
Toward Practical Formal Analysis of Flight Control Systems in a
Model-Based Development Environment

Highlights of the CerTA FCS Program

DISTRIBUTION STATEMENT A. Approved for Public Release

AFRL Case Number: 88ABW-2009-1523
LM PIRA: AER200903029

Copyright © 2009 by Lockheed Martin Corporation. All Rights Reserved.

20.May.2009
Walter Storm

2

Background (VVIACS)

• System Complexity is
Exponentially Increasing

• Future Military Program Testing
Hours Are Forecast to Triple

• Testing Consumes Over 1/3 of the
System Development Cost

3

Background – V&V Cost and Schedule
Have the Most Impact on Development

• Single-Vehicle ECS Increases Development Costs ~ 50%, V&V Costs ~ 100%, and Critical Path Length ~ 50%

• Multiple-Vehicle ECS Increases Development Costs ~ 100%, V&V Costs ~ 150%, and Critical Path Length ~ 125%

• Software: Single-Vehicle 100% Increase and Multiple-Vehicle 200% Increase in V&V Costs

• Test: Single-Vehicle 150% Increase and Multiple-Vehicle 250% Increase in V&V Costs

ECS Impact on System Development Cost by Functional Discipline

Baseline Single-Vehicle Multi-Vehicle

Emerging Control System

De
ve

lo
pm

en
t C

os
t

TEST
SW
HW
TTD
CLAW
HWPA
SIM
S&C
OTHER
SYS

ECS Impact on Critical Path

Baseline Single-Vehicle Multi-Vehicle

Emerging Control System

Cr
itc

al
 P

at
h

Le
ng

th

4

Total Cost of System Testing

• The total cost of Integrated System Testing for Program X
includes many resources often taken for granted.

Resource Assumption Hourly Rate

Simulation Hardware $1.2M/7yr, 2000hr/yr $ 85.70

Flight Hardware $800K/7yr, 2000hr/yr $ 57.14

Test Station $1.2M/7yr, 2000hr/yr $ 85.71

Simulation Support $150/hr * 2 $ 300.00

Test Engineer $200/hr $ 200.00

Facility $15M/30yr, 2000hr/yr $ 250.00

Power Requirements 2000kW @ 0.14/kw-H $ 280.00

Total $1,258.55

• In all, a full-up test program can cost over $20 per minute.

5

Defect Cost vs. Development Phase

• It is imperative that software defects are identified
early in the development cycle.

– Defects found during test cost 15x more to fix
than those found during design.

6

The Goal for CerTA FCS

• Detect errors during system design.

• Maximize system test resource utilization.

• Demonstrate a reduction in system development cycle
time as proposed by VVIACS.

7

CerTA FCS Technology Focus
• We chose to focus on VVIACS technologies that:

– Best align with the CerTA FCS goal
– Offer the best balance between:

• Overall Cost/Benefit Ratio
• Near-/Mid-/Far- Term Application

VVIACS Technologies
Ranked according to

Overall Cost/Benefit Ratio

8

CerTA FCS Objectives
• Develop and integrate a demonstration

environment with an advanced flight control
system for a UAV that provides a platform for
assessing new certification techniques (Tasks
1&2).

• Show how Automated Verification Management
can be applied to existing infrastructure to
optimize certification tasks (Task 3).

• Apply Model Checking to a representative flight
control system to prove critical properties of
complex redundancy management (Task 4).

9

CerTA FCS Objectives Cont’d

• Extend Theorem Proving technology to address
infinite-state systems within the safety-critical
flight control domain (Task 5).

• Assess the improvements to the certification
process made by these advancements (Task 6).

• Provide a technology roadmap in terms of future
advancements required for further demonstration
and assessment (Tasks 3, 4, &5).

10

Program Approach

• Our certification
technologies used the
same baseline system
for development.

11

Research Findings – Model Checking

• Finite-State Model Checking offers immediate benefit
to the certification process

– Finds subtle errors that are difficult to test (e.g.,
intermittent failures)

– Finds errors during system design (1x cost to fix)

– Reduces system testing, as tests shift focus from
V&V of design to V&V of integrated system
operation.

12

Baseline Representative UAV
• Our CerTA FCS technologies were demonstrated

on the Sea-Based Endurance UAV.

13

Inner-Loop Control System
• Dynamic Inversion CLAW

– Supports ‘design-to-flying-qualities’ philosophy
– Eliminates ‘tuning’ of large gain schedules

• Indirect Adaptation via Parameter ID
– Additional robustness in presence of system failures or

unforeseen conditions

14

Baseline Triplex System Implementation

15

Analysis process
Automated infrastructure

• Simulink + StateFlow models are automatically translated
NuSMV verification model
– includes CTL properties
– type substitutions

Esterel Technologies
Rockwell Collins

Design
Verifier

MathWorks
SRI International

SCADE

Lustre

NuSMV

PVS

Safe State
Machines

SAL

ICS

Symbolic
Model Checker
Bounded
Model Checker

Infinite
Model Checker

SAL

ICS

Symbolic
Model Checker
Bounded
Model Checker

Infinite
Model Checker

Simulink
Simulink
Gateway

StateFlow

Simulink
Simulink
Gateway

StateFlow

Reactive Systems

ReactisReactis

ACL2

Prover

16

Finite State Analysis
Redundancy Manager demonstration

• Sensor fusion, failure detection, and reset
management for sets of triply redundant
sensors

• FHT factored into separate failure_
processing model to reduce state

• Fixed-point operations for bit manipulation
replaced by simpler blocks

4
input_sel

3
totalizer_cnt

2
persistence_cnt

1
failure_report

pc

trigger

input_a

input_b

input_c

DST_index

input_sel

triplex_input_selector

input_a

input_b

input_c

trip_lev el

persist_lim

MS

f ailreport

pc

tc

triplex_input_monitor

trip_level
trip_level1

persist_lim
persistence limit

[DSTi]

[C]

[B]

[status_c]

[status_b]

[status_a]

[A]

[trigger]

[DSTi]
[MS]

[MS]

[DSTi][A]

[prev_sel]

[prev_sel]

[DSTi]

[trigger]

[trigger]

[status_c]

[status_b]

[status_a]

[A]

[A]

Index
Vector

[C]

[B]

[C]

[B]

[C]

[B]

f ailure_report

dst_index

Failure_Processing

mon_f ailure_report

status_a

status_b

status_c

prev _sel

input_a

input_b

input_c

f ailure_report

Failure_Isolation

Extract Bits
[0 3]

Extract Bits

DOC
Text

double

DST

Data Store
Read

8
dst_index

7
status_c

6
status_b

5
status_a

4
input_c

3
input_b

2
input_a

1
syn c

persist_lim

totalizer_cnt<tc>

trip_lev el

persistence_cnt<pc>

sy nc<>

f ailreport

Subsystem Subsystems
/ Blocks

Charts /
Transitions /

TT Cells

Reachable
State
Space

Properties Confirmed
Errors

Triplex voter
no FHT 10 / 96 3 / 35 / 198 6.0 * 1013 48 5

failure
processing 7 / 42 0 / 0 / 0 2.1 * 104 6 3

reset
manager 6 / 31 2 / 26 / 0 1.32 * 1011 8 4

Totals 23 / 169 5 / 61 / 198 N/A 62 12

triplex
monitor

failure
isolation

sensor
fusion

failure
processing
(logging)

17

Redundancy Manager
Recurring analysis effort

• 25% cost for model
preparation (blue)

– Models were not
designed for analysis

• 50% cost for initial
verification (yellow)

– Property Formalization
– Analysis
– Counterexample

Understanding and
Explanation

• 25% rework cost (green)
– Fixing Counterexamples
– Re-running analysis

• Usually, model prep cost
is lower, rework is higher

Effort by Subtask

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

Prep
: U

nd
ers

tan
d D

om
ain

 M
od

el

Prep
: M

od
ify

 D
om

ain
 M

od
el

Prep
: U

nd
ers

tan
d R

eq
uir

em
en

ts

Prep
: W

rite
 Form

al
Req

uir
em

en
ts

Veri
fy:

 G
en

era
te

Mod
el

Veri
fy:

 W
rite

 R
eq

uir
em

en
ts

Veri
fy:

 E
xe

cu
te

Veri
fic

ati
on

Veri
fy:

 A
na

lyz
e R

es
ult

s

Rew
ork

: M
od

ify
 D

om
ain

 M
od

el

Rew
ork

: M
od

ify
 R

eq
uir

em
en

ts

Rew
ork

: R
un

 V
eri

fic
ati

on

Rew
ork

: A
na

lyz
e V

eri
fic

ati
on

 R
es

ult
s

18

• Successful demonstration
– Collected metrics for verification of

OFP redundancy management system
– Extension of analysis framework
– Design verification  shift from

test-based to formal analysis

Testing vs. Model Checking

1240%
060%

Errors foundEffort % of Total

Task 4 Study:
OFP Redundancy Manager

Testing

FM

Lockheed Aero – Testing RCI – Model Checking

• Enhanced During CerTA FCS

• Based on SIMON Test Rig

– Graphical Viewer of Test Cases
– Support for XML/XSLT Test Cases
– Added C++ Oracle Framework

• Developed Tests from Reqts

• Executed Tests Cases on SIMON

• Developed Properties from Reqts

– Support for Simulink blocks
– Support for Stateflow
– Support for Prover model-checker

• Enhanced During CerTA FCS

• Based on Gryphon Model-Checker

• Proved Properties using Gryphon

19

Preparation Initial Test Rework Grand Total

H
ou

rs
Test vs. FM Recurring Task Totals in Hours

Test FM

Testing vs. Model Checking

Test: Preparation involves
writing the tests cases
FM: Preparation is the time
to write the properties and
set up the models for
analysis

Test: Initial Test is just
the time required to run
the tests
FM: Initial Test involved
running the tools, then
analyzing the
counterexamples and
creating a new model
iteration.

FM: Rework includes
another iteration of analysis
to fix model errors
discovered in Initial test
Test: Rework corrects
problems found in the test
cases themselves

Testing Model-Checking

FM: Includes times to
run analysis, diagnose
errors, fix errors in
requirements and
models, and re-analyze
fixed models
Test: Includes only time
to create, run, and fix
errors in test cases

20

• Successful application to formal verification to significant finite
state software design

• Finite state model checking can provide:
– Cost savings through automated analysis
– Risk reduction through comprehensive & early error detection
– Value-added process 

Smoother integration through explicit specification of component
interfaces and environmental assumptions & constraints

• Complementary to traditional V&V processes
• Task 4 Report

– Guidance for insertion and use of automated translation and
analysis environment into MBD process

Task 4 summary
Finite State Formal Methods

21

• Model checking and testing are complementary

Formal Methods vs. Testing

System

Testing Model Checking

Task 4
Task 5

• Errors are always made during development

• Testing can be used everywhere
…but does not provide complete coverage

• Model-checking is very good at finding errors
…but doesn’t work everywhere

• Use model-checking where it
works now
…technology is improving

rapidly and will be even
better in the future

22

Demonstration Results
• Successful demonstration

– Collected metrics for verification of
OFP redundancy management
system

– Extension of analysis framework
– Design verification  shift from test-

based to formal analysis 1240%
060%

Errors foundEffort % of Total

OFP Redundancy Manager

Testing

FM

Lockheed Martin – Testing RCI – Model Checking

• Enhanced During CerTA FCS

• Based on SIMON within AVVE

– Graphical Viewer of Test Cases
– Support for XML/XSLT Test Cases
– Added C++ Oracle Framework

• Developed Tests from Reqts

• Executed Tests Cases in AVVE

• Developed Properties from Reqts

– Support for Simulink blocks
– Support for Stateflow
– Support for Prover model-checker

• Enhanced During CerTA FCS

• Based on Gryphon Model-Checker

• Proved Properties using Gryphon

23

Analysis Approach

• Determine Significance of Results
– Why were no errors found by test?
– What types of errors did Formal Methods find?
– What is the impact on the bottom line

(cost/schedule)?

• Tie-Back to VVIACS
– Where are these technologies applicable?
– What V&V parameters do these technologies

affect?

24

Why No Errors were Found by Testing

• Primarily, the demonstration was not a
comprehensive test program.
– Although some of these errors could be found through

test, the cost would be much higher. (not only to find, but
also to fix)

• Furthermore, the types of errors were those that
are infeasible to test at the system level.
– i.e.:

• Intermittent Failures
• Near-Simultaneous Failures
• Combinatory Failure Sequences

25

What Types of Errors did
Formal Methods Find?

• Of the 12 errors found using formal methods, for
this example:
– 4 would be classified Severity 3 (Severities 1&2 affect

safety of flight.)
– 2 would be classified Severity 4
– 2 resulted in requirement changes
– 1 was redundant
– 3 were not applicable (requirement not implemented in

demo system)

• Given a comprehensive test program:
– 1 of the Severity 3 errors would likely be found
– Both of the Severity 4 errors would likely be found

26

Impact on Cost/Schedule

• The use of model checking results in a robust
system design that reduces integration and static
testing effort.

– Integration and static tests can now be written at a higher
level with fewer combinations of cases, thus allowing
fewer tests to offer the same level of confidence as the
original test plan previously would.

27

Where do we go from here?

• Obvious Gaps
– Completeness/Consistency of Requirements

• Although Formal Methods provides an iron-clad analysis of
specified system properties, the question remains: “Do the
properties adequately characterize the system?”

– Sound and Thorough Risk Analysis
• Complex inhabited systems assume a certain level of acceptable

risk based on a pilot’s training and awareness.
• What is an equally acceptable threshold for software?

– Technology and Process Integration
• There is no single technique on which certification of advanced

flight-critical systems can rely.

	Toward Practical Formal Analysis of Flight Control Systems in a �Model-Based Development Environment �Highlights of the CerTA FCS Program
	Background (VVIACS)
	Background – V&V Cost and Schedule � Have the Most Impact on Development
	Total Cost of System Testing
	Defect Cost vs. Development Phase
	The Goal for CerTA FCS
	CerTA FCS Technology Focus
	CerTA FCS Objectives
	CerTA FCS Objectives Cont’d
	Program Approach
	Research Findings – Model Checking
	Baseline Representative UAV
	Inner-Loop Control System
	Baseline Triplex System Implementation
	Analysis process�Automated infrastructure
	Finite State Analysis�Redundancy Manager demonstration
	Redundancy Manager�Recurring analysis effort
	Testing vs. Model Checking
	Testing vs. Model Checking
	Task 4 summary�Finite State Formal Methods
	Formal Methods vs. Testing
	Demonstration Results
	Analysis Approach
	Why No Errors were Found by Testing
	What Types of Errors did � Formal Methods Find?
	Impact on Cost/Schedule
	Where do we go from here?
	Slide Number 28

