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Agenda

� Overview

� Demo

� Under the hood

� Technology transfer

� Questions



Specifying and Checking
Properties of Programs
� Goals

� defect detection
� partial validation

� Properties
� memory safety
� temporal safety
� security
� …

� Many approaches
� automated deduction
� program analysis
� type checking
� model checking

� Many projects
� Bandera, BLAST, CANVAS,

ESC-Java, ESP, FeaVer,
FLAVERS, JPF, PolyScope,
PREfix, Programatica,
rccjava, Splint, TVLA,
Verisoft, Vault, xgcc, …



Software Productivity Tools
Research http://research.microsoft.com/spt/

� New language design
� Vault

� safe systems programming language
� Behave!

� message passing + behavioral types + model checking

� Program analysis of legacy (C) code
� ESP

� scalable analysis
� SLAM

� precise analysis based on software model checking



Focus: Windows Device Drivers
� Kernel presents a very

complex interface to driver
� stack of drivers
� NT kernel multi-threaded
� IRP completion, IRQL,

plug-n-play, power
management, …

� Correct API usage
described by finite state
protocols

� Automatically check that
clients respect these
protocols
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The SLAM Thesis

� We can soundly and precisely check an
unannotated program against temporal safety
properties by
� creating a program abstraction
� exploring the abstraction’s state space
� refining the abstraction

� We can scale such an approach to many 100kloc
via
� modular analysis
� model checking



Results on Drivers

� Automatically analyzed 30+ drivers in the
Windows DDK against 4 properties
�2-30Kloc (200Kloc total)
�3 hours to run (4-proc, 700Mhz, 2Gb server)
�over 20 real errors found (and counting)

� Successful application of fully automated
software model checking



State Machine
for Locking

Unlocked Locked

Error

Rel Acq

Acq

Rel

state {
  enum {Locked,Unlocked}

s = Unlocked;
}

KeAcquireSpinLock.entry {
  if (s==Locked) abort;
  else s = Locked;
}

KeReleaseSpinLock.entry {
  if (s==Unlocked) abort;
  else s = Unlocked;
}

Locking Rule in
SLIC
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Demo



Under the Hood

� Example

� Some technical details



prog. P’
prog. P
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do {
KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++;

}
} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Example Does this code 
obey the 

locking rule?



do {
KeAcquireSpinLock();

if(*){

KeReleaseSpinLock();

}
} while (*);

KeReleaseSpinLock();

Model checking 
boolean program

(bebop)
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do {
KeAcquireSpinLock();

nPacketsOld = nPackets;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++;

}
} while (nPackets != nPacketsOld);

KeReleaseSpinLock();

Is error path feasible
in C program?

(newton)
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do {
KeAcquireSpinLock();

nPacketsOld = nPackets; b := true;

if(request){
request = request->Next;
KeReleaseSpinLock();
nPackets++; b := b ? false : *;

}
} while (nPackets != nPacketsOld);// !b

KeReleaseSpinLock();

Add new predicate
to boolean program

(c2bp)
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b : (nPacketsOld == nPackets)
Example



do {
KeAcquireSpinLock();

b := true;

if(*){

KeReleaseSpinLock();
b := b ? false : *;

}
} while ( !b );

KeReleaseSpinLock();

b

b

b

b

Model checking 
refined

 boolean program
(bebop)

b : (nPacketsOld == nPackets)
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do {
KeAcquireSpinLock();

b := true;

if(*){

KeReleaseSpinLock();
b := b? false : *;

}
} while ( !b );

KeReleaseSpinLock();

b : (nPacketsOld == nPackets)

b

b

b

b
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SLAM Tools

� c2bp
�model creation

� bebop
�model checking

� newton
�model refinement



Model Creation (c2bp)
� Input

� a C program P
� set of predicates E

� Goal
� Produce a boolean program (abstraction) of C program
� One boolean variable per predicate

� Output: a boolean program that is
� a sound abstraction of P
� a precise abstraction of P

� Main result
� modular predicate abstraction of C in presence of pointers

and procedures



Assignment Example
Statement in P: Predicates in E:
y:=y+1; { y=2, y<5 }

Weakest Precondition:
pre(y:=y+1, y<5)   =   (y<4)

Strengthenings:
S(y<4)  =  y=2 S(y>4)  =  ! (y<5)

Abstraction of s in B:
[y<5] := [y=2] ? true

: (![y<5] ? false : *);



Model Checking (bebop)

� Interprocedural dataflow analysis via BDDs
� Explicit representation of control flow graph
� Implicit representation of reachable states via BDDs

� boolean program reachability
� set of bit-vectors per statement, represented by a BDD

� Worst-case complexity is O( P(GL)3 )
� P = program size
� G = number global states in state machine
� L = number of local states in procedure
� exploits locality of scoping from procedures



Model Refinement (newton)
� Symbolically execute path in C program

� VCgen along a single path

� Check for path infeasibility using automatic decision
procedures
� simplify theorem prover

� If infeasibility detected
� generate new predicates or “explanation”
� new predicates rule out infeasible path in subsequent iterations



Newton: Path Simulation

Store:

Conditions:

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);



Newton

Store:

� nPacketsOld:     �

Conditions:

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);



Newton

Store:

� nPacketsOld:     �

� nPackets:           �   (1)

Conditions:

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);



Newton

Store:

� nPacketsOld:     �

� nPackets:           �   (1)

� devExt:              �

Conditions:

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);



Newton

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);

Store:

� nPacketsOld:     �

� nPackets:           �   (1)

� devExt:              �

�  � ->WLHeadVa:  �   (3)

Conditions:



Newton

Store:

� nPacketsOld:     �

� nPackets:           �   (1)

� devExt:              �

�  � ->WLHeadVa:  �   (3)

�  request:             � (3,4)

Conditions:

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);



Newton

Store:

� nPacketsOld:     �

� nPackets:           �   (1)

� devExt:              �

�  � ->WLHeadVa:  �   (3)

�  request:             � (3,4)

Conditions:

    ! �                            (5)

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);



Newton

Store:

� nPacketsOld:     �

� nPackets:           �   (1)

� devExt:              �

�  � ->WLHeadVa:  �   (3)

�  request:             � (3,4)

Conditions:

    ! �                            (5)

    � != �                    (1,2)

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);



Newton

Store:

� nPacketsOld:     �

� nPackets:           �   (1)

� devExt:              �

�  � ->WLHeadVa:  �   (3)

�  request:             � (3,4)

Conditions:

    � != �                    (1,2)

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);



Newton

Store:

� nPacketsOld:     �

� nPackets:           �   (1)

Conditions:

    � != �                    (1,2)

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);



Newton

Predicates:

(nPacketsOld ==    �)

(nPackets ==    �  )

 (� != �)

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);



Newton

Predicates:

(nPacketsOld != nPackets)

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);



Newton

Predicates:

(nPacketsOld == nPackets)

nPackets = nPacketsOld;

request = devExt->WLHeadVa;

assume(!request);

assume(nPackets != nPacketsOld);



SLAM’s Path to Tech. Transfer
� 2000-2001

� innovating on top of a large body of analysis research
� designing, writing, implementing, giving talks…
� static analysis at Microsoft
� acquiring device driver domain expertise and dev friends
� last but not least… interns and visitors

� Recent checkpoints
� February 2002: MSR TechFest
� March 5 2002: billg review

� Next steps
� stability
� internal tool release



SLAM Chronology
� Spring 2000

� process and algorithms
� bebop

� Summer 2000
� c2bp
� checked a property of a driver

� Autumn 2000
� formalize precision of c2bp
� newton
� checked properties of a few

drivers from DDK

� Winter 2000
� SLIC specification language and

instrumentation took

� Spring 2001
� found first real error in a driver

� total automation

� Summer 2001
� running on a handful of drivers
� relative completeness result
� scale, scale, scale ...

� Autumn 2001
� many more process optimizations
� development of more properties
� integration with DDK build

� Winter 2001
� running on over 30+ drivers in

DDK on various properties



SLAMming on the shoulders of …

� Model checking
� predicate abstraction
� counterexample-driven

refinement
� BDDs and symbolic

model checking

� Program analysis
� abstract interpretation
� points-to analysis
� dataflow via CFL-

reachability

� Automated deduction
� weakest preconditions
� theorem proving

� Software
� AST toolkit
� Das’s points-to analysis
� CU and CMU BDD libs
� SRC’s simplify
� OCAML



Static Analysis at Microsoft:
Greasing the Dev Wheels
� About 3 years of experience with static analysis

for defect detection
� PREfix
� PREfast

� Developers
� aware of benefits and pitfalls of static analysis
� willing to provide information to tools



Domain Expertise

� Learning about drivers
� slow, painful process
� documents imprecise

� Adrian Oney, our champion in Windows
� wrote “Driver Verifier” test tool (part of Windows XP)
� interested in techniques to improve driver quality
� help us to understand drivers and refine properties
� positive dev presence at billg review



A Little Help from Our Friends…

� Visitors
� Giorgio Delzanno
� Andreas Podelski
� Stefan Schwoon

� 2000 Interns
� Sagar Chaki
� Rupak Majumdar
� Todd Millstein

� 2001 Interns
� Sagar Chaki
� Satayaki Das
� Robby
� Wes Weimer

� 2002 Interns
� Jakob Lichtenberg



Software Tool Pipeline

� Stages in a software tool project
� Inception
�Prototyping
�Proof of concept on real code
�Stability
�Tool used by internal customers
�Tool used by external customers



Stability

� Stable set of rules

� Stable set of driver models

� Stable SLAM: given any one of approx. 700
kernel-mode drivers in XP
� no SLAM errors
� run in a reasonable amount of time
� produce meaningful error messages



Internal Use
� Technical

� move focus from analysis engine to user experience
� PREfix lesson

� analysis engine 10% of code
� remaining 90% of code devoted to build integration, data

storage, querying/filtering, user interface, scripting, …

� Educational
� how to write API rules, interpret output
� documentation

� Political
� many decisions not directly under our control
� who will support this tool?...



Conclusions

� SLAM: two years from conception to
demonstration on real code
� focus on device drivers
� innovate on established body of work
� aggressive schedule

� Now the real fun begins…
� shifting focus from analysis to users
� can we get Windows to develop maintain rules and

models?
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