
Toward a Provably�Correct Implementation of the JVM

Bytecode Veri�er

Alessandro Coglio Allen Goldberg Zhenyu Qian

July� ����

Kestrel Institute�
���� Hillview Avenue

Palo Alto� CA ������ USA
fcoglio� goldberg� qiang�kestrel�edu

Abstract

This paper reports on our ongoing e�orts to realize a provably�correct implementation

of the Java Virtual Machine bytecode veri�er� We take the perspective that bytecode

veri�cation is a data�ow analysis problem� or more generally� a constraint solving prob�

lem on lattices� We employ Specware� a system available from Kestrel Institute that

supports the development of programs from speci�cations� to formalize the bytecode

veri�er� and to formally derive an executable program from our speci�cation�

� Introduction

This paper� reports on our ongoing e	orts to realize a provably
correct implementation of
the Java Virtual Machine �JVM � bytecode veri
er �or simply the veri�er� from a formal
speci
cation using the Specware System� Specware �SJ���� a system available from
Kestrel Institute �KES�� supports the formal and provably
correct development of programs
from speci
cations written in a speci
cation notation based on high
order logic�

In previous papers �Qia��� Gol��� we have speci
ed the semantics of the JVM veri
er�
Collectively these papers deal with most aspects of the JVM including JVM subroutines�

�



dynamic class loading� object initialization� interface types� arrays� and all primitive types�
These papers take the perspective that bytecode veri
cation is a data �ow problem� or
more generally� a constraint solving problem on lattices� One advantage of this approach is
that implementation of a bytecode veri
er from such a speci
cation can be derived as an
instantiation of a generic algorithm for constraint solving�

In this paper� we describe our progress in formalizing the speci
cations in those papers using
Specware� and we describe the re
nement methodology used to obtain an implementation�

This paper is organized as follows� The next section gives a detailed overview of our approach�
In x� we describe how our speci
cation of the veri
er is formalized in Specware� In x� we
describe its re
nement to a program using Specware� In x� we give a small example� This
is followed by a description of related work and our conclusions�

� Approach

��� Bytecode Veri�cation� Data Flow Analysis� and Constraint

Problems

Data �ow analysis is a methodology used to establish assertions at program points that are
invariant over all program executions� Because the types of local variables and stack elements
vary during JVM execution� it is natural to view the bytecode veri
er as a data �ow problem�
To specify a particular data �ow problem� a control �ow graph� a semilattice� an initial state�
and transfer functions are speci
ed� The semilattice captures the abstract program properties
of interest� and transfer functions capture the behavior of JVM instructions with respect to
the semilattice� The data �ow framework includes algorithms that solve general data �ow
problems by 
xed
point iteration� Theorems that assert algorithm termination� soundness
and give a characterization of the accuracy of the solution have been proved �Muc���� In
particular� soundness and termination are assured if the semilattice has 
nite height and the
transfer functions are monotone� In addition� if the transfer functions are distributive� the
algorithm yields the meet
over
all
paths solution� i�e� the sharpest or most accurate result
possible� In our speci
cation of the veri
er� construction of a �ow graph is trivial� The main
challenge is to specify the semilattice and transfer functions�

In formalizing our speci
cation� we chose a more general constraint framework �RM��� in

stead of data �ow analysis� Let L � hL�v�ui be a semilattice� and F a collection of
monotone functions of various arities over L� Let V be a collection of variable names� Let
t denote a term formed from constants� c � L� variables� v � V � and function symbols from

�



F � A constraint solving problem is a collection of de�nite inequalities� i�e� inequalties of
the form v v t or c v t� A solution is an assignment I � V � L satisfying each inequality�
A solution M is maximal if for any solution I and any variable v� I�v� v M�v�� In this
paper� a reference to a constraint solving problem or� simply� a CSP refers to a problem of
the described form�

It is not di�cult to see that a data �ow problem may be mapped to a CSP problem� For
simplicity� assume each node of the control �ow graph consists of a single JVM instruction�
Let tf i denote the transfer function formalizing the behavior of the instruction at node i��

Introduce a constraint variable� ui for each node i of the control �ow graph� For each edge
�i� j� introduce the inequality uj v tf i�ui�� Our speci
cation of the veri
er generates CSPs
of this form� Many of the properties enjoyed by the data �ow architecture are also true of
these CSP �s� A chaotic 
xed
point iteration algorithm will converge to the maximal solution�
The complexity of the algorithm is polynomial�

We chose to express the bytecode veri
er as a CSP problem for the following reasons�

� We wish to explore the applicability of Kestrel
developed synthesis technology �JS���
that has been used to optimize a related class of constraint problems�

� We may implement the veri
er using Bane �FAFS��� FFA��� BAN�� an an o	
the
shelf
constraint solver designed speci
cally for program analysis�

� Our work formalizing CSP in Specware is more general and can be applied to prob

lems other than just data �ow analysis�

A disadvantage of formulating the veri
er as a CSP rather than a data �ow problem is a
loss of e�ciency due to the generality of CSP� In a data �ow problem the control �ow graph
explicates those constraints that are violated when a lattice value associated with a node is
updated� However� the program re
nement technology described in �JS��� can restore this
e�ciency�

��� Some Salient Aspects of Our Bytecode Speci�cation

The bytecode veri
er determines if a JVM program is well
typed� Because the methods in
a class reference instance variables and methods de
ned in other classes� type consistency

�If a JVM instruction raises an exception its behavior di�ers from normal execution� Therefore� our

actual speci�cation associates transfer functions with edges� not nodes�

�



requires checking the internal consistency of a class� as well as its external consistency with
referenced classes� Because class 
les are loaded dynamically� and because it is desirable to
minimize constraints on when classes gets loaded� the veri
er cannot assume that a referenced
class has been loaded prior to its veri
cation� Thus� our speci
cation maintains a global
typing context consisting of type assertions derived from the declarations in a class� and type
assumptions derived from references to external classes� The global typing context is one
component of the semilattice�

Because we make no assumptions about the order that classes are loaded �so the least general
common super
type of two object classes is generally not known when the class is veri
ed��
and because there is no greatest common super
type of two interface types� there is no
meaningful meet operation de
nable for JVM reference types� Instead� we use a set to
represent reference types� The intended meaning is that the static type of a reference is one
of the �reference� types in the set� The set is a semilattice with union as the meet operation�
Veri
cation of the invoke virtual and other instructions add subtype assumptions to the
global typing context�

��� Formalization of the Bytecode Veri�er

����� Architecture of the Veri�er as a Constraint Problem

Using the constraint approach� veri
cation of a class 
le is performed in two steps� as illus

trated in Figure �� First� the global typing context is updated with assertions and assump

tions derived from declarations in the constant pool� Furthermore� a constraint problem is
generated for each method de
ned in the class� In generating the constraint problem� it is
assumed that the class 
le meets the static veri
cation checks described in Section ��� of
�LY���� In the second phase� the constraint problem for each method is solved and the global
typing context is updated with typing assumptions derived from the method code�

As de
ned above� a CSP is parameterized by a lattice� a collection of monotone functions on
the lattice� and a set of inequalities� The lattice and monotone functions are de
ned once for
theJVM�only the generated constraint inequalities depend on the method being veri
ed�

����� Lattice Construction

We de
ne a semilattice� LJVM � that characterizes the information that the veri
er maintains
at each program point� This information includes the type of local variables and elements

�



CONSTRAINT
GENERATOR

CONSTRAINT
SOLVER

ASSERTIONS &
ASSUMPTIONS

GLOBAL

ASSERTIONS &
ASSUMPTIONS

GLOBAL

ASSERTIONS &
ASSUMPTIONS

GLOBAL

CLASS
FILE

CONSTRAINTS

YES / NO

Figure �� Veri
er Architecture

of the stack� as well as the global typing context� which includes assertions and assumptions
about class declarations and subtype relationships� and the signature of referenced methods
and instance variables� The type information regarding local variables and stack elements
is not simply the static type of the entity� but holds information about the initialization
status of objects� and other information needed to verify the proper use of the jsr and ret

instructions�

We de
ne LJVM from some simple point and set lattices using lattice building operations�

� takes two semilattices and forms their product�

�



seq takes a semilattice L and forms a semilattice of products �sequences� of elements from
L�

� takes two semilattices and forms their disjoint sum�

� takes a semilattice and a suitable congruence relation and forms a semilattice whose ele

ments are the equivalence classes induced by the relation� One use of this operation is
to identify the bottom element of a binary product with the bottom elements of the
component semilattices�

stk takes a semilattice L and forms a semilattice of bounded stacks whose elements are
taken from L�

Note these operations are generic lattice constructions of utility beyond the JVM�

Lprim

Lref

Lother

Lbase
Lstk

Lloc

Lgl-assert

Lgl-assum
Lglobal

Lvars
⊕

stk

seq

/

/
/

LJVM

Figure �� JVM Lattice Construction

Figure � is a simpli
ed view of the construction of LJVM using the lattice building operations�
In the 
gure� the ovals represent operations and unboxed text the names of the resulting
lattices� Thus� the lattice Lbase � used to represent a stack element or local variable� is the
�cascaded� disjoint sum of the three lattices shown� As described above� the lattice that
represents a reference is a set lattice of reference types� Lbase is then used to form lattices
representing the stack and local variables� Lgl�assert is a lattice that represents the set of

global assertions� The quotient operation is applied to Lgl�assert to construct a lattice that

identi
es in a single equivalence class all inconsistent assertion sets and the bottom element
of the lattice�

�



��� Monotone Functions and Constraint Inequalities

Roughly speaking� our speci
cation de
nes a monotone function for each transfer function
corresponding to a JVM instruction� The transfer functions are constructed from monotone
functions de
ned on component lattices of LJVM � For example� push and pop are de
ned
on stack semilattices� proved to be distributive �hence monotone� functions� and used in
the de
nition of transfer functions that manipulate the JVM stack� Most transfer functions
are composed from constructor or destructor operations �like push and pop� of the lattice
building operations �like stk�L���

More precisely� because some transfer functions depend on the operand of the instruction�
we actually de
ned a family of parameterized transfer functions� For example� the transfer
function for the putfield instruction is parameterized by the name of the object class
containing the 
eld and type of the referenced 
eld�

Analysis of a method generates a constraint inequality of the form uj v tf i�ui� for each
edge �i� j� of the control �ow graph� Constraints are represented as pairs of terms� using an
abstract data type for terms� The constraint solving algorithm invokes a function eval �t� e�
that evaluates a term t given an environment e that maps variables to lattice values�

� Formalization in Specware

As mentioned in x�� Specware is a system supporting the formal development of programs
from speci
cations� Its core functionalities are based on clear mathematical concepts from
logic and category theory� and are made accessible to the developer through a graphical user
interface� A speci
cation �spec� in Specware is a theory in high
order logic� The system
provides convenient mechanisms to build more complex specs out of simpler ones� One such
mechanism is instantiating a parameterized spec �pspec�� roughly� a pspec is a spec with an
explicit �formal parameter� part� which upon instantiation gets �replaced� with an �actual
parameter� spec�

Formalizing bytecode veri
cation in Specware along the lines described in x�� amounts
to formalizing the JVM semilattices� the transfer functions for the JVM instructions� the
format of class 
les� the form of constraints� which constraints are derived from a given class

le� and what is a �maximal� solution to a set of constraints� In this section� we provide
an overview of the specs we developed for some of these concepts� To avoid cluttering this
overview with non
substantial details� the examples we present are slight simpli
cations of
the specs we actually wrote�

�



Specware provides a library of specs for some popular concepts �e�g�� sets� ordering rela

tions� arrays�� Starting from some of them� we incrementally built our specs in a structured
way� making extensive use of pspecs and instantiation� as well as of other composition mecha

nisms� We followed the rationale of �factorizing� common sub
concepts as much as possible�
in order to produce more re
usable� readable� and elegant specs� In fact� many of the specs
we wrote are completely independent of bytecode veri
cation�

First of all� we wrote specs for �generic� semilattices� such as�

spec SEMILATTICE is

sort P

op r � P� P �� Boolean

op f � P� P �� P

axiom reflexivity is r�x�x	

axiom anti�symmetry is r�x�y	 
 r�y�x	 �� x�y

axiom transitivity is r�x�y	 
 r�y�z	 �� r�x�z	

axiom f�extr�bound�of�args is

r�f�x�y	�x	 
 r�f�x�y	�y	 


�r�z�x	 
 r�z�y	 �� r�z�f�x�y			

end�spec

We wrote pspecs formalizing the construction of sequence semilattices� stack semilattices�
and so on� For instance� we wrote a pspec SEQUENCE�of�SEMILATTICE having SEMILATTICE

as formal parameter� and de
ning a new sort of tuples of semilattice points� and how the
partial ordering and binary operation can be lifted to such tuples�

pspec SEQ�of�SEMILATTICE is

parameter SEMILATTICE

���

definition of f � Seq� Seq �� Seq is

axiom f �x� y	 � z ���

fa�i	 comp�z�i	 � f �comp�x�i	� comp�y�i		

���

Analogously� we wrote pspecs STACK�of�SEMILATTICE �with push and pop operations��
QUOTIENT�of�SEMILATTICE� etc� Next� we suitably instantiated them� starting from JVM 

speci
c semilattices such as�

�



spec JVM�PRIMITIVE�SEMILATTICE is

sort PrimSL

const int � PrimSL

const float � PrimSL

const unusable � PrimSL

���

definition of meet is

axiom meet�int�float	 � unusable

axiom meet�int�int	 � int

���

In order to formalize de
nite inequalities� terms over a semilattice with monotone functions
must be formalized� Abstracting a little bit from that� we 
rst wrote a spec ALGEBRA and a
pspec TERMS�over�ALGEBRA having ALGEBRA as formal parameter�

spec ALGEBRA is

sort Dom

sort Fun

op arity � Fun �� Nat

op apply � Fun� DomList �� Dom

���

pspec TERMS�over�ALGEBRA is

parameter ALGEBRA

sort Term

sort Var

op const�term � Dom �� Term

op var�term � Var �� Term

op funapp�term � Fun� TermList �� Term

sort Asg

op asg�val � Asg� Var �� Dom

op eval � Term� Asg �� Dom

���

Next� instantiating the carrier Dom to be a semilattice� adding axioms stating monotonicity
for the elements in Fun� and pairing generic terms with constant terms or variable terms� we
formalized de
nite inequalities� as well as CSP �s as sets of de
nite inequalities� and what is
a �maximal� solution�

Our specs for transfer functions de
ne a sort for them� and an apply operation to apply them
to the JVM semilattice points� To avoid lengthy and repetitive de
nitions� we de
ned them

�



as suitable compositions of some auxiliary functions� For instance� we de
ned a function
which pops the top elements of a JVM stack semilattice point if they satisfy a �pattern�
�e�g�� the top two elements being both integers�� and returns � otherwise� Here is an excerpt�

spec TRANSFER�FUNCTIONS is

sort TransFun

op apply � TransFun� JvmSL �� JvmSL

const iadd � TransFun

���

axiom

fa ����stk�StkSL���	

apply�iadd����stk���	 �

����push �int� pop�pattern�int�int	�stk		���	

���

Clearly� by instantiating the de
nite inequality pspecs with the JVM semilattice and the
transfer functions� we exactly obtained the spec for JVM constraint problems�

Specware provides facilities to validate specs� by allowing the developer to enrich themwith
conjectures stating putative properties of the specs� The developer can then ask the system
to verify a spec� which amounts to invoking a theorem prover �currently� Kitp �WG���� to
prove all the conjectures of the spec� In all our specs we included conjectures� stating for
instance that the JVM primitive semilattice is really a semilattice� that a �generic� sequence
semilattice is really a semilattice� and that our transfer functions are monotone�

���

theorem prim�reflexivity is fa�x�PrimSL	 leq�x�x	

���

theorem seq�transitivity is

fa�x�y�z�Seq	 r�x�y	 
 r�y�z	 �� r�x�z	

���

theorem transf�fun�monotonicity is

fa�tf�TransFun� x�y�JvmSL	

leq�x�y	 �� leq �apply�tf�x	� apply�tf�y		

���

��



� Re�nement in Specware

In Specware� programs are formally derived from specs by re�ning specs� Roughly� re
n

ing a spec amounts to �mapping� it into a new spec which interprets the concepts of the
initial one in terms of other concepts� These other concepts should be closer to those of
some target executable language� and if they are su�ciently close� executable code can be
generated by Specware� Re
nements can be sequentially composed� thus allowing code to
be derived from specs through a series of successive steps� Furthermore� a re
nement for a
compound spec �e�g�� an instantiated pspec� can be obtained from re
nements for the indi

vidual components �e�g�� for the pspec and for the actual parameter�� Currently� Specware
can generate code for �functional subsets of� Lisp and C���

Specware provides built
in mechanisms to represent constructed sorts �e�g�� products� sums�
quotients� in target languages in terms of the representations of the component sorts� It also
provides a library of re
nements of common abstract structures �such as sets and bags� to
more concrete structures �such as lists and arrays� which are �directly� representable in
target languages� Starting from these mechanisms and re
nements� we are currently re
ning
our specs to Lisp code� For instance� we are re
ning the JVM primitive semilattice points
to an enumeration of integers� with semilattice operations de
ned by cases�

���

definition of unusable � PrimSL is unusable � 


definition of int � PrimSL is int � �

definition of float � PrimSL is float � �

���

definition of meet � PrimSL� PrimSL �� PrimSL is

axiom ��x�y	 �� meet�x�y	 � unusable

���

Sequence and stack semilattices are being re
ned to array and lists� Operations are being
re
phrased to be constructive� as in�

definition of f � Seq� Seq �� Seq is

axiom f �x� y	 � f�aux �x� y� x� 
	

definition of f�aux � Seq� Seq� Seq� Nat �� Seq is

axiom geq�i�size�z		 �� f�aux�x�y�z�i	 � z

axiom lt�i�size�z		 ��

f�aux�x�y�z�i	 �

��



f�aux�x�y�change�z�i�f�comp�x�i	�

comp�y�i			�succ�i		

An important re
nement is to provide an actual algorithm to compute the maximal solution
of a set of de
nite inequalities� We are in fact building and re
ning specs for the algorithm
proposed in �RM���� For example� a constraint of the form u� v tf iadd�u�� is represented in
our generated Lisp code as�

��VAR �	 �FUN�APP �TF 
�	 �VAR �			

And here is how the meet function over the JVM primitive semilattice is re
ned to Lisp�

�DEFUN MEET�PRIM �X Y	

�COND ��NOT �� X Y		 
	 ���		

We are going to further re
ne our specs for optimization� in order to generate more e�cient
code�

� Example

Figure � gives a method together with an explanation of each instruction� We assume that
the method is contained in the class C� Note that in the instruction putfield�Fld�D� C�� Fld
is the name of the 
eld� D the type of the 
eld and C the name of the class containing the

eld� Since the program point � has two predecessors � and �� and the top stack entry may
hold either the 
rst or second actual parameter�

For the instructions in the example in Figure �� we de
ne the following transfer functions of

��



void m�J
�J�	 �� The method has two arguments of interfaces J
 and J��
�limit local � �� The method has � variables�

�� Set this
object and the actual parameters in the variables�
�� set the empty stack�

� aload � �� Load the object reference in variable � onto the stack�

 aload 
 �� Load the object reference in variable � onto the stack�
� aload � �� Load the object reference in variable � onto the stack�
� if�acmpeq � �� If the top entries in the stack are equal� then go to ��

�� else go to ��
� aload 
 �� Load the object reference in variable � onto the stack�
� goto � �� Go to ��
� aload � �� Load the object reference in variable � onto the stack�
� putfield �Fld�D�C	 �� Put the top stack entry into the 
eld Fld of the object

�� referenced by the second top stack entry
� return �� Terminates and returns�

Figure �� A Simple Method

type JvmSL� JvmSL�

tf aload ind
�asr� asm� var� stk� ��

if isRef�var ind � then �asr� asm� var� push�stk� varind�� else �
tf if acmpeq pp�asr� asm� var� stk� ��
if isRef�top�stk�� and isRef�top�pop�stk���
then �asr� asm� var� pop�pop��stk��� else �

tf goto pp�u� �� u

tf putfield�Fld�D�C��asr� asm� vars� stk� ��
�asr�
asm � fsubtyping�top�stk��D�� subtyping �top�pop�stk��� C�� F ld � fields�C�g�
vars� pop�pop�stk���

tf return�u� �� 	

where 	 denotes an arti
cial greatest element in the semi
lattice JvmSL� and the function
subtyping�fref ng� ref

�� yields true if and only if each ref i with � 
 i 
 n is a subtype of
ref � in the JVM�

We view the instruction return as having a special 
nal node as its successor program point�

��



Program vars stk asm

void m�J
�J�	 asm as input
� aload � �C� J�� J�� �� asm


 aload 
 �C� J�� J�� �C� asm

� aload � �C� J�� J�� �C� J�� asm

� if�acmpeq � �C� J�� J�� �C� J�� J�� asm

� aload 
 �C� J�� J�� �C� asm

� goto � �C� J�� J�� �C� J�� asm

� aload � �C� J�� J�� �C� asm

� putfield �Fld�D�C	�C� J�� J�� �C� fJ�� J�g� asm

� return �C� J�� J�� �� asm �
fsubtyping�fJ�� J�g�D��
Fld � fields�C�gg

Figure �� Legal Location Types for the Method in Figure �

The head of each method has a special transfer function

head tf �asr� asm� �� �asr� asm� �cnam� tym� unusm��� � � � � unusn�� ���

where asr and asm are given by an invoking site of the method� cnam is the class containing
the declaration of the method� and tym are types of the parameters�

A constraint is created for each instruction� Let the instruction be at the program point pp
and have a successor program point pp�� Then the constraint is of the form

upp� v tf �upp�

For the method head� a constraint

u� v head tf �asr� asm�

is created at the program point �� where asr and asm are given by an invoking site of the
method�

Figure � shows the maximal solution to the constraint inequalities generated for the method
code� Note that at the program point �� the lattice value of the top entry of the stack is a set
with two elements since its static type is either the static type of the 
rst or second actual
parameter of the method� In all other cases where a stack or local variable holds a reference
type� the set of possible types is a singleton� To simplify Figure �� we have supressed braces
around singleton sets� The constraint subtyping�fJ�� J�g�D� in the asm component at �

assures that D is a superinterface of J
 and J��

��



� Related work

Bertelsen formalized JVM instructions using state transitions �Ber���� Cohen described a
formal semantics of a subset of the JVM� but runtime checks are used to assure type
safe
execution �Coh���� Both approaches did not consider static type checking� thus are not
directly relevant to bytecode veri
cation�

Stata and Abadi �SA��� proposed a type system for subroutines� provided lengthy proofs
for the soundness of the system and clari
ed several key semantic issues about subroutines�
Freund and Mitchell �FM��� made a signi
cant extension of Stata and Abadi�s type system by
considering object initialization� Hagiya and Tozawa �HT��� presented another type system
for subroutines� where the soundness proof is extremely simple� Qian �Qia��� presented a
constraint
based typing system for objects� primitive values� methods and subroutines and
proved the soundness� Pusch �Pus��� formalized a subset of the JVM in the theorem prover
Isabelle�HOL thus achieving a high level of assurance� All of this work is basically aimed
at achieving a sound speci
cation� but did not consider how to develop a provably correct
implementation� Note that Hagiya and Tozawa discussed issues relating to implementation
of their type system� but they did not formally describe their implementation� In fact� since
they did not consider objects� their implementation did not address many of the the issues
that we have�

Goldberg �Gol��� directly used data�ow analysis to formally specify bytecode veri
cation
focusing on type
correctness and global type consistency for dynamic class loading� He
successfully formalized a way to relate bytecode veri
cation and class loading�

Saraswat �Sar��� studied static type
�un�safety of Java in the presence of more than one
class loader� We do not consider class loaders in this paper�

The Kimera project �SMB��� was quite e	ective in detecting �aws in commercial bytecode
veri
ers� Using a comparative testing approach� they wrote a reference bytecode veri
er and
tested commercial bytecode veri
ers against it� Their code is well structured and organized�
and derived from the English JVM speci
cation� It achieves a higher level of assurance
than commercial implementations� However� since there is no formal speci
cation� it is not
possible to reason about it� or establish its formal correctness�

��



� Conclusions and Future Work

This work is ongoing� We expect to generate Lisp code for a signi
cant subset of the veri
er
over the next few months� We are concentrating 
rst on generating code for the constraint
solver� Initially� the constraint generator will be written by hand� We do not expect the
derived veri
er to be very e�cient� Partial evaluation should be a very e	ective optimization
method since much of the code will alternatively construct and destruct the multiple layers
of component lattice structure� We also plan to extend the speci
cation to cover all aspects
of the veri
er�

We are also studying implementing the veri
er using the Bane constraint solver� In this
scenario� the constraint generator will generate a constraint problem in the Bane constraint
language� The constraint language used by Bane is closely related to the CSP scheme
used here� The lattice used by Bane is a set lattice over regular trees� Most of the lattice
constructions� including sums� binary and sequences� and stacks can be modeled using Bane�
The Bane simpli
er then replaces the derived constraint solver�

Recently� Qian �Qia��� presented a data ow analysis algorithm �scheme�� that non
determin

istically uses formal typing rules to compute the smallest types for memory locations of
JVM program� He rigorously proved the correctness� termination and completeness of the
algorithm� He paid special attention to subroutines and objects� Additional work is needed
to see if that scheme can be expressed in the CSP framework used here� Work on this is
well under the way�

We also plan to compare the results from our derived veri
er with other bytecode veri
ers�
All of these activities will contribute to increasing our assurance that the speci
cation and
implementation are correct�

References

�BAN� The Berkeley ANalysis Engine �BANE��
http���www�cs�berkeley�edu�Research�Aiken�bane�html�

�Ber��� Peter Bertelsen� Semantics of java byte code� http���www�dina�kvl�dk� pmb��
�����

�Coh��� R� M� Cohen� The Defensive Java Virtual Machine speci
cation� Technical report�
Computational Logic inc�� �����

��



�FAFS��� Manuel F!ahndrich� Alexander Aiken� Je	rey S� Foster� and Zhendong Su� Partial
online cycle elimination in inclusion constraint graphs� In Proceedings of the ���	
Conference on Programming Languages Design and Implementation� Montreal�
June �����

�FFA��� Manuel F!ahndrich� Je	rey S� Foster� and Alexander Aiken� Tracking down excep

tions in standard ml programs� Technical report� UC Berekley� Feb ����� UCB
Computer Science Technical Report�

�FM��� Stephen Freund and John Mitchell� A type system for object initialization in
the java bytecode language �summary�� Electronic Notes in Theoretical Computer
Science� ��� ����� http���www�elsevier�nl�locate�entcs�volume
��html�

�Gol��� Allen Goldberg� A speci
cation of Java loading and bytecode veri
cation� In
Proc
 �th ACM Conference on Computer and Communications Security� ����� To
appear�

�HT��� Masami Hagiya and Akihiko Tozawa� On a new method fot data�ow analysis
of Java Virtual Machine subroutines� In Proc
 ���	 Static Analysis Symposium�
Springer
Verlag LNCS� ����� To appear�

�JS��� Stephen J�Westfold and Douglas R� Smith� Synthesis of e�cient constraint satis

faction programs� Technical report� Kestrel Institute� April �����

�KES� Kestrel Institute Keep Program� http���www�kestrel�edu�HTML�keep�html��

�LY��� Tim Lindholm and Frank Yellin� The JavaTM Virtual Machine Speci�cation�
Addison
Wesley� �����

�Muc��� Steven Muchnick� Advanced Compiler Design and Implementation� Morgan Kauf

mann� San Francisco� �����

�Pus��� C� Pusch� Formalizing the Java Virtual Machine in Isabelle�HOL�
Technical report� TUM I����� Technische Unversit!at M!unchen� �����
http���www��informatik�tu�muenchen�de� isabelle�bali��

�Qia��� Zhenyu Qian� Constraint
based speci
cation and data�ow analysis for
Javatm byte code veri
cation� Technical report� Kestrel Institution� �����
http���www�kestrel�edu� qian�abs�jvmdflow� to appear�

�Qia��� Zhenyu Qian� A formal speci
cation of Javatm virtual machine instructions for
objects� methods and subroutines� In Jim Alves
Foss� editor� Formal Syntax and
Semantics of JavaTM� Springer Verlag LNCS� ����� To appear�

��



�RM��� Jakob Rehof and Torben "� Mogensen� Tractable constraints in 
nite semi

lattices� In R� Cousot and D� A� Schmidt� editors� Third International Static
Analysis Symposium �SAS�� volume ���� of Lecture Notes in Computer Science�
pages ���#��� Springer� September �����

�SA��� Raymie Stata and Mart$in Abadi� A type system for Java bytecode subroutines�
In Proc
 ��st ACM Symp
 Principles of Programming Languages� �����

�Sar��� V� Saraswat� Java is not type
safe� Technical report� AT%T Research� �����
http���www�research�att�com� vj�bug�html�

�SJ��� Y� V� Srinivas and Richard J!ullig� Specware� Formal support for composing
software� In B� Moeller� editor� Proceedings of the Conference on Mathematics of
Program Construction� pages ���#���� LNCS ���� Springer
Verlag� Berlin� �����

�SMB��� Emin G!nn Sirer� Sean McDirmid� and Brian Bershad� A Java system security
architecture� http���kimera�cs�washington�edu�� �����

�WG��� T� C� Wang and Allen Goldberg� KITP
��� An automated inference system for
program analysis� In A� Bundy� editor� Proceedings of ��th Conference on Auto�
mated Deduction� pages ���#���� Springer
Verlag� Berlin� ����� Lecture Notes in
Arti
cial Intelligence� Vol� ����

��


