Theorem Provers as High
Assurance Programming
Environments

J Strother Moore

Department of Computer Sciences
University of Texas at Austin

Thesis

High-assurance production-quality
special-purpose software analysis tools can
often be conveniently built within theorem
proving environments, by

e defining the semantics in the mechanized
logic, and

e configuring the proof-engine
appropriately.

and Voila!:

® an execution engine
e a symbolic execution engine
e a verification system

e a verification condition generator

Some Proof Systems Often So Used

ACL2 — a Boyer-Moore-style system for
functional Common Lisp (Kaufmann and
Moore, et al)

HOL — a tactic-based prover for higher
order logic (Gordon, et al)

Maude — a rewriting logic with a very fast
rewrite engine (Meseguer, et al)

Motorola CAP DSP

16

%% low_data
‘%%16 high_data

4
<——— addr3to0
HOST INTERFACE ~——— pwr_on_reset
~———— ce_bar

PROGRAM
~———— r_wbar
SEQUENCER/ 32) 5. bar
DEDCODER ————= ta_bar

= hr_bar

ETEERY
T |

[|| xdlyd

xslys

” Il
]

alux/aluy

—— 1BIT
L7 2x20BITS

[] eamits

serial_clk

serial_data

Modeled in ACL2 by Brock.

ROM containing
50 microcoded
DSP algorithm s

Pipelined Sequential
microarchitecture microcode ISA

(If no hazards)

The model was bit- and cycle-accurate.

The ISA model was proved equivalent to
the microarchitecture provided the
microcode to be executed avoided a set of
precisely defined pipeline hazards.

Microcoded DSP applications were proved
correct mechanically.

The ISA model executed several times
faster than Motorola’s SPW model.

Rockwell-Collins / alile Systems JEM1

The world’s first silicon Java Virtual

Machine was first modeled in ACL2.
(Greve, Hardin, and Wilding)

The formal microarchitecture model was
executable.

It replaced the C model in the test bench
upon which Java programs were executed.

The formal model executed at about 90%
of the C model.

AMD Athlon Floating Point

The Athlon floating-point unit was modeled

in ACL2 by mechanically translating the
RTL to ACL2 (Flatau and Russinoff).

80 million floating point test vectors were
run through the ACL2 model of FSQRT

and were bit-equivalent to those produced
by AMD’s RTL simulator.

10

All elementary fpu operations (FADD,
FSUB, FMUL, FDIV, FSQRT) were
verified IEEE compliant — after fixing four
bugs found by the proof attempt.

The same procedure was applied to the
AMD Opteron (64-bit).

The ACL2 models gain credibility via their
dual-use.

11

JVM in Maude

A model of the JVM is written in Maude
by Meseguer, Farzan, Cheng, and Rosu.

The model exploits Maude's search
strategy to give semantics to concurrency.

The Maude model of the JVM provides a
symbolic execution capability for
concurrent JVM programs.

12

Accellera PSL in HOL

PSL (formerly IBM’s Sugar 2.0) was
modeled in HOL by Gordon, Hurd, and
Slind.

HOL can then be used to provide an
execution engine for the Language
Reference Manual.

“Goal is to show formal semantics is not
Jjust documentation.”

13

Outline

The rest of this ta
demonstration anc

k will
an ex

e a mix of ACL2
blanation of how

we used ACL2 to build a verification
condition generator for the JVM.

e classic ACL2 example
e JVM operational semantics

e VCG idea

e inductive assertion proof of a JVM
bytecoded method

14

“ACL2" stands for

A Computational Logic
for

Applicative Common Lisp

Matt Kaufmann and J Moore

See
http: //www.cs.utexas.edu/users/moore/acl2

15

proofs

proposed definitions
conjectures and
advice

database composed
of ‘“books’’ of definitions,
theorems, and advice

Q.E.D.

16

ACL2 Demo 1

17

The abstractions of Java are nicely
captured by the Java Virtual Machine

(JVM).

We verity Java programs by verifying the
bytecode produced by the Java

We formalize the JVM with an operational
semantics in the ACL2 logic.

18

Our “M6" model is based on an
implementation of the J2ME KVM. It
executes most J2ME Java programs
(except those with significant |/O or
floating-point).

M6 supports all data types (except floats),
multi-threading, dynamic class loading,
class initialization and synchronization via
monitors.

19

We have translated the entire Sun CLDC
API library implementation into our
representation with 672 methods in 87
classes. We provide implementations for 21

out of 41 native APIs that appear in Sun'’s
CLDC API library.

We prove theorems about bytecoded
methods with the ACL2 theorem prover.

This work is supported by a gift from Sun
Microsystemes.

20

Disclaimers about Our JVM Model

Our thread model assumes

e sequential consistency and

e atomicity at the bytecode level.

21

Java and the JVM

class Demo {

public static int fact(int n){
if (n>0) {return n*fact(n-1);}
else return 1;

}

public static void main(String[] args){
int n = Integer.parselnt(args[0], 10);
System.out.println(fact(n));
return;

I3

22

Demo.java

23

Translating the JVM Spec into ACL2

Tim Lindholm « Frank Yellin . M in ACL2 -

The Java" Virtual
Machine SPECiﬁCﬂti()n (defun make-state (tt hp ct)
Second Edition)

The Java Series "'""'--'F"faumm ‘ (defun Step (th S)
)

(defun run (sched s)

(if (endp sched)
s
(run
e - ' (cdr sched)
XY - rom the Source” IR (step (car sched) s))))

We define a Lisp interpreter for bytecode.

sighals —
step

state -
[] - -

f

(defun run (signals state)
(if (endp signals)
state
(run (cdr signals)
(step (car signals) state))))

25

The JVM Spec from Sun

iload_0
Operation
Load int from local variable O
Format
lload_0
Form
26 (Ox1la)
Operand Stack
.. = ..., value

26

S
t

Description

The local variable at 0 must contain
an int. The value of the local variable
at 0 Is pushed onto the operand stack.

Note: ILOAD_O, ... ILOAD_3 are one-byte

necializations of the more general

nree-byte ILOAD n instruction.

27

Java

javac

.class

jvm2acl2

f =

lisp)

Theorems

“fact(5)=120"

.) fact(n)=n !”

28

ACL2 Demo 2

29

This Model Is Executable

We define (jvm-Demo param) to

e build a JVM state poised to invoke the
main method of class Demo on command
line param,

e use simple-run to step that state to
completion, and

e print some results.

30

ACL2 Demo 3

We get execution speeds of about 1000
bytecodes/sec on a 728 MHz processor.

We suspect this could be increased x100
using ACL2 optimization features.

32

But This Model is Formal

It 1s possible to prove theorems about this
JVM model.

Let's prove that fact returns the low-order
32 bits of the mathematical factorial.

33

(defthm fact-is-correct
3k

(implies

(poised-to-invoke-fact s n)

(equal (simple-run s k)

(state-set-pc (+ 3 (pc s))
(pushStack (int-fix (! n))
(popStack s))))))

34

(defthm fact-is-correct

(implies
(poised-to-invoke-fact s n)
(equal (simple-run s (fact-clock n))
(state-set-pc (+ 3 (pc s))
(pushStack (int-fix (! n))
(popStack s))))))

35

ACL2 Demo 4

36

Such proofs are sometimes called direct or
clock-style proofs because they proceed by
direct appeal to the operational semantics

and (informally) “by induction on the
number of steps.”

37

Uses of the Model

execution environment
symbolic execution environment

program verification via operational
semantics

analysis of the model (e.g., correctness of
bytecode verifier, class loader, etc.)

inductive assertion proof tool (vcg +
theorem prover)

38

Conventions

Let m be a program we want to verify, with
entry pc a and exit pc 7.

Let P and () be the pre- and
post-conditions for .

Let sq be a state initialized to run 7
i.e., prog(sg) =m A pc(sy) = «

Let s; denote run (sg, k).

39

Formally Stated Correctness Theorems

Total:
ik ;. P (S()) — Q(Sk),

or without quantifier:
P (sg) — Q(run (so, clock (sg))).

Partial:
P (sg) A pc(sr) =7 — Q(sk).

Partial Correctness of Program

labels

a

progrant

paths

9(s)

Y
I —

f(s)

assertions
P(s) pre—conditio
R(s) loop invarian
h(s)

Q(9) post—conditon

P (sg) A pc(sk) =7 — Q(sk).

41

Verification Conditions

labels programm paths assertions

a P(s) pre—conditia
T f(s)

B .t R(s) loop invariar
--------- a(s)
o h(s)

Y HALT v Q(s) post—conditbn

(s) = R(f (s)),
VC2. R(s) At — R(g(s)), and
(

VC3. R(s) A—t — Q (h(s)).

42

Can you prove
Theorem:
P (so) A pc(si) =7 — Q (sk).

using operational semantics, by proving

VCL1. P(s) = R(f (s)),
VC2. R(s) ANt — R(g(s)), and
VC3. R(s) A=t — @ (h(s))

without writing a VCG?

Theorem: P (sg) A pc(sip) =~ — Q (s)
Proof: Define

prog (s) =m A P (s) if pc(s) =«
Inv (5) = prog (s) =m N\ R (s) if pc(s) =p

prog (s) =m A Q (s) if pc(s) =~

Inv (step (s)) otherwise

Theorem: P (sg) A pc(sip) =~ — Q (s)
Proof: Define

prog (s) =m A P (s) if pc(s) =«
Inv (5) = prog (s) =m N\ R (s) if pc(s) =p
| prog(s) =7 A Q(s) if pc(s) =~

Inv (step (s)) otherwise

Objection: Is it consistent? Yes: Every tail-
recursive definition is witnessed by a total

function. (Manolios and Moore, 2000)

45

Theorem: P (sg) A pc(sip) =~ — Q (s)
Proof: Define

prog (s) =m A P (s) if pc(s) =«
Inv (5) = prog (s) =m N\ R (s) if pc(s) =p

prog(s) =mAQ(s) if pe(s) =1

Inv (step (s)) otherwise

It follows that

Inv (s) — Inv (step (s))

it VC1-V(C3 hold.

Theorem: P (sg) A pc(sip) =~ — Q (s)
Proof: Define

prog (s) =m A P (s) if pc(s) =«
Inv () = prog (s) =7 A R (s) if pc(s) =7
| prog(s) =m A Q (s) if pc(s) =~

Inv (step (s)) otherwise

The attempt to prove
Inv (s) — Inv (step (s))
will generate VC1-VC3 (Moore, 2003).

ACL2 Demo 5

What just happened?
We took

e a theorem prover and

e a formal operational semantics

and did an VCG-style proof without writing
a VCG!

A VCG for the JVM modeled at this level
of detail would be very hard to get right!

49

This method of generating VCs allows the
invariants to participate in the control flow
exploration.

This method of generating VCs rationalizes
the universal mix of VCG and on-the-fly
simplification.

Inductive assertion proofs can be mixed
direct operational semantics proofs.

50

Back to the Future?

The idea that theorem proving
environments can be used as programming
environments Is not new.

Prolog evolved In precisely this way in the
resolution theorem proving communities of

the 1970s.

51

Acknowledgements

Thanks to Bishop Brock, Rich Cohen,
Warren Hunt, Robert Krug, Hanbing Liu,
Matt Kaufmann, Pete Manolios, George
Porter, Sandip Ray, and Rob Sumners, plus
dozens of other Nqthm /ACL2 users.

Thank you for listening.

J Moore
Austin, Texas / April, 2004

52

