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Haskell
• Haskell is a high-level, lazy, pure functional programming 

language.
• It is high-level enough to ...

– Serve as a good bridge to modeling languages.
– Allow for simpler construction of complex programs, via powerful 

abstraction and composition mechanisms.

• It is low-level enough to ...
– Directly access memory, in order to implement device drivers.
– Write imperative blocks of low-level code.
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Talk Outline
• Introduction
• Quick Technical Backgound

– Xen
– Haskell
– Lightweight Virtual Machine
– Use case

• An Overview of the HaLVM (with demos)
• Current Gaps and Future Work
• More Demos (as time permits) 
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Our Vision And The HaLVM
• Hypervisors allows clean separation between concurrently 

running operating systems.
– Use as a prototyping target, with “high-assurance” prototypes 

running concurrently with low assurance, general-purpose 
operating systems.

• Hypervisors also allows collaborating running components 
to communicate with each other.
– Decompose the kernel drivers and library functionality into 

separate components with restricted channels of communication.

• We want to prototype and test these components quickly 
and easily.
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Xen In Two Minutes
• There are two kinds of virtualization:

– Full virtualization: Uses hardware or software to run an unmodified 
operating system.

– Paravirtualization: Requires the programmer to modify the 
operating system before running it.

• Xen supports both kinds of virtualization
• The HaLVM is a lightweight, paravirtualized Xen guest



Lightweight Virtual Machine
• The purpose of the HaLVM is ...

– Exploration of the design space for a decomposed, high-assurance 
operating system.

– A sandbox for experimenting with OS components.

• The HaLVM is implemented as a series of libraries built 
upon a core port to Xen.
– For example, one library implements basic memory routines, the 

next level uses that to implement a disk driver, the next level uses 
the driver to implement a file system.

– Programmers can pick and choose library routines at any level, and 
libraries that are not used are not linked in.

• HaLVM programs typically boot in under a second.
• HaLVM programs are typically small:

– 1-2 MB for the complete image.
– 3-5 MB initial memory size.
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Talk Outline
• Introduction
• Related Projects and Background
• An Overview of the HaLVM 

– An overview of the libraries
– Some additional features
– ... with demos all around

• Current Gaps and Future Work
• More Demos (as time permits) 
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HaLVM Libraries - HALVMCore
• As suggested by the name, core libraries for implementing 

Xen virtual machines:
– Event channel manipulation

• Send and receive cross-domain events.
– Basic Memory Management

• Allocate and free pages, query the page tables, etc.
– Grant table manipulation 

• Allows page sharing, transferring, and copying between 
domains.

– Inter-VM Communication (IVC)
– Useful utility types, routines, and data structures

• Write to the debug console, manipulate MBufs, perform 
privileged operations, correct initialization, etc.

• First demo (XenstoreC)



HaLVM Libraries - XenDevice
• Device drivers for the basic XenDevices:

– The virtualized console
– The virtualized disk(s)
– The virtualized network card(s)
– The XenStore

• The disk and network card drivers use the same protocol 
for talking to the underlying “device”.
– The HaLVM exports the implementation of this protocol to 

programmers.
– This allows for rapid development of standard device drivers.

• Second demo (DoubleDevice)



HaLVM Libraries - RendezvousLib
• This library allows for the simple creation of well-typed, 

unidirectional channels between domains.
• Declare a new channel as follows:

• Create the receiver endpoint as follows:

• By splitting this out into a library, we got rid of a lot of 
boilerplate (and potential for bugs!) plus got handy typing 
properties.

• DoubleDevice demo, part two

writeChan <- offer

offer :: IO (OutChannel type)
accept :: IO (InChannel type)
(offer, accept) = p2pConnection “SpeedTest”



HaLVM Libraries - Halfs, Hans, etc.
• Halfs

– A full-featured file system, written in Haskell, ported to the HaLVM.
– Via the FUSE architecture, can be mounted in domain 0, as well.

• Hans (in progress)
– A network stack, written in Haskell, ported to the HaLVM.
– Will include TCP, IP4, IP6, DNS, DHCP, and other acronyms.

• QuickCheck
– An automated testing library, standard in most Haskell 

implementations, ported to the HaLVM.
– Useful for running tests that require the libraries to be tested in 

their final environment.



Useful Details - halvm_kernel
• Automated handling of device initialization order, which is 

sometimes non-intuitive.
– The programmer need not know that the disk driver requires the 

XenStore driver, let alone that the XenStore driver must be 
initialized first.

– Additional driver libraries can be plugged into this infrastructure, 
as well; they simply implement a data structure describing how to 
initialize the device, how to shut it down, and what its 
dependencies are.

• Also handles exceptions that escape the main program, and 
performs safe shutdown if one is detected.

• Some more of what I didn’t show you before ...



Useful Details - BitFiddler
• As suggested by the name, a library for very low-level data 

layout issues.
• Defines a type class for performing host and network order 

conversions.
• Defines a Template Haskell macro for defining and 

manipulating structures with bit fields.
– No more computing offsets via scratch paper and RFCs.
– No more endless lists of poke/peek helper functions.
– Generates getters and setters, performs network/host order 

conversions on request, computes the total size of the structure in 
bytes.

• Another demo (ARPSniffer)



Current Gaps
• The HaLVM is a work-in-progress, and we have often traded 

breadth in the underlying system for depth in the support 
libraries. For example:
– The HaLVM is x86 only.
– The HaLVM is 32-bit only (no PAE, no 64-bit).
– The HaLVM is uniprocessor only.

• The HaLVM is a prototyping system, not a final execution 
environment.

• As of Xen version 3.0.4, using inter-virtual machine 
communication requires a minor patch and recompilation 
of Xen.

• Debugging operating system components is hard; there is 
lots of opportunity to improve support for debugging.



Current Activities
• At this point, we have mostly stopped adding features and 

are working on finishing support we’ve already begun:
– Hans (the network stack)
– A testing framework for regression testing
– vTPM driver support

• Plus standardizing a few of our interfaces, documentation 
clean-ups, and so forth.

• We intend to open source the HALVM.
– Come talk to us if you’re interested in playing around with it!



As There Is Time

More Demos!


