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Distributed Control of Multi-
Agent Systems 

Group Objective: Flocking 
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Computation 
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Actuation 

Sensing 

Communication 

§  Basic models of flocking 
behavior are controlled by three 
simple rules: 
§  Separation - avoid crowding 

neighbors 
§  Alignment - steer towards 

average heading of neighbors 
§  Cohesion - steer towards 

average position of neighbors 
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Distributed Parameter Estimation 
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§  All sensors measure independently 
some physical phenomenon with 
some error due to noise 

§  The sensors improve their estimate 
by averaging the measurements  

§  Minimum variance estimate 

§  It can be asymptotically computed 
in a distributed fashion using two 
average consensus algorithms in 
parallel 
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Consensus in Networked  
Multi-agent Systems 

§  Synchronous linear iterative 
consensus 

 
 
§  Conditions 

§  There exists  0 < α < 1 such 
that 

§  Consensus is reached if there 
exists a rooted out-branching 
periodically over time (in the 
union of digraphs) 

§  Resilient consensus in the 
presence of adversaries 

§  Applications 
§  Vehicle rendezvous, formation 

control, parameter estimation, 
least squares data regression, 
sensor calibration, time 
synchronization, node 
counting, Kalman filtering, … 

4 

xi (t +1) = wii (t)xi (t)+ wij (t)x j (t)
j∈Ni

in (t )
∑

wii (t) ≥α,∀i, t
wij (t) = 0 if j ∉ Ni

in (t),∀i, j, t

wij (t) ≥α  if j ∈ Ni
in (t),∀i, j, t

wij (t) =1,∀i, t
j=1

n
∑

4 



Overview 

§  Resilient Consensus Protocols in the Presence of 
Adversaries 
§  Adversary models 
§  Robust Network Topologies 

§  Resilient Consensus Protocols with Trusted Nodes 
§  Connected Dominating Set  
§  Trusted Nodes and Network Robustness 

§  Distributed Simulation Testbed 
§  C2 Wind Tunnel (C2WT) 
§  Industrial Control Systems 

§  Conclusions 
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Adversary Models 

§  Crash Adversary 
§  Malicious Adversary 

§  Must convey the same 
information to all neighbors 
§  Local broadcast model 

§  Byzantine Adversary 
§  Can convey different 

information to different 
neighbors 

§  All adversaries are omniscient 
§  Topology of the network 
§  States and algorithms of the 

other nodes 
§  Other adversaries (can 

collude) 

§  F-Total Model 
§  At most F adversaries in the 

entire network 

§  F-Local Model 
§  At most F adversaries in the 

neighborhood of any normal 
node 

§  f-Fraction Local Model 
§  At most a fraction f of 

adversaries in the neighborhood 
of any normal node 

3-total, 3=local, (3/5)-fraction local  7 



Adversarial Resilient Consensus 
Protocol (ARC-P) 
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§  Weighted consensus protocol with selective reduce 
§  Parameter F (or f ) 

§  Fi (t) = F   if the parameter is F 
§  Fi (t) =                   if the parameter is f 

§  Nonnegative, piecewise continuous, bounded weights 
§                                              if j is a neighbor at time t 
§                                              otherwise 

§  Compare values of neighbors with own value xi (t) 
§  Remove (up to) Fi (t)  values strictly larger than xi (t) 
§  Remove (up to) Fi (t)  values strictly smaller than xi (t) 

§  Let            denote the set of nodes whose values are 
removed 

§  Update as 
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Resilient Asymptotic Consensus 

§  Hybrid system dynamics 
 
§  Agreement Condition 

 
§  Safety Condition 

 
§  Weighted Mean-Subsequence-Reduced (W-MSR) Algorithm 
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Robust Network Topologies 
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 §  We need a new graph theoretic property to capture local 
redundancy 

§  Specify a minimum number of nodes that are 
sufficiently influenced from outside their set 

§  (r,s)-robustness: For every pair of nonempty disjoint 
sets, there are at least s nodes with at least r in-
neighbors outside their respective sets  

 

(2,4)-robust 



Robust Networks 

§  Normal network is the network induced by the normal nodes 
§  Necessary Conditions for F-Total and F-Local are necessary for any 

successful DTRAC algorithm 

Threat Scope Necessary Sufficient 
Crash & 

Malicious 
F-Total (F+1,F+1)-robust (F+1,F+1)-robust 

Crash & 
Malicious 

F-Local (F+1,F+1)-robust (2F+1)-robust 

Crash & 
Malicious 

f-Fraction 
local 

f-fraction robust p-fraction robust, where 2f < p ≤ 1 
 

Byzantine F-Total &     
F-Local 

Normal Network is (F+1)-
robust 

Normal Network is (F+1)-robust 

Byzantine f-Fraction 
local 

Normal Network is f-robust Normal Network is p-robust where  
p > f 

11 [LeBlanc et al., IEEE JSAC, April 2013] 
 



Simulation Results 
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Oscillations: 8-agent network, 
3 adversaries 

Unsafe Region: 8-agent network, 
2 adversaries 



Construction of Robust Networks 

§  Let D=(V, E) be a nontrivial (r,s)-robust digraph .  
Then, D’=(V U {vnew}, E U Enew), where vnew is a new 
node added to D and Enew is the directed edge set 
related to vnew, is (r,s)-robust if  
       ≥ r + s –1 

 
Preferential-attachment model 

§  Initial graph: K5 

§  K5 is (3,2)-robust 
§  Num edges / round: 4 
§  End with (3,2)-robust graph 
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Trusted Nodes 
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§  Assume that some nodes are trusted 

§  AMI is generally more secure than SA 

§  Can we exploit the notion of trusted nodes for relaxing 
the redundancy conditions? 



Resilient Consensus Protocol with 
Trusted Nodes (RCP-T) 

§  If node i is connected to at least one trusted node 

§  If node i is not connected to any trusted node 

Collect values from neighbors Sort 

Collect values from 
neighbors 

Sort Remove F largest and F 
smallest values (Here, F=2) 

(                     are trustworthy nodes’ values) 
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Connected Dominating Set 

§  Under RCP-T, consensus is always achieved in the 
presence of arbitrary number of adversaries if and only if 
there exists a set of trusted nodes that form a 
connected dominating set 

Dominating Set Connected Dominating Set 
Nodes in the dominating set induce a 
connected subgraph 

17 [Abbas et al., ISRCS 2014, Submitted] 
 



(2,2)-Robust Graph 

RCP-T ARC-P 

•  RCP-T achieves consensus in the presence of two adversaries 
•  ARC-P algorithm can handle a single adversary but not two 
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Tree Networks 

RCP-T ARC-P 

•  RCP-T achieves consensus even with five adversaries 
•  ARC-P algorithm is not resilient even to a single adversary 19 



Trusted Nodes and Network 
Robustness  

§  The connected domination number d is the number of vertices 
in the minimum connected dominating set 

§  If the number of trusted nodes is at least d, the network can be 
made resilient against any number of adversaries 

§  Can we improve resilience if the number of trusted nodes < d? 

(2,2)-robust 
Resilient against a 

single attack (with no 
trusted nodes) 

Resilient against any no. of  
attacks (with 4 trusted nodes) 

With any three trusted nodes, the network is not resilient against 
two adversarial attacks. 

d = 4 
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Command and Control Wind Tunnel 
(C2WT) 
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C2WT Capabilities 
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Industrial Control Systems (ICS) 

§  Control center communicates with field devices 
interacting with the process 

§  Two levels of control loops: 
§  High-level feedback loop over network 
§  Low-level feedback loop local to physical process 
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ICS Simulations using C2WT 

Controller (Simulink) 
Process (Simulink) 

Network (OMNeT++) 

DoD/HLA	
  Simula.on	
  Architecture	
  

Simulink	
  glue	
  code	
   Simulink	
  glue	
  code	
  OMNeT++	
  glue	
  code	
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Simulation of DDOS Attack 

Cyber attack 
destabilizes the liquid 
level in the reactor 

Controller (Simulink) 

Plant (Simulink) 

Tennessee Eastman 
Reactor 

DDOS (OMNET) 
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Conclusions 

§  Resilient Consensus Protocols in the Presence of 
Adversaries 
§  Exploit local information redundancy to ensure asymptotic 

consensus 
§  Characterize robust network topologies 

§  Resilient Consensus Protocols with Trusted Nodes 
§  Trusted nodes form a connected dominating set  

§  Simulation of CPS using the C2 Wind Tunnel (C2WT) 
§  Industrial Control Systems 
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