
The Challenge of
Artifacts and Summaries for

Analysis Tool
Execution and Qualification

Paul E. Black
paul.black@nist.gov

October 2021

Executive Order on Improving Cybersecurity

● Mandated many specific tasks with short
deadlines.

● OMB will require for Federal Acquisition; add to
FARS and DFARS

● Deadline to publish is 6 February 2022

Subsection 4(e)(iv)

“employing automated tools, or comparable
processes, that check for known and potential
vulnerabilities and remediate them, which shall
operate regularly, or at a minimum prior to product,
version, or update release;”

“… check for … vulnerabilities …”

● Do we hope to find lots of vulnerabilities?
– No, that indicates poor software.

● Then if we don’t find many, is the software good
quality or is the tool poor??

● We don’t want to dictate particular tools.

● Challenge: tool qualification
– Some way to assure that a tool does what we want.

How Developers Might Qualify Tools

Types of tools
● Static analyzers to find bugs
● Fuzzers and web app scanners
● Software Composition Analyzers
● Test case generators

We Want to Find All(?) Bugs

● Decide what classes of bugs are most important.
– What are “all” the kinds of bugs you want to find?

Top 25, CWE, BF, and historical bugs may help.
– Threat assessment may help here.

● Determine the most practical way to preclude,
detect & remove, or mitigate each class.

Qualification Test Suites

● Choose qualification suites

Variety and

Coverage

 Realism
Known

Bugs

Qualification Test Suites

● Choose qualification suites

Variety and

Coverage

 Realism
Known

Bugs

open source

previous versions
of your code

Juliet or other
synthetic

Tools Differ in Response Profiles
Precision & Recall ScoringPrecision & Recall Scoring

All True
Positives

No True
Positives

500 100

Reports
Everything

Misses
Everything 0

50

100

F
in

d
s

m
or

e
fla

w
s

Finds mostly flaws

“Better”

The Perfect Tool

Finds all flaws and
finds only flaws

from NSA

Uninitialized variable use
Null pointer dereference

Improper return value use

All flaw types

Use after free

TOCTOU

Memory leak

Buffer overflow

Tainted data/Unvalidated user input

Tools Differ in Response Profiles

All True
Positives

No True
Positives

500 100

Reports
Everything

Misses
Everything 0

50

100

from NSA

Tool ATool A

Uninitialized variable use

Null pointer dereference

Improper return value use

All flaw types

Use after free

TOCTOU

Memory leak

Buffer overflow

Tainted data/Unvalidated user input

Command injection

Format string vulnerability

Tools Differ in Response Profiles

All True
Positives

No True
Positives

500 100

Reports
Everything

Misses
Everything 0

50

100

from NSA

Tool BTool B

Subsection 4(e)(v)

“providing … artifacts of the execution of the tools
and processes described …, and making publicly
available summary information on completion of
these actions, to include a summary description of
the risks assessed and mitigated;”

Subsection 4(e)(v)

“providing … artifacts of the execution of the tools
and processes described …, and making publicly
available summary information on completion of
these actions, to include a summary description of
the risks assessed and mitigated;”

Artifacts and Summaries of Execution Goals

We want information that is
● Effective — leads to more secure software,
● Efficient — high benefit/cost ratio,
● Flexible — for current variations and future

innovation, and
● Applicable to small shops, say 3 or 4 people, not

just Google, IBM, and Microsoft.

Challenge of 4(e)(v)

What “artifacts of execution” and “summary
information” will

1) Communicate assurance,

2) Be reasonable to produce and check,

3) Won’t disclose (much) proprietary information,
and

4) Accommodate future innovation?

Note

● Self-attestation
– 3rd-party certification is too time-consuming

● Attestation does not prove some level of
assurance.
– It reassures acquirer that gross incompetence or crude

deceptions are discovered (not Volkswagen emissions cheating
revealed in 2015).

Potential Artifacts of Execution

Threats considered

Attack vectors considered

Architecture—domains (for fault isolation)

Software Bill of Material (SBOM) is accurate and latest versions are used

both open source and proprietary software

What was done or run?

Tool name, version, execution date, options used, etc.—SARIF can
inform

What was checked for?

Patterns, bug classes, etc.—e.g. MITRE Coverage Claims
Representation

Potential Artifacts of Execution II

Fuzzer and web app scanner input/generation
models

Coverage

Overall %, modules/files/functions with low
coverage

For testing: statement coverage; combinatorial
input space coverage

For static analysis: # sites for each bug type; %
sites examined

Potential Artifacts of Execution III

Weaknesses, bugs, or vulnerabilities found

Origin? (Root cause)

If fixed, then when (any process change?)

If not fixed, estimated severity; triggering circumstance

Relative Numbers of Bugs Found in Each Phase

anchor

Requirement Design Implementation Test Operation
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Column 1

SDLC Phase

%
 B

u
g

s
F

o
u

n
d

 in
 E

a
ch

 P
h

a
se

Public Summary Information—Potential

Summary of the risks found and mitigated

Tools run

Overall coverage

% statements

% sites

n-way input space

test cases in regression suite

(or hours) of fuzzer/web app scanner runs

Summary of Challenges

● Ways for developers to qualify tools
● Development and verification process artifacts

– What artifacts and information assure you?
– What would you examine to decide?

● Publicly available information (software “labels”)

Contact Paul E. Black paul.black@nist.gov

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

