
©2007 Galois, Inc.

The HaLVM

Adam Wick
May 10th, 2007

(Haskell Lightweight Virtual Machine)

Background

High-Assurance
Key Manager

Background

Linux Kernel

XWindows / Firefox / etc.

LibC / LibM / etc.

The Story Of The Solution
Problem: Final Solution:

Safe harbor for
high-assurance
applications,
coexisting with
low assurance
applications

High-assurance
operating
system

Background

XWindows / Firefox / etc.

Library RoutinesDevice Drivers

Key Manager

Background

XWindows / Firefox / etc.

Library RoutinesDevice Drivers

Key Manager

The Story Of The Solution
Problem: Final Solution:

Safe harbor for
high-assurance
applications,
coexisting with
low assurance
applications

High-assurance
operating
system

Operating systems
are gigantic;
decompose

The Story Of The Solution
Problem: Final Solution:

Safe harbor for
high-assurance
applications,
coexisting with
low assurance
applications

High-assurance
operating
system

Operating systems
are gigantic;
decompose

Modeling of
OS components

The Trouble With OS Modeling

Theorem
Provers

Target
Implementation

Language

The Trouble With OS Modeling

Theorem
Provers

Target
Implementation

Language

“If the Override flag is
set, both the Override
flag is clear and the
supplied link-layer

address is the same as
that in the cache, or no

 Target Link-layer address
option was supplied, the
received advertisement

MUST update the
Neighbor Cache entry as

follows:” -- RFC 2461 -

The Trouble With OS Modeling

Theorem
Provers

Target
Implementation

Language

Executable
Specification

Haskell
• Haskell is a high-level, lazy, pure functional programming

language.
• It is high-level enough to ...

– Serve as a good bridge to modeling languages.
– Allow for simpler construction of complex programs, via powerful

abstraction and composition mechanisms.

• It is low-level enough to ...
– Directly access memory, in order to implement device drivers.
– Write imperative blocks of low-level code.

The Story Of This Talk
Problem: Final Solution:

Safe harbor for
high-assurance
applications,
coexisting with
low assurance
applications

High-assurance
operating
system

Operating systems
are gigantic;
decompose

Modeling of
OS components

Specifications are
difficult; test them
on the hardware

HaLVM

Talk Outline
• Introduction
• Quick Technical Backgound

– Xen
– Haskell
– Lightweight Virtual Machine
– Use case

• An Overview of the HaLVM (with demos)
• Current Gaps and Future Work
• More Demos (as time permits)

Our Vision And The HaLVM

Linux
AESDisk Driver Key Manager

Xen

Our Vision And The HaLVM
• Hypervisors allows clean separation between concurrently

running operating systems.
– Use as a prototyping target, with “high-assurance” prototypes

running concurrently with low assurance, general-purpose
operating systems.

• Hypervisors also allows collaborating running components
to communicate with each other.
– Decompose the kernel drivers and library functionality into

separate components with restricted channels of communication.

• We want to prototype and test these components quickly
and easily.

Xen In Two Minutes

Xen

Domain Domain

Xen In Two Minutes

Xen

Domain Domain

Domains can share memory via grant references.

Xen In Two Minutes
• There are two kinds of virtualization:

– Full virtualization: Uses hardware or software to run an unmodified
operating system.

– Paravirtualization: Requires the programmer to modify the
operating system before running it.

• Xen supports both kinds of virtualization
• The HaLVM is a lightweight, paravirtualized Xen guest

Lightweight Virtual Machine
• The purpose of the HaLVM is ...

– Exploration of the design space for a decomposed, high-assurance
operating system.

– A sandbox for experimenting with OS components.

• The HaLVM is implemented as a series of libraries built
upon a core port to Xen.
– For example, one library implements basic memory routines, the

next level uses that to implement a disk driver, the next level uses
the driver to implement a file system.

– Programmers can pick and choose library routines at any level, and
libraries that are not used are not linked in.

• HaLVM programs typically boot in under a second.
• HaLVM programs are typically small:

– 1-2 MB for the complete image.
– 3-5 MB initial memory size.

Use Case: Web Server

Xen

HALVM

Web Server

TCP/IP File System

NIC Disk Driver

Use Case: Web Server

Xen

HALVM

Web Server

HALVM

File System

Disk Driver

HALVM

TCP/IP

NIC Driver

Use Case: Web Server

Xen

HALVM

Web Server

HALVM

TCP/IP

NIC Driver

Linux

File System

Disk Driver

Use Case: Web Server

Xen

HALVM

Web Server

HALVM

TCP/IP

NIC Driver

Linux

File System

Disk Driver

HALVM

Crypto

Use Case: Web Server

Xen

HALVM

Web Server

TCP/IP

NIC Driver

Linux

File System

Disk Driver

HALVM

Crypto

Talk Outline
• Introduction
• Related Projects and Background
• An Overview of the HaLVM

– An overview of the libraries
– Some additional features
– ... with demos all around

• Current Gaps and Future Work
• More Demos (as time permits)

High-Level Architecture

Xen

GHC Runtime

GHC Libraries (Monads, Concurrency, etc.)

HALVMCore (Events, Grants, IVC, etc.)

XenDevice (Console, Disk, NIC, etc.)

Rendezvous QuickCheckFile System Networking

LibC Implementation / Low-Level GHC Port
C

H
a
s
k
e
l
l

HaLVM Libraries - HALVMCore
• As suggested by the name, core libraries for implementing

Xen virtual machines:
– Event channel manipulation

• Send and receive cross-domain events.
– Basic Memory Management

• Allocate and free pages, query the page tables, etc.
– Grant table manipulation

• Allows page sharing, transferring, and copying between
domains.

– Inter-VM Communication (IVC)
– Useful utility types, routines, and data structures

• Write to the debug console, manipulate MBufs, perform
privileged operations, correct initialization, etc.

• First demo (XenstoreC)

HaLVM Libraries - XenDevice
• Device drivers for the basic XenDevices:

– The virtualized console
– The virtualized disk(s)
– The virtualized network card(s)
– The XenStore

• The disk and network card drivers use the same protocol
for talking to the underlying “device”.
– The HaLVM exports the implementation of this protocol to

programmers.
– This allows for rapid development of standard device drivers.

• Second demo (DoubleDevice)

HaLVM Libraries - RendezvousLib
• This library allows for the simple creation of well-typed,

unidirectional channels between domains.
• Declare a new channel as follows:

• Create the receiver endpoint as follows:

• By splitting this out into a library, we got rid of a lot of
boilerplate (and potential for bugs!) plus got handy typing
properties.

• DoubleDevice demo, part two

writeChan <- offer

offer :: IO (OutChannel type)
accept :: IO (InChannel type)
(offer, accept) = p2pConnection “SpeedTest”

HaLVM Libraries - Halfs, Hans, etc.
• Halfs

– A full-featured file system, written in Haskell, ported to the HaLVM.
– Via the FUSE architecture, can be mounted in domain 0, as well.

• Hans (in progress)
– A network stack, written in Haskell, ported to the HaLVM.
– Will include TCP, IP4, IP6, DNS, DHCP, and other acronyms.

• QuickCheck
– An automated testing library, standard in most Haskell

implementations, ported to the HaLVM.
– Useful for running tests that require the libraries to be tested in

their final environment.

Useful Details - halvm_kernel
• Automated handling of device initialization order, which is

sometimes non-intuitive.
– The programmer need not know that the disk driver requires the

XenStore driver, let alone that the XenStore driver must be
initialized first.

– Additional driver libraries can be plugged into this infrastructure,
as well; they simply implement a data structure describing how to
initialize the device, how to shut it down, and what its
dependencies are.

• Also handles exceptions that escape the main program, and
performs safe shutdown if one is detected.

• Some more of what I didn’t show you before ...

Useful Details - BitFiddler
• As suggested by the name, a library for very low-level data

layout issues.
• Defines a type class for performing host and network order

conversions.
• Defines a Template Haskell macro for defining and

manipulating structures with bit fields.
– No more computing offsets via scratch paper and RFCs.
– No more endless lists of poke/peek helper functions.
– Generates getters and setters, performs network/host order

conversions on request, computes the total size of the structure in
bytes.

• Another demo (ARPSniffer)

Current Gaps
• The HaLVM is a work-in-progress, and we have often traded

breadth in the underlying system for depth in the support
libraries. For example:
– The HaLVM is x86 only.
– The HaLVM is 32-bit only (no PAE, no 64-bit).
– The HaLVM is uniprocessor only.

• The HaLVM is a prototyping system, not a final execution
environment.

• As of Xen version 3.0.4, using inter-virtual machine
communication requires a minor patch and recompilation
of Xen.

• Debugging operating system components is hard; there is
lots of opportunity to improve support for debugging.

Current Activities
• At this point, we have mostly stopped adding features and

are working on finishing support we’ve already begun:
– Hans (the network stack)
– A testing framework for regression testing
– vTPM driver support

• Plus standardizing a few of our interfaces, documentation
clean-ups, and so forth.

• We intend to open source the HALVM.
– Come talk to us if you’re interested in playing around with it!

As There Is Time

More Demos!

