
Role of Domain-Specific Techniques in
Designed-in Security

John Launchbury

Galois, Inc

© 2012 Galois, Inc.

Designed-in Security

❖ Builds the capability to design, develop, and evolve high-assurance,
software-intensive systems predictably and reliably while
effectively managing risk, cost, schedule, quality, and complexity.

❖ Promotes tools and environments that enable the simultaneous
development of cyber-secure systems and the associated
assurance evidence necessary to prove the system’s resistance
to vulnerabilities, flaws, and attacks.

❖ Secure, best practices are built inside the system. Consequently, it
becomes possible to evolve software-intensive systems more
rapidly in response to changing requirements and environments.

2

© 2012 Galois, Inc.

Designed-in Security

❖ Builds the capability to design, develop, and evolve high-assurance,
software-intensive systems predictably and reliably while
effectively managing risk, cost, schedule, quality, and complexity.

❖ Promotes tools and environments that enable the simultaneous
development of cyber-secure systems and the associated
assurance evidence necessary to prove the system’s resistance
to vulnerabilities, flaws, and attacks.

❖ Secure, best practices are built inside the system. Consequently, it
becomes possible to evolve software-intensive systems more
rapidly in response to changing requirements and environments.

3

© 2012 Galois, Inc.

System Unreliabilities even
in Critical Systems

❖ Malaysia Airlines Flight 124 (Boeing 777)
❖ “Software anomaly”

❖ Qantas Airlines Flight 72 (Airbus A330)
❖ Transient fault in the inertial reference unit

❖ Space Shuttle STS-124 aborted launch
❖ Assumptions about distributed fault-tolerance

❖ Air France Flight 447, Airbus A330
❖ Frozen pitot tubes, pilot error

❖ 228 killed

© 2012 Galois, Inc.

Hyatt Regency Walkway Collapse

5

1981, Kansas City

114 deaths, 213 injuries

Implementation didn’t quite match
the engineering specification

Design

Flawed
Implementation

© 2012 Galois, Inc.

Functionality vs Security

❖ Functionality
❖ Enable things to happen
❖ Be as fast as possible
❖ Cost effective

❖ Security
❖ Prevent things from happening
❖ Be as thorough as possible
❖ Cost effective

6

© 2012 Galois, Inc.

Domain-Specific Languages

7

Programming concepts:
procedure, assignment,
object, instruction,
memory, sequence,
concurrency, cache

Application concepts:
temperature, velocity,

orientation, personality,
algebra, timing, visual

impact, calculation

Constrained
implementations

Unconstrained
implementations

© 2012 Galois, Inc.

Value of DSLs

❖ Design-level programming

❖ 10x productivity increase over hand coding

❖ Broadening the programmer base

❖ Major flexibility in evolvability
❖ Update the design; regenerate the code

❖ Natural maintenance of design documents

❖ Multiple interpretations
❖ One specification, many uses

8

© 2012 Galois, Inc. 9

One Specification – Many Uses

Design

Validate

Build

Domain-specific
design capture

w0=u-I*I mod p + u-I*wl mod p
s=f * (w0 +pw2) mod q

Cryptol

© 2012 Galois, Inc. 9

One Specification – Many Uses

Design

Validate

Build

Domain-specific
design capture

w0=u-I*I mod p + u-I*wl mod p
s=f * (w0 +pw2) mod q

Cryptol

 Assured
 implementation

Verify crypto
implementations

Formal Models
and test cases

Special purpose
processor

Software
Implementation

C, Haskell,…

Hardware
Implementation Cryptol

Workbench
FPGA

© 2012 Galois, Inc.

Generating C

10

coef : [8] -> [8];
coef x = coeffs @ x
 where coeffs = [0x3d 0xa7 0x3e 0x81];

coef2 : ([8], [8]) -> [8];
coef2 (x, y) = coef x * coef y;

❖ Simple Example

© 2012 Galois, Inc.

Generating C

10

coef : [8] -> [8];
coef x = coeffs @ x
 where coeffs = [0x3d 0xa7 0x3e 0x81];

coef2 : ([8], [8]) -> [8];
coef2 (x, y) = coef x * coef y;

❖ Simple Example

#include <stdio.h>
#include <stdlib.h>
#include "Coef2.h"
#include "BV.h"

inline Word32 cryptol_RotateLeft32(Word32 val, Word32 size, unsigned long mask, Word32 rotAmt)
{
 Word32 shiftAmt = (rotAmt < size) ? rotAmt : (rotAmt % size);
 Word32 result = (val << shiftAmt) | (val >> (size - shiftAmt));
 return (result & mask);
}

inline Word32 cryptol_RotateRight32(Word32 val, Word32 size, unsigned long mask, Word32 rotAmt)
{
 Word32 shiftAmt = (rotAmt < size) ? rotAmt : (rotAmt % size);
 Word32 result = (val >> shiftAmt) | (val << (size - shiftAmt));
 return (result & mask);
}

static const Word8 table0[] = {(Word8) 0x3d, (Word8) 0xa7,
 (Word8) 0x3e, (Word8) 0x81};

void Coef2(const Word8 s0 /* [8] */,
 const Word8 s1 /* [8] */,
 Word8 *out0 /* [8] */)
{
 if(s0 >= (Word8) 4)
 {
 fprintf(stderr, "\"coef.cry\", line 2, col 17: index of ");
 fprintf(stderr, "%d", (Word32) s0);
 fprintf(stderr, " is out of bounds\n(valid range is 0 thru 3).");
 fprintf(stderr, "\n");
 exit(-1);
 }
 if(s1 >= (Word8) 4)
 {
 fprintf(stderr, "\"coef.cry\", line 2, col 17: index of ");
 fprintf(stderr, "%d", (Word32) s1);
 fprintf(stderr, " is out of bounds\n(valid range is 0 thru 3).");
 fprintf(stderr, "\n");
 exit(-1);
 }
 const Word8 s2 = (s0 < 4) ? table0[s0] : (Word8) 0;
 const Word8 s3 = (s1 < 4) ? table0[s1] : (Word8) 0;
 const Word8 s4 = s2 * s3;

 *out0 = s4;

 return;
}

© 2012 Galois, Inc.

Importance of Reducing Code Size

A line of code is a cost not an asset

“[...] expressed programmer productivity in terms of ‘number of lines of
code produced’.

[...] I pointed out that a programmer should produce solutions, and that,
therefore, we should not talk about the number of lines of code
produced, but the number of lines used, and that this number ought to
be booked on the other side of the ledger. ”

E.W. Dijsktra, Sept 1975

11

“Cost” applies to security as well as economics

© 2012 Galois, Inc.

12

AES reference
specification
(Cryptol)

Key

Third party tools

Galois tools

Data files

Evaluation/Certification evidence

Input to tool

Feedback to designer

High Speed Encryptor

© 2012 Galois, Inc.

12

AES reference
specification
(Cryptol)

Key

Third party tools

Galois tools

Data files

Evaluation/Certification evidence

Input to tool

Feedback to designer

Equivalence
check

Equivalence
evidence

Crypto
Developer

Target
specification

 Symbolic
simulator

Symbolic
simulator

Reference
model

Target
model

Make high-level target-specific
refinements. Verify equivalence

with reference specification.

High Speed Encryptor

© 2012 Galois, Inc.

12

AES reference
specification
(Cryptol)

Key

Third party tools

Galois tools

Data files

Evaluation/Certification evidence

Input to tool

Feedback to designer

Cryptol
Compiler

C

Simulator

Experiment with system
integration and control logic.

Equivalence
check

Equivalence
evidence

Crypto
Developer

Target
specification

 Symbolic
simulator

Symbolic
simulator

Reference
model

Target
model

Make high-level target-specific
refinements. Verify equivalence

with reference specification.

High Speed Encryptor

© 2012 Galois, Inc.

12

AES reference
specification
(Cryptol)

Key

Third party tools

Galois tools

Data files

Evaluation/Certification evidence

Input to tool

Feedback to designer

Cryptol
Compiler

C

Simulator

Experiment with system
integration and control logic.

Equivalence
check

Equivalence
evidence

Crypto
Developer

Target
specification

 Symbolic
simulator

Symbolic
simulator

Reference
model

Target
model

Make high-level target-specific
refinements. Verify equivalence

with reference specification.

High Speed Encryptor

Equivalence
check

Equivalence
evidence

Equivalence
check

Equivalence
evidence

Place &
Route

BitfileNetlist
model

Synthesis

Netlist
model

Calibrate time/space trade-offs and
connectivity issues. Verify equivalence
with target specification.

VHDL

© 2012 Galois, Inc.

Where do DSLs come from?

❖ Existing domain notations
❖ Textual
❖ Graphical
❖ Gestural, etc.

❖ Existing domain concepts
❖ Often need to be extracted from

domain expert through extended
discussions

❖ Domain experts may not have
crystallized the concepts

13

❖ Easy to introduce SQL injection vulnerabilities into web apps
❖ ‘Easy’ to fix them with proper diligence...
❖ LINQ to SQL removes the possibility of SQL injection attacks

© 2012 Galois, Inc.

SQL Injection Attack

14source http://www.devx.com

protected void btnSearch_Click(object sender, EventArgs e)
{
String cmd = "SELECT [CustomerID], [CompanyName], [ContactName]
FROM [Customers] WHERE CompanyName ='" + txtCompanyName.Text
+ "'";
SqlDataSource1.SelectCommand = cmd;
GridView1.Visible = true;
}

server code

❖ Easy to introduce SQL injection vulnerabilities into web apps
❖ ‘Easy’ to fix them with proper diligence...
❖ LINQ to SQL removes the possibility of SQL injection attacks

© 2012 Galois, Inc.

SQL Injection Attack

14source http://www.devx.com

protected void btnSearch_Click(object sender, EventArgs e)
{
String cmd = "SELECT [CustomerID], [CompanyName], [ContactName]
FROM [Customers] WHERE CompanyName ='" + txtCompanyName.Text
+ "'";
SqlDataSource1.SelectCommand = cmd;
GridView1.Visible = true;
}

server code

John Launchbury' UNION SELECT CustomerID, ShipName, ShipAddress
FROM ORDERS--

malicious input

❖ Easy to introduce SQL injection vulnerabilities into web apps
❖ ‘Easy’ to fix them with proper diligence...
❖ LINQ to SQL removes the possibility of SQL injection attacks

© 2012 Galois, Inc.

SQL Injection Attack

14source http://www.devx.com

protected void btnSearch_Click(object sender, EventArgs e)
{
String cmd = "SELECT [CustomerID], [CompanyName], [ContactName]
FROM [Customers] WHERE CompanyName ='" + txtCompanyName.Text
+ "'";
SqlDataSource1.SelectCommand = cmd;
GridView1.Visible = true;
}

server code

John Launchbury' UNION SELECT CustomerID, ShipName, ShipAddress
FROM ORDERS--

malicious input

SELECT [CustomerID], [CompanyName],
[ContactName]
FROM [Customers]
WHERE CompanyName ='John Launchbury'
UNION SELECT CustomerID, ShipName, ShipAddress
FROM ORDERS--'

Corrupted query

❖ Easy to introduce SQL injection vulnerabilities into web apps
❖ ‘Easy’ to fix them with proper diligence...
❖ LINQ to SQL removes the possibility of SQL injection attacks

© 2012 Galois, Inc.

SQL Injection Attack

14source http://www.devx.com

protected void btnSearch_Click(object sender, EventArgs e)
{
String cmd = "SELECT [CustomerID], [CompanyName], [ContactName]
FROM [Customers] WHERE CompanyName ='" + txtCompanyName.Text
+ "'";
SqlDataSource1.SelectCommand = cmd;
GridView1.Visible = true;
}

server code

John Launchbury' UNION SELECT CustomerID, ShipName, ShipAddress
FROM ORDERS--

malicious input

SELECT [CustomerID], [CompanyName],
[ContactName]
FROM [Customers]
WHERE CompanyName ='John Launchbury'
UNION SELECT CustomerID, ShipName, ShipAddress
FROM ORDERS--'

Corrupted query

© 2012 Galois, Inc.

Barrelfish

❖ Multikernel constructed with many DSLS
❖ E.g. Mackerel for specifying interaction with

devices
❖ Produces high performance code

15http://www.barrelfish.org/

constants vdm "Vector delivery mode" {
 fixed = 0b000 "Fixed";
lowest = 0b001 "Lowest priority";
smi = 0b010 "SMI";
nmi = 0b100 "NMI";
init = 0b101 "INIT";
startup = 0b110 "Start Up";
extint = 0b111 "ExtINT";
};

space std(idx) valuewise "Standard register space";
register ndx rw io(base, 0x70) "Standard index"
 type(uint8);
register target rw io(base, 0x71) "Standard target"
 type(uint8);
regarray standard rw std(0x00)[256] type(uint8);

© 2012 Galois, Inc.

ASN.1 Specifications

❖ ASN.1 specifications are turned into executable code
❖ By hand, or

❖ By a compiler

❖ Compiler
❖ Input: ASN.1 description

❖ Output: encoder/decoder code to run in an
application, e.g., on an ECU

ASN.1 Compiler

ECU code

X.400

X.500

MHEG

SSL

SET
X.509

SNMP
CMIS
CMIP

ASN.1 specifications
are ubiquitous

16

X.509

© 2012 Galois, Inc.

ASN.1 Vulnerabilities (2009)

17

© 2012 Galois, Inc.

The Challenge of ASN.1

❖ ASN.1 is a very large language
❖ Grammar has ~700 productions (most languages < 100)

❖ Constraints (X.680, X.682), information objects (X.681), parameterization (X.
683)

❖ The ASN.1 definition is dense
❖ Precise semantics of ASN.1 is difficult to extract

❖ E.g., constraints and type equality are given in terms of concrete syntax

❖ Features of the language interfere with each other

❖ ASN.1 executable code faces implementation challenges
❖ Numerous opportunities for overflowing machine representations

❖ E.g., arbitrarily long octet streams led to bug in a major ASN.1 library

❖ Related concepts are handled quite differently
❖ E.g., long tags vs. long lengths vs. long values

18

© 2012 Galois, Inc.

How to Gain High Assurance ASN.1

19

❖ ASN.1 code usually runs in “privileged” mode

❖ Memory handling issues (buffer overrun)

❖ Malformed input

❖ Protocol bugs

© 2012 Galois, Inc.

Implementing DSLs

❖ Stand-alone implementation
❖ Custom parsing and error messages
❖ Many tools, integration with other systems
❖ DSL has a tendency to grow...

❖ Embedded in a host language (EDSL)
❖ Allows a tightly constrained domain-specific language with a rich

and well-structured macro layer
❖ Haskell and Java are popular host choices

20

© 2012 Galois, Inc.

Sample Copilot specification

If the majority of the three engine temperature probes has exceeded 250 degrees, then
the cooler is engaged and remains engaged until the temperature of the majority
of the probes drop to 250 degrees or less. Otherwise, trigger an immediate
shutdown of the engine.

engineMonitor = do
 trigger "shutoff" (not ok) [arg maj]

 where

 vals = map externW8 ["tmp_probe_0", "tmp_probe_1", "tmp_probe_2"]
 exceed = map (< 250) vals
 maj = majority exceed
 checkMaj = aMajority exceed maj
 ok = alwaysBeen ((maj && checkMaj) ==> extern "cooler")

Key: library functions trigger macros

© 2012 Galois, Inc.

Data, data, everywhere!

Incredible amounts of data are stored
in well-behaved formats:

Vast amounts of chaotic ad hoc data
from logs, legacy systems, etc. exist
as well.

Lots of data is not in well-behaved formats, and has no ready tool support

22

© 2012 Galois, Inc.

Raw DataRaw DataRaw DataRaw Data

Tools for Free

Raw Data PADS System

XML
Converter

Summary
Generator

Data in XML
Format

Analysis
Report

Data
Description Format

Inference

❖ From the data description, PADS automates many data tasks
❖ Examples: converting raw data into XML; producing statistical reports; …

From the inferred format,
PADS produces useful tools automatically

Raw DataRaw DataRaw Data

23

© 2012 Galois, Inc.

PADS in Haskell

24

[pads|
type VCards = [VCard | EOR] terminator EOF

data VCard = VCard ("BEGIN:", vcardRE, EOR,
 [Entry|EOR] terminator "END:", vcardRE)

data Entry = Entry { prefix :: Maybe ("item", Int, '.'),
 tag :: Tag,
 sep :: StringME semicommaRE,
 property :: VCardProperty tag }

data Tag = VERSION | N | FN | NICKNAME | PHOTO | BDAY | ADR | LABEL
 | TEL | EMAIL | MAILER | TZ |GEO | TITLE | ROLE | LOGO | AGENT
 | ORG | CATEGORIES | NOTE | PRODID | REV | SORTSTRING "SORT-STRING"
 | SOUND | UID | URL | CLASS | KEY
 | EXTENSION ("X-", VCardString)
 | ITEM "item"

data VCardProperty (tag :: Tag) = case tag of

 VERSION -> Version (Int, '.', Int)
 | N -> Names IndividualNames
 | FN -> FName VCardString
 | NICKNAME -> Nickname NameRs
 | PHOTO -> Photo VCardData
 | BDAY -> Birthday { bdayType :: Maybe ("value=date:", ())
 , bdate :: DateFSE <| ("%Y-%m-%d", RE "$") |>
 }
 :
 :

© 2012 Galois, Inc.

PADS in Haskell

25

type VCards = VCard

data VCard = VCard Entry

data Entry = Entry { prefix :: Maybe Int,
 tag :: Tag,
 sep :: String,
 property :: VCardProperty }

data Tag = VERSION | N | FN | NICKNAME | PHOTO | BDAY | ADR | LABEL
 | TEL | EMAIL | MAILER | TZ |GEO | TITLE | ROLE | LOGO | AGENT
 | ORG | CATEGORIES | NOTE | PRODID | REV | SORTSTRING
 | SOUND | UID | URL | CLASS | KEY
 | EXTENSION VCardString
 | ITEM

data VCardProperty =

 Version (Int, Int)
 | Names IndividualNames
 | FName VCardString
 | Nickname NameRs
 | Photo VCardData
 | Birthday { bdayType :: Maybe ()
 , bdate :: DateFSE String
 }
 :
 :

Robust
parser

Printer

Error
report

© 2012 Galois, Inc.

Conclusions

❖ Domain-specific techniques raise the level of abstraction
❖ Provide opportunities for modeling, verification, code generation
❖ Provide opportunities to systematically remove classes of

vulnerabilities
❖ A range of implementation techniques are available

❖ Questions remain
❖ Composition of DSLs – how do you put them together?
❖ How do we further leverage techniques across different DSLs?
❖ How do we brings DSLs to new areas, e.g. modeling human

behavior?

26

