X ∧ X > Y

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Example 4

int x, y;
...
if (x > y) {
 int tmp;
 tmp = x;
 x = y;
 y = tmp;
} else {
 ;
}

x = X ∧ y = Y

x = X ∧ y = Y ∧ tmp = X ∧ X > Y

x = Y ∧ y = Y ∧ tmp = X ∧ X > Y

x = Y ∧ y = X ∧ tmp = X ∧ X > Y

x = X ∧ y = Y ∧ X ≤ Y

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Example 4

int x, y;
...
if (x > y) {
 int tmp;
 tmp = x;
 x = y;
 y = tmp;
} else {
 ;
}

x = X ∧ y = Y

x = X ∧ y = Y ∧ tmp = X ∧ X > Y

x = Y ∧ y = Y ∧ tmp = X ∧ X > Y

x = Y ∧ y = X ∧ tmp = X ∧ X > Y

x = X ∧ y = Y ∧ X ≤ Y

 (x = Y ∧ y = X ∧ X > Y) ∨
(x = X ∧ y = Y ∧ X ≤ Y)

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Handling Errors 5

■ Some operations have undefined behavior

■ Memory access, division, etc.

■ Symbolic result has two parts

■ Value: in undefined cases, takes default value

■ Error flag: satisfiable for undefined cases

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

6

■ Symbolic simulation yields repetitive terms

■ Sharing repeated sub-terms is critical

■ Want a DAG instead of a tree

■ Can do this at any level of abstraction

■ AIGs at the bit level (low-level but can be very
compact)

■ Our own term data structure at the word level

Structural Hashing of Terms

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

A Case Study: SHA Message Digest

SHA-384 is one variation of the
standard SHA-2 message digest
algorithm, part of Suite B.

Widely used for integrity verification,
and part of the FIPS 180-2 standard.

A challenging target for verification,
due to extensive bit-level operations,
and the need to process arbitrarily long
messages. 7

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

8

■ Iterative application of a block digest function

■ Results of previous iterations feed into current

■ Block function involves many applications of a few
primitives

■ Bitwise and, xor, inversion

■ Word rotation, addition

■ Bit-precise reasoning is critical

Structure of SHA-384

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

9

■ We will work with two implementations

■ Reference specification (Cryptol, 178 lines)

■ Bouncy Castle (Java, 591 lines)

■ And two levels of models

■ Bit-level And-Inverter Graphs, with SAT solvers

■ Word-level terms, with SMT solvers

Implementations

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Path Merging 10

Goal: more efficient symbolic simulation

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Program-level Merging
 1: int ffs(int i) {
 2: byte n = 0;
 3: if ((i & 0xffff) == 0) {
 4: n += 16; i >>= 16;
 5: }
 6: if ((i & 0x00ff) == 0) {
 7: n += 8; i >>= 8;
 8: }
 9: if ((i & 0x000f) == 0) {
10: n += 4; i >>= 4;
11: }
12: if ((i & 0x0003) == 0) {
13: n += 2; i >>= 2;
14: }
15: if (i != 0) {
16: return (n+((i+1) & 0x01));
17: }
18: return 0;
19: }
20: ffs(x);
21: ffs(y);

11

■ Approach taken by simple symbolic
simulators: only merge at end of
program, if at all

■ Merge 1024 independent states at
line 21

■ Total of 1023 merge operations

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Method-level Merging 12

■ Our first approach: merge before
returning from a method

■ Merge 32 independent states at
lines 20 and 21

■ Total of 62 merge operations

 1: int ffs(int i) {
 2: byte n = 0;
 3: if ((i & 0xffff) == 0) {
 4: n += 16; i >>= 16;
 5: }
 6: if ((i & 0x00ff) == 0) {
 7: n += 8; i >>= 8;
 8: }
 9: if ((i & 0x000f) == 0) {
10: n += 4; i >>= 4;
11: }
12: if ((i & 0x0003) == 0) {
13: n += 2; i >>= 2;
14: }
15: if (i != 0) {
16: return (n+((i+1) & 0x01));
17: }
18: return 0;
19: }
20: ffs(x);
21: ffs(y);

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Post-dominator Merging 13

■ Our current approach: similar to join
points in dataflow analysis, abstract
interpretation

■ Merge at every point in CFG that
post-dominates more than one
other point

■ Merge 2 independent states at lines
5, 8, 11, 14, 19, twice each

■ Total of 10 merge operations

 1: int ffs(int i) {
 2: byte n = 0;
 3: if ((i & 0xffff) == 0) {
 4: n += 16; i >>= 16;
 5: }
 6: if ((i & 0x00ff) == 0) {
 7: n += 8; i >>= 8;
 8: }
 9: if ((i & 0x000f) == 0) {
10: n += 4; i >>= 4;
11: }
12: if ((i & 0x0003) == 0) {
13: n += 2; i >>= 2;
14: }
15: if (i != 0) {
16: return (n+((i+1) & 0x01));
17: }
18: return 0;
19: }
20: ffs(x);
21: ffs(y);

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

14Symbolic Instruction Set

0: Iload 1
1: Istore 3
2: Iload 2
3: Istore 4
5: Iload 3
6: Iload 4
8: If_icmple 21

11: Iload 3
12: Istore 5
14: Iload 4
16: Istore 3
17: Iload 5
19: Istore 4

21: Iload 3
22: Ireturn

%entry.0 setCurrentBlock %0.0
%0.0 0: Iload 1
 1: Istore 3
 2: Iload 2
 3: Istore 4
 5: Iload 3
 6: Iload 4
 pushPending %0.1 [S[0] <= S[1]] [merge at %11.0]
 [setCurrentBlock %11.0]
%0.1 setCurrentBlock %21.0
%11.0 11: Iload 3
 12: Istore 5
 14: Iload 4
 16: Istore 3
 17: Iload 5
 19: Istore 4
 setCurrentBlock %21.0
%21.0 21: Iload 3
 returnVal

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Path Merging Comparison 15

Approach FFS
AIG Nodes

FFS
Time

SHA384
AIG Nodes

SHA384
Time

Program-level

Method-level

Post-dominator

24018 2.75s

2311 0.41s 555942 10.2s

1022 0.18s 555942 4.8s

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Compositional Reasoning 16

Goal: more efficient symbolic simulation and proof

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Inlining Equivalent Subterms

1.Use forward symbolic simulation to unroll
implementations, and generate terms that precisely
describe results.

2.Show equivalence of two complete terms through
rewriting, and off-the-shelf theorem provers,
including abc or Yices.

17

Cryptol Model Java Model

ABC Rewriting Cryptol

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

1.Use forward symbolic simulation to unroll
implementations, and generate terms that precisely
describe results.

2.Show equivalence of two complete terms through
rewriting, and off-the-shelf theorem provers,
including abc or Yices.

Inlining Equivalent Subterms 18

Cryptol Model Java Model

ABC Rewriting Cryptol

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

1.Use forward symbolic simulation to unroll
implementations, and generate terms that precisely
describe results.

2.Show equivalence of two complete terms through
rewriting, and off-the-shelf theorem provers,
including abc or Yices.

Inlining Equivalent Subterms 19

Cryptol Model Java Model

ABC Rewriting Cryptol

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

1.Use forward symbolic simulation to unroll
implementations, and generate terms that precisely
describe results.

2.Show equivalence of two complete terms through
rewriting, and off-the-shelf theorem provers,
including abc or Yices.

Inlining Equivalent Subterms 20

Cryptol Model Java Model

ABC Rewriting Cryptol

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Abstracting Equivalent Terms

1.Use forward symbolic simulation to unroll
implementations, and generate terms that abstractly
describe results.

2.Show equivalence of two terms with uninterpreted
functions through rewriting, and off-the-shelf
theorem provers, including abc or Yices.

21

Cryptol Model Java Model

ABC Rewriting Cryptol

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Abstracting Equivalent Terms

1.Use forward symbolic simulation to unroll
implementations, and generate terms that abstractly
describe results.

2.Show equivalence of two terms with uninterpreted
functions through rewriting, and off-the-shelf
theorem provers, including abc or Yices.

22

Cryptol Model Java Model

ABC Rewriting Cryptol

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Abstracting Equivalent Terms

1.Use forward symbolic simulation to unroll
implementations, and generate terms that abstractly
describe results.

2.Show equivalence of two terms with uninterpreted
functions through rewriting, and off-the-shelf
theorem provers, including abc or Yices.

23

Cryptol Model Java Model

ABC Rewriting Cryptol

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Abstracting Equivalent Terms

1.Use forward symbolic simulation to unroll
implementations, and generate terms that abstractly
describe results.

2.Show equivalence of two terms with uninterpreted
functions through rewriting, and off-the-shelf
theorem provers, including abc or Yices.

24

Cryptol Model Java Model

ABC Rewriting Cryptol

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Abstracting Equivalent Terms

1.Use forward symbolic simulation to unroll
implementations, and generate terms that abstractly
describe results.

2.Show equivalence of two terms with uninterpreted
functions through rewriting, and off-the-shelf
theorem provers, including abc or Yices.

25

Cryptol Model Java Model

ABC Rewriting Cryptol

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

1.Use forward symbolic simulation to unroll
implementations, and generate terms that abstractly
describe results.

2.Show equivalence of two terms with uninterpreted
functions through rewriting, and off-the-shelf
theorem provers, including abc or Yices.

Abstracting Equivalent Terms 26

Cryptol Model Java Model

ABC Rewriting Cryptol

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

1.Use forward symbolic simulation to unroll
implementations, and generate terms that abstractly
describe results.

2.Show equivalence of two terms with uninterpreted
functions through rewriting, and off-the-shelf
theorem provers, including abc or Yices.

Abstracting Equivalent Terms 27

Cryptol Model Java Model

ABC Rewriting Cryptol

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

1.Use forward symbolic simulation to unroll
implementations, and generate terms that abstractly
describe results.

2.Show equivalence of two terms with uninterpreted
functions through rewriting, and off-the-shelf
theorem provers, including abc or Yices.

Abstracting Equivalent Terms 28

Cryptol Model Java Model

ABC Rewriting Cryptol

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

SHA-384 Block Loop Iteration
Decomposition Helpful 29

Approach Eq Model
Nodes

Decomposition
Steps Required

Verification
Time

No Composition (Bit)

Inlined (Bit)

No Composition (Word)

Inlined (Word)

Abstracted (Word)

13,008 None needed
Automatic (ABC) 1.13s

Ten manual steps
Proved using ABC 0.27s

41,316 None needed
Automatic (Yices) 2.01s

64,254 Ten manual steps
Proved using Yices 2.43s

10,579 Ten manual steps
Proved using Yices 0.26s

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Full SHA-384 Block
Decomposition Necessary 30

Approach Eq Model
Nodes

Decomposition
Steps Required

Verification
Time

No Composition (Bit)

Inlined (Bit)

No Composition (Word)

Inlined (Word)

Abstracted (Word)

1,212,993 None needed
Automatic (ABC) >30m

Ten manual steps
Proved using ABC 26.5s

5,298,656 None needed
Automatic (Yices) >30m

9,986,526 Ten manual steps
Proved using Yices >30m

336,172 Ten manual steps
Proved using Yices >30m

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

SAWScript:
Language for Compositional Verification 31

Goal: convenient and flexible access to
simulator capabilities

SAWScript 2.0 Currently under development

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

SAWScript Goals 32

■ Allow flexible coordination of software analysis

■ Somewhat like interactive theorem provers,
but tailored to software verification

■ Strong emphasis on compositional reasoning

■ Enable the application of a wide variety of
proof tools to programs written in numerous
languages

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

SAWScript Capabilities 33

■ Allows precise reasoning about behavior of both
imperative and functional programs, including
recursion, side effects

■ Method specifications are used in two ways:

■ As statements to be proven

■ As lemmas to help verify later methods

■ SAWScript has a simple tactic language for user
control over verification steps

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Method
Specification Requirements

■ Consistent types for target program variables, including
lengths for arrays

■ Assumptions on inputs

■ Which imperative references can alias other references

■ Expected results when function or method terminates

■ Optionally, postconditions at intermediate breakpoints
within functions/methods

■ Tactics for performing verification on resulting term

34

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Example:
Ch Verification

ref_Ch : ([64], [64], [64]) -> [64];
ref_Ch <- extractCryptol “SHA384.cry” “Ch”;

ch_result <- verifyJava “org.bouncycastle.crypto.digests.SHA384Digest.Ch” (do {
 x <- var “x” long;
 y <- var “y” long;
 z <- var “z” long;
 return ref_Ch(x, y, z);
 verify abc;
})

java_Ch : ([16][64], [8][64]) -> [8][64];
java_Ch <- extractJava “org.bouncycastle.crypto.digests.SHA384Digest.Ch” pure;

verify (do {
 goal (\(a, b) -> java_Ch (a, b) == ref_Ch (a, b));
 abc;
})

35

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Example:
Ch Verification

ref_Ch : ([64], [64], [64]) -> [64];
ref_Ch <- extractCryptol “SHA384.cry” “Ch”;

ch_result <- verifyJava “org.bouncycastle.crypto.digests.SHA384Digest.Ch” (do {
 x <- var “x” long;
 y <- var “y” long;
 z <- var “z” long;
 return ref_Ch(x, y, z);
 verify abc;
})

java_Ch : ([16][64], [8][64]) -> [8][64];
java_Ch <- extractJava “org.bouncycastle.crypto.digests.SHA384Digest.Ch” pure;

verify (do {
 goal (\(a, b) -> java_Ch (a, b) == ref_Ch (a, b));
 abc;
})

35

Multiple languages

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Example:
Ch Verification

ref_Ch : ([64], [64], [64]) -> [64];
ref_Ch <- extractCryptol “SHA384.cry” “Ch”;

ch_result <- verifyJava “org.bouncycastle.crypto.digests.SHA384Digest.Ch” (do {
 x <- var “x” long;
 y <- var “y” long;
 z <- var “z” long;
 return ref_Ch(x, y, z);
 verify abc;
})

java_Ch : ([16][64], [8][64]) -> [8][64];
java_Ch <- extractJava “org.bouncycastle.crypto.digests.SHA384Digest.Ch” pure;

verify (do {
 goal (\(a, b) -> java_Ch (a, b) == ref_Ch (a, b));
 abc;
})

35

Pre-conditions

Multiple languages

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Example:
Ch Verification

ref_Ch : ([64], [64], [64]) -> [64];
ref_Ch <- extractCryptol “SHA384.cry” “Ch”;

ch_result <- verifyJava “org.bouncycastle.crypto.digests.SHA384Digest.Ch” (do {
 x <- var “x” long;
 y <- var “y” long;
 z <- var “z” long;
 return ref_Ch(x, y, z);
 verify abc;
})

java_Ch : ([16][64], [8][64]) -> [8][64];
java_Ch <- extractJava “org.bouncycastle.crypto.digests.SHA384Digest.Ch” pure;

verify (do {
 goal (\(a, b) -> java_Ch (a, b) == ref_Ch (a, b));
 abc;
})

35

Pre-conditions

Simplifying
defaults

Multiple languages

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Example:
Ch Verification

ref_Ch : ([64], [64], [64]) -> [64];
ref_Ch <- extractCryptol “SHA384.cry” “Ch”;

ch_result <- verifyJava “org.bouncycastle.crypto.digests.SHA384Digest.Ch” (do {
 x <- var “x” long;
 y <- var “y” long;
 z <- var “z” long;
 return ref_Ch(x, y, z);
 verify abc;
})

java_Ch : ([16][64], [8][64]) -> [8][64];
java_Ch <- extractJava “org.bouncycastle.crypto.digests.SHA384Digest.Ch” pure;

verify (do {
 goal (\(a, b) -> java_Ch (a, b) == ref_Ch (a, b));
 abc;
})

35

Pre-conditions

Proof tactics

Simplifying
defaults

Multiple languages

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Example:
processBlock Verification

ref_Block : ([8][64], [16][64]) -> [8][64];
ref_Block <- extractCryptol “SHA384.cry” “block512”;

blockMeth = “org.bouncycastle.crypto.digests.SHA384Digest.processBlock”;

block_spec <- verifyJava blockMeth (do {
 this <- var “this” (class “org.bouncycastle.crypto.digests.SHA384Digest”);
 H1 <- field this “H1” long;
 ...
 H8 <- field this “H8” long;
 W <- field this “W” (array 80 long);
 override_uninterpreted [ch_result, maj_result,
 usig0_result, lsig0_result,
 usig1_result, lsig1_result,
];
 let H = [H1 H2 H3 H4 H5 H8 H7 H8];
 let H’ = ref_Block(H, W);
 updateField this “H1” (H’ @ 0);
 ...
 updateField this “H8” (H’ @ 7);
 verify yices;
})

36

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Example:
processBlock Verification

ref_Block : ([8][64], [16][64]) -> [8][64];
ref_Block <- extractCryptol “SHA384.cry” “block512”;

blockMeth = “org.bouncycastle.crypto.digests.SHA384Digest.processBlock”;

block_spec <- verifyJava blockMeth (do {
 this <- var “this” (class “org.bouncycastle.crypto.digests.SHA384Digest”);
 H1 <- field this “H1” long;
 ...
 H8 <- field this “H8” long;
 W <- field this “W” (array 80 long);
 override_uninterpreted [ch_result, maj_result,
 usig0_result, lsig0_result,
 usig1_result, lsig1_result,
];
 let H = [H1 H2 H3 H4 H5 H8 H7 H8];
 let H’ = ref_Block(H, W);
 updateField this “H1” (H’ @ 0);
 ...
 updateField this “H8” (H’ @ 7);
 verify yices;
})

36

Composition

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Example:
processBlock Verification

ref_Block : ([8][64], [16][64]) -> [8][64];
ref_Block <- extractCryptol “SHA384.cry” “block512”;

blockMeth = “org.bouncycastle.crypto.digests.SHA384Digest.processBlock”;

block_spec <- verifyJava blockMeth (do {
 this <- var “this” (class “org.bouncycastle.crypto.digests.SHA384Digest”);
 H1 <- field this “H1” long;
 ...
 H8 <- field this “H8” long;
 W <- field this “W” (array 80 long);
 override_uninterpreted [ch_result, maj_result,
 usig0_result, lsig0_result,
 usig1_result, lsig1_result,
];
 let H = [H1 H2 H3 H4 H5 H8 H7 H8];
 let H’ = ref_Block(H, W);
 updateField this “H1” (H’ @ 0);
 ...
 updateField this “H8” (H’ @ 7);
 verify yices;
})

36

Composition

Post-conditions

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Summary 37

■ Symbolic simulation made practical:

■ Represent states efficiently but precisely

■ Merge paths whenever possible

■ Abstract over calls

■ With these techniques, equivalence checking scales to
programs of thousands of lines, likely larger

Thursday, May 9, 13

© 2013 Galois, Inc. All rights reserved.

Thanks!
38

Thursday, May 9, 13

