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Background (VVIACS)

• System Complexity is 
Exponentially Increasing

• Future Military Program Testing 
Hours Are Forecast to Triple

• Testing Consumes Over 1/3 of the 
System Development Cost
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Background – V&V Cost and Schedule 
Have the Most Impact on Development

• Single-Vehicle ECS Increases Development Costs ~ 50%, V&V Costs ~ 100%, and Critical Path Length ~ 50%

• Multiple-Vehicle ECS Increases Development Costs ~ 100%, V&V Costs ~ 150%, and Critical Path Length ~ 125%

• Software:  Single-Vehicle 100% Increase and Multiple-Vehicle 200% Increase in V&V Costs

• Test:  Single-Vehicle 150% Increase and Multiple-Vehicle 250% Increase in V&V Costs

ECS Impact on System Development Cost by Functional Discipline
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Total Cost of System Testing

• The total cost of Integrated System Testing for Program X 
includes many resources often taken for granted.

Resource Assumption Hourly Rate

Simulation Hardware $1.2M/7yr, 2000hr/yr $           85.70 

Flight Hardware $800K/7yr, 2000hr/yr $           57.14 

Test Station $1.2M/7yr, 2000hr/yr $           85.71 

Simulation Support $150/hr * 2 $         300.00 

Test Engineer $200/hr $         200.00 

Facility $15M/30yr, 2000hr/yr $         250.00 

Power Requirements 2000kW @ 0.14/kw-H $         280.00 

Total $1,258.55 

• In all, a full-up test program can cost over $20 per minute.
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Defect Cost vs. Development Phase

• It is imperative that software defects are identified 
early in the development cycle.

– Defects found during test cost 15x more to fix 
than those found during design.
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The Goal for CerTA FCS

• Detect errors during system design.

• Maximize system test resource utilization.

• Demonstrate a reduction in system development cycle 
time as proposed by VVIACS.
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CerTA FCS Technology Focus
• We chose to focus on VVIACS technologies that:

– Best align with the CerTA FCS goal
– Offer the best balance between:

• Overall Cost/Benefit Ratio
• Near-/Mid-/Far- Term Application

VVIACS Technologies 
Ranked according to 

Overall Cost/Benefit Ratio
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CerTA FCS Objectives
• Develop and integrate a demonstration 

environment with an advanced flight control 
system for a UAV that provides a platform for 
assessing new certification techniques (Tasks 
1&2).

• Show how Automated Verification Management 
can be applied to existing infrastructure to 
optimize certification tasks (Task 3).

• Apply Model Checking to a representative flight 
control system to prove critical properties of 
complex redundancy management (Task 4).
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CerTA FCS Objectives Cont’d

• Extend Theorem Proving technology to address 
infinite-state systems within the safety-critical 
flight control domain (Task 5).

• Assess the improvements to the certification 
process made by these advancements (Task 6).

• Provide a technology roadmap in terms of future 
advancements required for further demonstration 
and assessment (Tasks 3, 4, &5).
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Program Approach

• Our certification 
technologies used the 
same baseline system 
for development.
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Research Findings – Model Checking

• Finite-State Model Checking offers immediate benefit 
to the certification process

– Finds subtle errors that are difficult to test (e.g., 
intermittent failures)

– Finds errors during system design (1x cost to fix)

– Reduces system testing, as tests shift focus from 
V&V of design to V&V of integrated system 
operation.
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Baseline Representative UAV
• Our CerTA FCS technologies were demonstrated 

on the Sea-Based Endurance UAV.
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Inner-Loop Control System
• Dynamic Inversion CLAW

– Supports ‘design-to-flying-qualities’ philosophy
– Eliminates ‘tuning’ of large gain schedules

• Indirect Adaptation via Parameter ID
– Additional robustness in presence of system failures or 

unforeseen conditions
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Baseline Triplex System Implementation
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Analysis process
Automated infrastructure

• Simulink + StateFlow models are automatically translated 
NuSMV verification model
– includes CTL properties
– type substitutions
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Finite State Analysis
Redundancy Manager demonstration

• Sensor fusion, failure detection, and reset 
management for sets of triply redundant 
sensors

• FHT factored into separate failure_
processing model to reduce state

• Fixed-point operations for bit manipulation 
replaced by simpler blocks
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Redundancy Manager
Recurring analysis effort

• 25% cost for model 
preparation (blue)

– Models were not 
designed for analysis

• 50% cost for initial 
verification (yellow)

– Property Formalization
– Analysis
– Counterexample 

Understanding and 
Explanation

• 25% rework cost (green)
– Fixing Counterexamples
– Re-running analysis

• Usually, model prep cost 
is lower, rework is higher
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• Successful demonstration 
– Collected metrics for verification of 

OFP redundancy management system
– Extension of analysis framework
– Design verification  shift from 

test-based to formal analysis

Testing vs. Model Checking

1240%
060%

Errors foundEffort % of Total

Task 4 Study:
OFP Redundancy Manager

Testing

FM

Lockheed Aero – Testing RCI – Model Checking

• Enhanced During CerTA FCS

• Based on SIMON Test Rig

– Graphical Viewer of Test Cases
– Support for XML/XSLT Test Cases
– Added C++ Oracle Framework

• Developed Tests from Reqts

• Executed Tests Cases on SIMON

• Developed Properties from Reqts

– Support for Simulink blocks
– Support for Stateflow
– Support for Prover model-checker

• Enhanced During CerTA FCS

• Based on Gryphon Model-Checker

• Proved Properties using Gryphon
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Preparation Initial Test Rework Grand Total

H
ou

rs
Test vs. FM Recurring Task Totals in Hours

Test FM

Testing vs. Model Checking

Test:  Preparation involves 
writing the tests cases
FM: Preparation is the time 
to write the properties and 
set up the models for 
analysis

Test: Initial Test is just 
the time required to run 
the tests 
FM: Initial Test involved 
running the tools, then 
analyzing the 
counterexamples and 
creating a new model 
iteration.

FM: Rework includes 
another iteration of analysis 
to fix model errors 
discovered in Initial test 
Test: Rework corrects 
problems found in the test 
cases themselves

Testing Model-Checking

FM: Includes times to 
run analysis, diagnose 
errors, fix errors in 
requirements and 
models, and re-analyze 
fixed models  
Test: Includes only time 
to create, run, and fix 
errors in test cases  



20

• Successful application to formal verification to significant finite 
state software design

• Finite state model checking can provide:
– Cost savings through automated analysis
– Risk reduction through comprehensive & early error detection
– Value-added process 

Smoother integration through explicit specification of component 
interfaces and environmental assumptions & constraints

• Complementary to traditional V&V processes
• Task 4 Report

– Guidance for insertion and use of automated translation and 
analysis environment into MBD process 

Task 4 summary
Finite State Formal Methods
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• Model checking and testing are complementary

Formal Methods vs. Testing

System

Testing Model Checking

Task 4
Task 5

• Errors are always made during development

• Testing can be used everywhere
…but does not provide complete coverage

• Model-checking is very good at finding errors
…but doesn’t work everywhere

• Use model-checking where it 
works now
…technology is improving 

rapidly and will be even 
better in the future
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Demonstration Results
• Successful demonstration 

– Collected metrics for verification of 
OFP redundancy management 
system

– Extension of analysis framework
– Design verification  shift from test-

based to formal analysis 1240%
060%

Errors foundEffort % of Total

OFP Redundancy Manager

Testing

FM

Lockheed Martin – Testing RCI – Model Checking

• Enhanced During CerTA FCS

• Based on SIMON within AVVE

– Graphical Viewer of Test Cases
– Support for XML/XSLT Test Cases
– Added C++ Oracle Framework

• Developed Tests from Reqts

• Executed Tests Cases in AVVE

• Developed Properties from Reqts

– Support for Simulink blocks
– Support for Stateflow
– Support for Prover model-checker

• Enhanced During CerTA FCS

• Based on Gryphon Model-Checker

• Proved Properties using Gryphon
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Analysis Approach

• Determine Significance of Results
– Why were no errors found by test?
– What types of errors did Formal Methods find?
– What is the impact on the bottom line 

(cost/schedule)?

• Tie-Back to VVIACS
– Where are these technologies applicable?
– What V&V parameters do these technologies 

affect?
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Why No Errors were Found by Testing

• Primarily, the demonstration was not a 
comprehensive test program.
– Although some of these errors could be found through 

test, the cost would be much higher. (not only to find, but 
also to fix)

• Furthermore, the types of errors were those that 
are infeasible to test at the system level.
– i.e.:

• Intermittent Failures
• Near-Simultaneous Failures
• Combinatory Failure Sequences 
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What Types of Errors did 
Formal Methods Find?

• Of the 12 errors found using formal methods, for 
this example:
– 4 would be classified Severity 3 (Severities 1&2 affect 

safety of flight.)
– 2 would be classified Severity 4
– 2 resulted in requirement changes
– 1 was redundant
– 3 were not applicable (requirement not implemented in 

demo system)

• Given a comprehensive test program:
– 1 of the Severity 3 errors would likely be found
– Both of the Severity 4 errors would likely be found
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Impact on Cost/Schedule

• The use of model checking results in a robust 
system design that reduces integration and static 
testing effort.

– Integration and static tests can now be written at a higher 
level with fewer combinations of cases, thus allowing 
fewer tests to offer the same level of confidence as the 
original test plan previously would.
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Where do we go from here?

• Obvious Gaps
– Completeness/Consistency of Requirements

• Although Formal Methods provides an iron-clad analysis of 
specified system properties, the question remains: “Do the 
properties adequately characterize the system?”

– Sound and Thorough Risk Analysis
• Complex inhabited systems assume a certain level of acceptable 

risk based on a pilot’s training and awareness.
• What is an equally acceptable threshold for software?

– Technology and Process Integration
• There is no single technique on which certification of advanced 

flight-critical systems can rely.
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