
HCSS’07: The Verified Software Initiative

The Verified Software Initiativea

N. Shankar

shankar@csl.sri.com

URL: http://www.csl.sri.com/˜shankar/

Computer Science Laboratory

SRI International

Menlo Park, CA

aSupported by NSF Grant Nos.CNS-0646174.

1

Outline

• What’s the matter with software?

• The Verified Software Initiative (VSI)

◦ The VSI Manifesto

◦ The VSI Research Agenda

• Conclusions

2

Overview

The construction of reliable software is one of the central

intellectual challenges of the 21st century.

Verification is the rigorous demonstraction of the

correctness of software with respect to a specification of its

intended behavior.

Automated verification technologies have been progressing

rapidly in recent years.

The Verified Software Initiative is a fifteen-year research

project with the goal of developing a large body (million

plus source lines of code) of verified code.

The project will involve the collaboration of hundreds of

researchers over tens of countries coordinated through a

Verified Software Repository.

3

Software Rocks!

Software is ubiquitous. It is the nerve center of the

communication, entertainment, defence, transportation,

power, financial, and commercial infrastructure.

According to a GAO report, 80% of the functionality of the

F/A 22 is provided by software, up from 10% in the 1960s.

Software doesn’t deteriorate with age.

Software is one of the few engineered artifacts that can, in

principle, be analyzed with complete mathematical precision

assuming correct hardware behavior.

4

What’s the Matter with Software?

Software now takes 40 to 50% of the development budget

of the products in which it is used. Software development is

40% of the DoD R&D budget, and 40% of this is expended

on fixing poor quality software.

Typically, over half of the development cost and time goes

into detecting and correcting errors.

A 2002 NIST study estimated that unreliable software costs

the United States 20 to 60 Billion dollars.

5

The Window of Vulnerability

Software errors can be exploited as security holes.

In CACM (June 2006), FX Lindner wrote,

if software always worked as specified or intended

by its makers, only a small subset would be

vulnerable to attack, and defenses would be much

easier to implement.

The Code Red virus cost 2.6 Billion dollars, and overall

computer viruses alone are estimated to cost around 17

Billion dollars in the year 2000.

6

Software Complexity

A cell phone contains around 5 Million lines of code

(MLOC).

The Red Har 7.1 Linux distribution contains about 30

MLOC.

Year Operating System MLOC (Million)

1993 Windows NT 3.1 6

1994 Windows NT 3.5 10

1996 Windows NT 4.0 16

2000 Windows 2000 29

2002 Windows XP 40

2005 Windows Vista Beta 2 50

7

PITAC Reports

The 1999 Presidential Information Technology Advisory
Committee (PITAC) report entitled Information Technology
Research: Investing in our Future
(http://www.nitrd.gov/pitac/report/) notes:

Software systems are now among the most complex

human-engineered structures. ... The Nation needs robust

systems, but the software our systems depend on is often

fragile. . . . Even after large, expensive testing efforts,

commercial software is shipped riddled with errors (bugs)

. . . The Nation cannot afford to let the current situation

continue. We must commit to developing the science,

technologies, and methods needed to build robust software

systems, ones that are reliable, fault-tolerant, secure,

evolvable, scalable, maintainable, and cost-effective.

8

http://www.nitrd.gov/pitac/report/

Hardware Verification

Hardware verification is far from a solved problem.

The 2005 edition of the International Technology Roadmap

for Semiconductors (http://public.itrs.net/) asserts:

Without major breakthroughs, verification will be a

non-scalable, show-stopping barrier to further

progress in the semiconductor industry (italics in

the original).

Looking into the future, the new system-on-a-chip (SoC)

hardware is . . . software.

9

http://public.itrs.net/

Software Verification

Software can, in principle, be verified with respect to a

precise specification.

Practical software verification is therefore a significant
intellectual challenge

1. Do we have a good enough theoretical understanding of the

semantic aspects of software to fully formalize software

correctness?

2. Are verification tools up to the task of demonstrating the

correctness of realistically usable software?

3. Can verification technology enter the mainstream of software

development?

Software verification alone does not solve unreliability, but if

it does become practical, the improvement in software

quality will be tangible.

10

The Verified Software Initiative: Background

Tony Hoare in 2001 first proposed software verification as a

grand scientific challenge for computing.

This led to a one-day workshop in April 2004, and a

three-day workshop in February 2005.

A very successful IFIP Working Conference was held in

October 2005 in Zurich, Switzerland.

The Verified Software Initiative was crafted at several

follow-up workshops.

A second Working Conference will be held in October 2008.

11

VSI: An Overview

• A fifteen-year scientific project involving hundreds of

researchers spanning tens of countries.

• An inclusive research agenda focusing on long-term,

collaborative work yielding proven and usable

technology.

• The goal is the convincing demonstration of verification

in the end-to-end development of large-scale software

with

1. Precise external specifications

2. Complete internal specification, and

3. Machine-checked proofs of their correspondence.

• Such software should continue to evolve in a verified

state.

12

VSI: The Motivation

• The high cost of unreliable and insecure software. This

can only get worse in the networked, service-oriented,

multi-core future.

• Verification theory is addressing real problems of

object-oriented programs, safe interfaces, and secure

information flow.

• Verification technology has been advancing rapidly on

many fronts: static analysis, dynamic analysis, model

checking, satisfiability procedures, interactive provers.

• Availability of representative benchmarks and open

source specifications, code, and even IP cores as

targets for experimentation.

13

Some Landmark Verification Projects

The CLI Stack: ACL2 verification of FM9001, Piton

Assembler, and micro-Gypsy programming language.

Floating-point for AMD processors.

Several Spark ADA projects from Praxis UK.

The ESC/Java project: Assertion and error checking for

Java programs using the Simplify theorem prover.

Météor Paris Metro code development with the B-tool.

The Microsoft SLAM project: C Device Driver verification

using predicate abstraction and model checking.

Both Praxis and B-tool experience is that very few proof

obligations need manual intervention.

14

SWOT Analysis

Strengths

Good foundation

Powerful and versatile tools

Growing standardization

Weaknesses

Scale/efficiency of tools

Lack of skilled manpower

Resistance to collaboration

Lack of recognition

Opportunities

Growing software complexity

High cost of unreliability/validation

Open source code base

Threats

Funding instability

Shrinking time-to-market

Lightweight bug-finding tools

15

VSI: The Technical Agenda

A comprehensive theory of programming that covers the

features needed to build practical and reliable programs.

A coherent toolset that automates the theory and scales up

to the analysis of large codes.

A collection of verified programs that replace existing

unverified ones, and continue to evolve in a verified state.

“You can’t say anymore it can’t be done! Here, we have

done it. ”

The long-term goal is to establish that the science and

practice of computing do converge in education and in

industrial practice.

16

VSI: A Comprehensive Theory

Theory constitutes languages, logics and calculi, semantics,

models, proof techniques, and verification algorithms.

Languages include specification languages, modeling

languages, foundational logics and calculi, programming

languages, and assertion languages.

Theory provides abstraction techniques for separating

concerns and refinement methods for linking levels of

abstraction from specifications and models to

implementations.

Semantics is the glue that links different languages,

properties, execution, abstractions, and analysis algorithms.

17

Theory Challenges

• Modeling formalisms for data, structure, behavior, and services.

• Golden models of widely used standards, protocols, and interfaces.

• Unified semantics for specification and programming languages.

• Language extensions for types, assertions, specifications, and

performance.

• Tractable analysis techniques to infer or verify extensional and

intensional properties.

• Compositional analyses to separate concerns along modules and

aspects.

• Refinement techniques that automatically or manually bridge the

gap between abstract specifications and concrete implementations.

18

VSI: Tools

Dynamic analysis using testing, monitoring, and offline

trace mining.

Static analysis to demonstrate the absence of runtime

errors and to derive implied properties.

Model checking to check temporal properties.

Satisfiability solvers for assertion checking, bounded model

checking, test case generation, and constraint solving.

Protocol analyzers for domain-specific problems like

cryptographic protocols.

Interactive verifiers combining automated tools with manual

guidance.

Code generators for producing correct code from high-level

algorithmic descriptions.

19

Static Analysis Example

Assume(n >= 0);

x := n;

y := 0;

z := 0;

while (x > 0)

if (*)

x := x - 1;

y := y + 1;

else

x := x - 1;

z := z + 1;

Assert(x = 0 AND y + z = n);

20

SMT Solving Example

(not

(forall (?i Int) (?pp Queue)(?aa Array)(?perm Array)(?ee Array)

(?newperm Array)

(implies (and (= ?ee (store (store (elems ?pp)

(- ?i 1)

(select (elems ?pp) ?i))

?i (select (elems ?pp) (- ?i 1))))

(= ?newperm (store (store ?perm

(- ?i 1)

(select ?perm ?i))

?i (select ?perm (- ?i 1))))

(forall (?i Int) (= (select ?aa (select ?perm ?i))

(select (elems ?pp) ?i))))

(forall (?i Int) (= (select ?aa (select ?newperm ?i))

(select ?ee ?i))))))

21

SMT Progress

PVS

1982

Simplify

1994

SVC

1998

ICS

2002

Yices

2005

Yices’

2006

tgc-3 2023.80 0.77 0.10 0.07 0.00 0.00

tgc-8 > 3600 1129.57 68.43 0.40 0.03 0.03

Simplify SVC ICS Yices BCLT Yices’

fischer6-10 > 3600 > 3600 > 3600 38.89 12.32 3.45

fischer6-20 > 3600 > 3600 > 3600 > 3600 > 3600 140.00

SVC
UCLID

2003
ICS Yices

BCLT

2005
Yices

cache-10 5.48 2.23 219.00 0.02 0.32 0.02

cache-12 116.60 6.09 > 3600 0.20 0.53 0.07

cache-14 > 3600 160.49 > 3600 2.40 2.64 0.20

22

Tools Challenges

• Challenges such as scalability, precision, extensibility,

expressiveness, traceability, tunability, abstraction, and

richer interfaces are common to all the tools.

• Combining tools to enhance their individual

expressiveness, precision, and efficiency.

• Reduction techniques for decomposing the analysis

using abstraction and decomposition.

• Tool workflows for progressing from cheap but

imprecise analyses to expensive but precise ones, and

defining iterative scripts.

• Evidence production in the form of error traces and

proofs.

23

An Evidential Tool Bus

Tool integration is central to the large-scale verification of

software.

Examples of such integration include

1. Typechecking combined with decision procedures

2. Dynamic analysis to conjecture invariants combined

with invariant checking

3. Static analysis to prove the absence of runtime errors

combined with SMT solving to reduce false alarms.

4. Counterexample-guided abstraction refinement

combining SMT solvers with model checkers.

24

Evidential Tool Bus: Interchange Formats

XML-based intermediate languages will be used to

exchange information.

These dialects cover propositional logic, typed and untyped

quantifier-free first-order logic, and typed higher-order logic

with definition principles and formalized theories.

Dialects similar to existing intermediate formats like

SMT-LIB, BoogiePL, and SAL.

Labels/handles will be used to cover terms, types,

declarations, transition systems, proof steps, BDD

representations, and contexts.

25

Evidential Tool Bus: Judgments

Judgments about the various semantic entities on the tool

bus.

These include

1. Γ is a type context representing the declarations

d1, . . . , dn.

2. C is a decision procedure context representing the input

atoms φ1, . . . , φn.

3. ρ is a satisfying assignment for the formula φ.

4. φ is a propositional formula.

5. τ̂ is an abstraction of the transition system τ .

26

Evidential Tool Bus: Scripting

The tool bus judgments are tied together using a logic

programming framework.

Tools can be invoked explicitly or implicitly.

Each tool returns evidence supporting the judgment.

The tool bus registers the various syntactic entities,

provides mappings between different languages, and

manages the interaction.

SRI’s Open Agent Architecture is being investigated as a

prototype such a tool bus.

27

VSI Experiments

Years 1–2
Pilot studies: Mondex, Flash file system,

File synchronizer.

Years 3–5

Specifications of common standards

Absence of runtime errors,

security holes

Years 6–10

Tool integration

Verification of medium examples: Distributed

file systems, MINIX 3, medical devices

Libraries: GMP, STL, CUDD, OpenSSL, . . .

Years 11–15 System verification: A LAMP stack

28

Conclusions

Software is woven into the fabric of society.

There is a high cost to software unreliability.

Software correctness is also a deep intellectual, scientific,

and technological challenge.

The Verified Software Initiative is an ambitious 15-year

program of research aimed at demonstrating the practicality

of large-scale verification.

The VSI project will develop the theory, build and integrate

the tools, and perform the experiments leading to the

above goal.

We will have succeeded when verified software begins to

drive out its unverified counterpart.

29

