
The SLAM Project:
Debugging System
Software via Static Analysis

Thomas Ball
Sriram K. Rajamani

Microsoft Research
http://research.microsoft.com/slam/

Agenda

� Overview

� Demo

� Under the hood

� Technology transfer

� Questions

Specifying and Checking
Properties of Programs
� Goals

� defect detection
� partial validation

� Properties
� memory safety
� temporal safety
� security
� …

� Many approaches
� automated deduction
� program analysis
� type checking
� model checking

� Many projects
� Bandera, BLAST, CANVAS,

ESC-Java, ESP, FeaVer,
FLAVERS, JPF, PolyScope,
PREfix, Programatica,
rccjava, Splint, TVLA,
Verisoft, Vault, xgcc, …

Software Productivity Tools
Research http://research.microsoft.com/spt/

� New language design
� Vault

� safe systems programming language
� Behave!

� message passing + behavioral types + model checking

� Program analysis of legacy (C) code
� ESP

� scalable analysis
� SLAM

� precise analysis based on software model checking

Focus: Windows Device Drivers
� Kernel presents a very

complex interface to driver
� stack of drivers
� NT kernel multi-threaded
� IRP completion, IRQL,

plug-n-play, power
management, …

� Correct API usage
described by finite state
protocols

� Automatically check that
clients respect these
protocols

Source Code

Testing
Development

Unambiguous
API Usage Rules

(SLIC)

Software Model
 Checking

Read for
understanding

New API rules

Drive testing
tools

Defects

100% path
coverage

Rules

The SLAM Thesis

� We can soundly and precisely check an
unannotated program against temporal safety
properties by
� creating a program abstraction
� exploring the abstraction’s state space
� refining the abstraction

� We can scale such an approach to many 100kloc
via
� modular analysis
� model checking

Results on Drivers

� Automatically analyzed 30+ drivers in the
Windows DDK against 4 properties
�2-30Kloc (200Kloc total)
�3 hours to run (4-proc, 700Mhz, 2Gb server)
�over 20 real errors found (and counting)

� Successful application of fully automated
software model checking

State Machine
for Locking

Unlocked Locked

Error

Rel Acq

Acq

Rel

state {
 enum {Locked,Unlocked}

s = Unlocked;
}

KeAcquireSpinLock.entry {
 if (s==Locked) abort;
 else s = Locked;
}

KeReleaseSpinLock.entry {
 if (s==Unlocked) abort;
 else s = Unlocked;
}

Locking Rule in
SLIC

MPR3

CallDriver

MPR
completion

synch

not pending returned

SKIP2

IPCCallDriver
Skip return

child status

DC

Complete
request

return
not Pend

PPC
prop

completion
CallDriver

N/A

no prop
completion

CallDriver

start NP

return
Pending

NP

MPR1

MPR
completion

SKIP2

IPCCallDriver

CallDriver

DC

Complete
request

PPC
prop

completion
CallDriver

N/A

no prop
completion

CallDriver

start P Mark Pending

IRP accessible N/A

synch

SKIP1
CallDriver

SKIP1
Skip

MPR2 MPR1

NP

MPR3

CallDriver
not pending returned

MPR2

synch

Demo

Under the Hood

� Example

� Some technical details

prog. P’
prog. P

SLIC rules

The SLAM Process

boolean
program

pathpredicates

slic

c2bp

bebop

newton

do {
KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++;

}
} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Example Does this code
obey the

locking rule?

do {
KeAcquireSpinLock();

if(*){

KeReleaseSpinLock();

}
} while (*);

KeReleaseSpinLock();

Model checking
boolean program

(bebop)
U

L

L

L

L

U

L

U

U

U

E

Example

do {
KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++;

}
} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Is error path feasible
in C program?

(newton)
U

L

L

L

U

U

U

E

Example

L

L

U

do {
KeAcquireSpinLock();

nPacketsOld = nPackets; b := true;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++; b := b ? false : *;

}
} while (nPackets != nPacketsOld);// !b

KeReleaseSpinLock();

Add new predicate
to boolean program

(c2bp)
U

L

L

L

L

U

L

U

U

U

E

b : (nPacketsOld == nPackets)
Example

do {
KeAcquireSpinLock();

b := true;

if(*){

KeReleaseSpinLock();
b := b ? false : *;

}
} while (!b);

KeReleaseSpinLock();

b

b

b

b

Model checking
refined

 boolean program
(bebop)

b : (nPacketsOld == nPackets)

U

L

L

L

L

U

L

U

U

U

E

b

b

!b

Example

do {
KeAcquireSpinLock();

b := true;

if(*){

KeReleaseSpinLock();
b := b? false : *;

}
} while (!b);

KeReleaseSpinLock();

b : (nPacketsOld == nPackets)

b

b

b

b

U

L

L

L

L

U

L

U

U

b

b

!b

Model checking
refined

 boolean program
(bebop)

Example

SLAM Tools

� c2bp
�model creation

� bebop
�model checking

� newton
�model refinement

Model Creation (c2bp)
� Input

� a C program P
� set of predicates E

� Goal
� Produce a boolean program (abstraction) of C program
� One boolean variable per predicate

� Output: a boolean program that is
� a sound abstraction of P
� a precise abstraction of P

� Main result
� modular predicate abstraction of C in presence of pointers

and procedures

Assignment Example
Statement in P: Predicates in E:
y:=y+1; { y=2, y<5 }

Weakest Precondition:
pre(y:=y+1, y<5) = (y<4)

Strengthenings:
S(y<4) = y=2 S(y>4) = ! (y<5)

Abstraction of s in B:
[y<5] := [y=2] ? true

: (![y<5] ? false : *);

Model Checking (bebop)

� Interprocedural dataflow analysis via BDDs
� Explicit representation of control flow graph
� Implicit representation of reachable states via BDDs

� boolean program reachability
� set of bit-vectors per statement, represented by a BDD

� Worst-case complexity is O(P(GL)3)
� P = program size
� G = number global states in state machine
� L = number of local states in procedure
� exploits locality of scoping from procedures

Model Refinement (newton)
� Symbolically execute path in C program

� VCgen along a single path

� Check for path infeasibility using automatic decision
procedures
� simplify theorem prover

� If infeasibility detected
� generate new predicates or “explanation”
� new predicates rule out infeasible path in subsequent iterations

Newton: Path Simulation

Store:

Conditions:

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);

Newton

Store:

� nPacketsOld: �

Conditions:

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);

Newton

Store:

� nPacketsOld: �

� nPackets: � (1)

Conditions:

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);

Newton

Store:

� nPacketsOld: �

� nPackets: � (1)

� devExt: �

Conditions:

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);

Newton

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);

Store:

� nPacketsOld: �

� nPackets: � (1)

� devExt: �

� � ->WLHeadVa: � (3)

Conditions:

Newton

Store:

� nPacketsOld: �

� nPackets: � (1)

� devExt: �

� � ->WLHeadVa: � (3)

� request: � (3,4)

Conditions:

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);

Newton

Store:

� nPacketsOld: �

� nPackets: � (1)

� devExt: �

� � ->WLHeadVa: � (3)

� request: � (3,4)

Conditions:

 ! � (5)

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);

Newton

Store:

� nPacketsOld: �

� nPackets: � (1)

� devExt: �

� � ->WLHeadVa: � (3)

� request: � (3,4)

Conditions:

 ! � (5)

 � != � (1,2)

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);

Newton

Store:

� nPacketsOld: �

� nPackets: � (1)

� devExt: �

� � ->WLHeadVa: � (3)

� request: � (3,4)

Conditions:

 � != � (1,2)

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);

Newton

Store:

� nPacketsOld: �

� nPackets: � (1)

Conditions:

 � != � (1,2)

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);

Newton

Predicates:

(nPacketsOld == �)

(nPackets == �)

 (� != �)

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);

Newton

Predicates:

(nPacketsOld != nPackets)

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);

Newton

Predicates:

(nPacketsOld == nPackets)

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);

SLAM’s Path to Tech. Transfer
� 2000-2001

� innovating on top of a large body of analysis research
� designing, writing, implementing, giving talks…
� static analysis at Microsoft
� acquiring device driver domain expertise and dev friends
� last but not least… interns and visitors

� Recent checkpoints
� February 2002: MSR TechFest
� March 5 2002: billg review

� Next steps
� stability
� internal tool release

SLAM Chronology
� Spring 2000

� process and algorithms
� bebop

� Summer 2000
� c2bp
� checked a property of a driver

� Autumn 2000
� formalize precision of c2bp
� newton
� checked properties of a few

drivers from DDK

� Winter 2000
� SLIC specification language and

instrumentation took

� Spring 2001
� found first real error in a driver

� total automation

� Summer 2001
� running on a handful of drivers
� relative completeness result
� scale, scale, scale ...

� Autumn 2001
� many more process optimizations
� development of more properties
� integration with DDK build

� Winter 2001
� running on over 30+ drivers in

DDK on various properties

SLAMming on the shoulders of …

� Model checking
� predicate abstraction
� counterexample-driven

refinement
� BDDs and symbolic

model checking

� Program analysis
� abstract interpretation
� points-to analysis
� dataflow via CFL-

reachability

� Automated deduction
� weakest preconditions
� theorem proving

� Software
� AST toolkit
� Das’s points-to analysis
� CU and CMU BDD libs
� SRC’s simplify
� OCAML

Static Analysis at Microsoft:
Greasing the Dev Wheels
� About 3 years of experience with static analysis

for defect detection
� PREfix
� PREfast

� Developers
� aware of benefits and pitfalls of static analysis
� willing to provide information to tools

Domain Expertise

� Learning about drivers
� slow, painful process
� documents imprecise

� Adrian Oney, our champion in Windows
� wrote “Driver Verifier” test tool (part of Windows XP)
� interested in techniques to improve driver quality
� help us to understand drivers and refine properties
� positive dev presence at billg review

A Little Help from Our Friends…

� Visitors
� Giorgio Delzanno
� Andreas Podelski
� Stefan Schwoon

� 2000 Interns
� Sagar Chaki
� Rupak Majumdar
� Todd Millstein

� 2001 Interns
� Sagar Chaki
� Satayaki Das
� Robby
� Wes Weimer

� 2002 Interns
� Jakob Lichtenberg

Software Tool Pipeline

� Stages in a software tool project
� Inception
�Prototyping
�Proof of concept on real code
�Stability
�Tool used by internal customers
�Tool used by external customers

Stability

� Stable set of rules

� Stable set of driver models

� Stable SLAM: given any one of approx. 700
kernel-mode drivers in XP
� no SLAM errors
� run in a reasonable amount of time
� produce meaningful error messages

Internal Use
� Technical

� move focus from analysis engine to user experience
� PREfix lesson

� analysis engine 10% of code
� remaining 90% of code devoted to build integration, data

storage, querying/filtering, user interface, scripting, …

� Educational
� how to write API rules, interpret output
� documentation

� Political
� many decisions not directly under our control
� who will support this tool?...

Conclusions

� SLAM: two years from conception to
demonstration on real code
� focus on device drivers
� innovate on established body of work
� aggressive schedule

� Now the real fun begins…
� shifting focus from analysis to users
� can we get Windows to develop maintain rules and

models?

	The SLAM Project:Debugging System Software via Static Analysis
	Agenda
	Specifying and Checking Properties of Programs
	Software Productivity Tools Research http://research.microsoft.com/spt/
	Focus: Windows Device Drivers
	The SLAM Thesis
	Results on Drivers
	State Machine for Locking
	Demo
	Under the Hood
	The SLAM Process
	Example
	Example
	Example
	SLAM Tools
	Model Creation (c2bp)
	Assignment Example
	Model Checking (bebop)
	Model Refinement (newton)
	Newton: Path Simulation
	Newton
	Newton
	Newton
	Newton
	Newton
	Newton
	Newton
	Newton
	Newton
	Newton
	Newton
	Newton
	SLAM’s Path to Tech. Transfer
	SLAM Chronology
	SLAMming on the shoulders of …
	Static Analysis at Microsoft:Greasing the Dev Wheels
	Domain Expertise
	A Little Help from Our Friends…
	Software Tool Pipeline
	Stability
	Internal Use
	Conclusions

