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‘7 Distributed Control of Multi-
Agent Systems

Actuation
Computation
\

- -

= Basic models of flocking
behavior are controlled by three

simple rules:

= Separation - avoid crowding
neighbors

= Alignment - steer towards

[ Group Objective: Flocking J average heading of neighbors
= Cohesion - steer towards

average position of neighbors

Communication
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E? Distributed Parameter Estimation

Sensor
Network

Physical Phenomenon

All sensors measure independently
some physical phenomenon with
some error due to noise
y,=0+v,v, ~ N(0,0'l.z),i =1,2,...,n
The sensors improve their estimate
by averaging the measurements

Minimum variance estimate
I 1
A ;EH?)’;‘
O =Tar 1
g
It can be asymptotically computed
in a distributed fashion using two

average consensus algorithms in
parallel




‘7 Consensus in Networked
Multi-agent Systems

Synchronous linear iterative
CONSensus

x,(t+ ) =w,(Ox, D+ > w,()x,(1)
JEN!"(1)
Conditions

There exists 0 < o < 1 such
that

w, ()= a,Vi,t
w, (1) =0 if j & N;" (1), Vi, j,t
w, (= aif jE N (1),Vi, j,t

EH w,(t)=1LVi,t

Consensus is reached if there
exists a rooted out-branching
periodically over time (in the
union of digraphs)

Ry~
g

= Resilient consensus in the
presence of adversaries

= Applications

Vehicle rendezvous, formation
control, parameter estimation,
least squares data regression,
sensor calibration, time
synchronization, node

counting, Kalman filtering, ...
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Adversary models
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V Adversary Models

= Crash Adversary = F-Total Model
= Malicious Adversary At most F adversaries in the

entire network
Must convey the same

information to all neighbors " F-Local Model
= Local broadcast model At most F adversaries in the
= Byzantine Adversary neighborhood of any normal
C different noce
an conve :
informationznl to different " J-Fraction Local Model
neighbors At most a fraction fof

adversaries in the neighborhood
of any normal node

= All adversaries are omniscient
Topology of the network

States and algorithms of the
other nodes

Other adversaries (can
collude)

3-total, 3=local, (3/5)-fraction local 7



V Adversarial Resilient Consensus
Protocol gARC-Pz

= Weighted consensus protocol with selective reduce
Parameter F (or )
» F.(¢)=F if the parameter is F
= F.(ty= |fdi(t)] if the parameter is f
Nonnegative, piecewise continuous, bounded weights
" 0<a<wgy,(t)< B ifjis aneighbor at time ¢
" W(,4) (t) =0 otherwise
Compare values of neighbors with own value x; (¢)
= Remove (up to) F;(¢) values strictly larger than x, (¢)
= Remove (up to) F;(¢) values strictly smaller than x, (¢)

Let R;(t) denote the set of nodes whose values are
removed

Update as

zi(t + 1) = wg g (H)zi(t) + Z w0 (02 .0(t)
FENIR($)\ R (t)



E? Resilient Asymptotic Consensus

= Hybrid system dynamics '

:Bi(t + 1) — fz’,a(t) (t, (Ei(t), {(E(j,i)(t)}), 1€ N,] - Mln, t € ZZO, Da(t) cl',
= Agreement Condition

tlif?o U(t) =0 where U(t) = M (t) — mas(t)

= Safety Condition
2;(t) € T, = [mpr(t), Mar(t)], Yt E Zso,Vi €N

= Weighted Mean-Subsequence-Reduced (W-MSR) Algorithm

FJEN™ (1) \Ri (1)



V Robust Network Topologies

(2,4)-robust

= We need a new graph theoretic property to capture local
redundancy

= Specify a minimum number of nodes that are
sufficiently influenced from outside their set

= (r,s)-robustness: For every pair of honempty disjoint
sets, there are at least s nodes with at least r in-
neighbors outside their respective sets
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V Robust Networks

Sufficient

Crash & F-Total (F+1,F+1)-robust (F+1,F+1)-robust

Malicious

Crash & F-Local (F+1,F+1)-robust (2F+1)-robust

Malicious

Crash & f~Fraction f~fraction robust p-fraction robust, where 2f<p < 1

Malicious local

Byzantine F-Total &  Normal Network 1s (F+1)- Normal Network is (F+1)-robust
F-Local robust

Byzantine f-Fraction = Normal Network is f~robust Normal Network is p-robust where

local p>f

= Normal network is the network induced by the normal nodes

= Necessary Conditions for F-Total and F-Local are necessary for any
successful DTRAC algorithm

[LeBlanc et al., IEEE JSAC, April 2013] 1



E’ Simulation Results

LCP
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E? Construction of Robust Networks

= Let D=(V, E) be a nontrivial (r,s)-robust digraph .
Then, D'=(VU {v_ .}, EUE ) wherev_ . isanew

node added to D and £, is the directed edge set
related to v_.., is (r,s)-robust if

dif;ewz r+s—1

new/

Preferential-attachment model
Initial graph: K
K is (3,2)-robust
Num edges / round: 4
End with (3,2)-robust graph
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V Overview

= Resilient Consensus Protocols with Trusted Nodes
Connected Dominating Set
Trusted Nodes and Network Robustness
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Trusted Nodes

I .
i Advanced metering
1

. infrastructure (AMI)
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Smart appliances (SA)

= Assume that some nodes are trusted
AMI is generally more secure than SA

= Can we exploit the notion of trusted nodes for relaxing
the redundancy conditions?
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V Resilient Consensus Protocol with @
Trusted Nodes (RCP-T

zi(k+1) = wij (k)
ja

= If node i is connected to at least one trusted node

x7—2 . o I F oA 'CCTl _ . |T; ‘CUT] . 377'-2 . . _ . |Z; le . 377—2 .
—_—— —
Collect values from neighbors Sort Ri(k)
( 7y, Ly, aretrustworthy nodes’ values)
= If node i is not connected to any trusted node
-l - . > . Tl - | . . > il - |-
——
Ri(k)
qulect values from Sort Remove F largest and F
neighbors

smallest values (Here, F=2)

16



V Connected Dominating Set

Connected Dominating Set

Dominating Set

DCV, st U Ny=V

v; €D

Nodes in the dominating set induce a
connected subgraph

= Under RCP-T, consensus is always achieved in the
presence of arbitrary number of adversaries if and only if

there exists a set of trusted nodes that form a
connected dominating set

[Abbas et al., ISRCS 2014, Submitted] 17



(2,2)-Robust Graph

Attacked nodes = {4,6}
Trusted nodes = {3, 7}

RCP-T
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RCP-T achieves consensus in the presence of two adversaries
ARC-P algorithm can handle a single adversary but not two

70
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Tree Networks

o £ £ ot i
' I :
+ Attacked nodes = {5,10,15,17,21} <] Advanced metering
H | :
: infrastructure
' Trusted nodes = {3,7,12, 18, 26
i
i
!
1
i 15 50 95
i , AN
SRRV S WS S D/ 0 W NSO g0 N WO\ NP PR NN S
D G OO0 W DR H DD D
110 20 40 50 60 80 90 100 110 130 140 150 160 170 190 200 210 220 230 240 250,
! !
L Smart appliances
250 T T BCP.-T T T T " ARC-P
= = = Trustworthy 250 T T T T T u U
P e l’:lllgrlzziaolus { ''''' a(:l'irzii[us
200 , , = .
; \\ ; \‘ I 200
15(1{7\< y ~ \\ ! \|,’ i ,’ Tl s S
g = .0 P L
é I/::_::'.--\- ‘ 1 \ %
100§ ~7 ~ - ! ! k =
77 4 ‘\ \,\‘\ \ 1 \ 100
O A e T B
I \ /’ ‘\ ,I (] T
00 1 I0 2‘0 3‘0 4‘0 5‘0 GIU 70 80 0 L L L L L L L
Time step 0 10 20 30 40 50 60 70 80
Time step

 RCP-T achieves consensus even with five adversaries
* ARC-P algorithm is not resilient even to a single adversary 19



‘7 Trusted Nodes and Network
Robustness

= The connected domination number J is the number of vertices
in the minimum connected dominating set

= If the number of trusted nodes is at least d, the network can be
made resilient against any number of adversaries

= Can we improve resilience if the number of trusted nodes < d?

Resilient against a
(2,2)-robust <—> single attack (with no
trusted nodes)

d=4  <—> Resilient against any no. of
attacks (with 4 trusted nodes)

With any three trusted nodes, the network is not resilient against
two adversarial attacks.

)
J
N
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V Overview

= Distributed Simulation Testbed
C2 Wind Tunnel (C2WT)
Industrial Control Systems

= Conclusions
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Command and Control Wind Tunnel
OWT

. Delta3D | | DEVS-
CPN Simulink Terrain || Java OMNeT++

Simulation models

Domain-specific models
(abstract simulation models)

-Data models

(interaction & data models) N .”—1 S ‘

-Integration models o ' Np—

(data-flow, timing, parameters) | — i (] =] t Nflodel .
-Compute Infrastructure models — == | FanSIoTRason

-Deployment models
-Experiment models
-Configuration models

OMNeT+ | CPN | DevsdJava | Simulink | Physics si:z’;::i’;n
: : federate | federate | federate | federate | federate
Domain specific federates federate

High-Level Architecture (HLA) Run-Time Infrastructure (RTI): Portico (open source)
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C2WT Capabilities

Federates

Simulation Tools

-Simulink
-Omnet++/Ns-2
-DEVSJAVA
-Ogre3D/Delta3D
-Google Earth
-CPN Tools
-Java/C/C++
-FMU-CS, etc.

Passive Federates
-Data loggers
-Monitors
-Analysis
-Prognostics
-Projections

Live components

UAVs
Command &
Control

Live deployment
feedback

Live traffic
conditions
Emergency
Response
Human-in-the-
loop

Advanced support
-Computeinfra-

structure models
-Deployment config
-Remote execution
Expt. config

-Legacy sys. & FOMs
(FOM-mapping)
-Course-Of-Action
(COA) Simulation
-Blue Vs Adversary
game generations

v

v

C2 Wind Tunnel Component Integration Framework

~

it

Run-Time Infrastructure (RTI)

23



E? Industrial Control Systems (ICS)

Control Center

T l high level control loop T l

Field Device Field Device

) v local control loop *
Sensor Actuator Sensor Actuator

A A
\d

Process

= Control center communicates with field devices
interacting with the process

= Two levels of control loops:

High-level feedback loop over network
Low-level feedback loop local to physical process

24



V ICS Simulations using C2WT

Network (OMNeT++)

Controller (Simulink

Simulink glue code OMNeT++ glue code Simulink glue code

DoD/HLA Simulation Architecture
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Simulation of DDOS Attack

Plant (Simulink)
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Cyber attack
destabilizes the liquid
level in the reactor
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V Conclusions

= Resilient Consensus Protocols in the Presence of
Adversaries

Exploit local information redundancy to ensure asymptotic
consensus

Characterize robust network topologies

= Resilient Consensus Protocols with Trusted Nodes
Trusted nodes form a connected dominating set

= Simulation of CPS using the C2 Wind Tunnel (C2WT)

Industrial Control Systems
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