The Guardol Language and Verification System

Guardol Concept

A guard mediates information sharing between security
domains according to a specified policy

Goal:
Generalize the experience

Make the process of specifying and
implementing high assurance
guards more efficient, flexible,
repeatable...

2005 - High Assurance
Guard demo

" L3
Rockwell,

Collins ;
|

Dirty Word Search on Trees

type MsgTree = { Leaf | Node: [Value: Msg; Left: MsgTree; Right: MsgTree] };
type ResultTree = { Ok: MsgTree | Audit: string };

function DWS_TREE(Input : in MsgTree, Output : out ResultTree) = begin
var
ValueResult : Result;
LeftResult, RightResult : ResultTree;
in
match Input with begin
MsgTree'Leaf => Output := ResultTree'Ok(MsgTree'lLeaf);
MsgTree '"Node node => begin

DIRTY_WORD_SEARCH(node.Value, ValueResult); Desirable property:
match ValueResult with begin if message is emitted,
Result'Audit A => OQutput := ResultTree'Audit(A); then it contains no

Result'Ok ValueMsg => begin dirty words

Output := ResultTree'Ok(MsgTree'Node
[value: ValueMsg, Left: LeftMsgTree, Right: RightMsgTree]);

and Verification Systam

age al

AMGON01D
SILAW LU L

Verification Conditions

/" (assert > Quantifier-free
(and (= (dwGuardfn tree') (ACCEPT t)) Formula
(and (checkTreefn t) T

(and (= (dwGuardfn tree) (ACCEPT t'))
(and (checkTreefn t')
(not (checkTreefn (Ncde t' s' t)))

/ Collection
RHRES Domain with a
(define-fun checkTreefn ((MT MsgTree)) Decidable

(ite (is_MsgTree_Leaf MT)
Theory
(let ((R (DIRTY_WORD_SEARCH (MsgTree_value MT))))

(is_Result_Ok R) v

(= (Result_Value R) M))) Generauzed
(checkTreefn (MsgTree_left MT)) 5
Fold Function

(checkTreefn (MsgTree_right MT)))))

Guardol Obijectives

e Develop Domain Specific Language for guards

o Specification language dedicated to a particular problem domain,
representation style, solution technique

» Automate the design flow

> Analysis and implementation artifacts automatically generated with high
assurance

» Integrated analysis capabilities
> Model checking of key requirements from guard specification
 Information flow analysis to verify correct data paths and separation

» Support for a wide variety of guard platforms
o Configurable guards
o Custom hardware, embedded software

o QOpenfstandard platforms

An0onls
SILWZU I L

Property Specification

spec DWS_TREE_Correct = begin ~ function DWS_TREE_Check(MT : in MsgTree)
var returns Output : bool = begin
MT : MsgTree; var
R : Result;

RT : ResultTree;
in
if (forall (M:Msg).DWS_Idempotent(M))
then begin
DWS_TREE(MT, RT);
match RT with begin

in
match MT with begin
MsgTree'leaf => Output:=true ;
MsgTree'Node node => begin
DIRTY_WORD_SEARCH(node.Value, R);
match R with begin

ResultTree 'Ok MT2 => Result'Ok M =>
check DWS_TREE_Check(MT2); ez Output:=(node.Value = M);
ResultTree'Audit A => skip; Re%'t}ctp'uf‘tl'_d_ifglze?
end — ’
end Output := Output and
else DWS_TREF_Check(node.Left) and
. DWS_TREE_Check(node.Right);
skip;
i end
en
end

— aNd

AP0 y
AjLf2U L L

Suter-Dotta-Kuncak Procedure

e Purification

(and (= (dwGuardfn [tree) [(ACCEPT t')>
(and (checkTreefn t')
heckTreefn [(Node t' s' t))) .

(and (= t1 (Node t' s' t)) (= t2 (ACCEPT t')))
(and (= c¢1 (checkTreefn t')) (= c2 (checkTreeFn t1)))
—> (and (= (dwGuardfn tree) t2) cl1 (not c2))

e Unification & Partial Evaluation
= Structural unification of tree terms

o ...followed by partial evaluation of catamorphism (fold) function
over unified trees

» Afterwards: formula in collections theory
* Important quality: completeness

LAt A Y

Hardin, Slind, Whalen, and Pham

Typical Guard Operations

» packet observations — reading field values of the packet

» packet dropping — removal of an entire packet from the
stream

» packet transformation — changing the value of fields in a
packet

» packet expansion — adding new fields to a packet
» packet contraction — removing fields from a packet
» packet generation — construction of audit messages

Guardol Analysis Architecture

/]

Guardol
Source Guardol
S-expression

Generated
VCs

~ Counterexample

So, what can we prove!

* Properties of message fields:
Field z is always > O

Q

L+]

Field z contains less than 50 characters

[+]

Field z has no dirty words

Q

Field z has precision no better than 10 meters

[+]

Applying f to z leaves z unchanged

» Properties of abstractions of message fields:
> The sum of all integer fields is < 100.
= The number of dirty words is < |0.
> The set of all fields in the message contains y.
» Relations of abstractions between abstractions of pre- and
post-messages.

= |f x contained no dirty words prior to processing, then it contains no
dirty words after processing.

Example: Dirty Word Search

type Msg = string;
type Result = { Ok: Msg | Audit: string };
imported function DIRTY_WORD_SEARCH(Text : in Msg, Qutput : out Result);

Examples
DIRTY_WORD_SEARCH(“This is CLASSIFIED data”, Output);
Output: Ok => “This is ---------- data”

DIRTY_WORD_SEARCH("“This is SECRET data®, Output);
OQutput: Audit => “Secret data detected. Message deleted.”

Guardol Analysis Architecture
[0

Hol datatype
‘result = ACCEPT of tree |
AUDIT of string’;

Ada
Code

val dwGuard def = (push)
t i] rd" ‘aSSEIt

(not (checkTreefn Leaf)))
(check-sat)

/{dwGuard (Node N) = Y :
case ext.dwCheck N.elem (pop)
of BAD s -> AUDIT s
|| OK s -> ‘---'---'
case dwGuard N.left
of AUDIT s -> AUDIT s (push)
|| ACCEPT t1 —> (assert
case dwGuard N.right (and (= (dwGuardfn tree') (ACCEPT t))
of AUDIT s -> AUDIT s (and (checkTreefn t)
|| ACCEPT t2 -> (and (= (dwGuardfn tree) (ACCEPT t'))
ACCEPT (Node (N with (and (checkTreefn t')
<| left := t1; (and (= (DIRTY_WORD_SEARCH s) (OK s'))
elem := s; (not (checkTreefn (Nocde t' s' t))
\\ right (= t2 [>)))" / IBRERRE
T - - (e bask mas)
(pop)

- Counterexample

LI900017 Cuasrdol Lasieuaseand V
EIFAYIFAN . Guardol Language and Ve

Conclusion

» Guardol: New DSL and tool suite for reasoning about
guards
* Has nice guarantees for certain kinds of properties
¢ |Language syntax is reasonable to non-geeks

> Tools and architecture designed for rigor from specification
through to implementation

» Decision procedures [SDK] are now able to prove
interesting properties of unbound data & computation
> We have an open-source tool available [UMN].

» Lots of interesting future work involving
o Language improvements
> |ntegration of string decision procedures
o Extending SDK completeness results
¢ Support for intentional properties

