Towards Assurance of a Patient-Specific Network of Medical Devices.

SCC 2015, Rockville Maryland

Sam Procter, John Hatcliff, and Robby SAnToS Lab Kansas State University

Support:

This work is supported in part by the US National Science Foundation (NSF) (#1239543), the NSF US Food and Drug Administration Scholarin-Residence Program (#1355778) and the National Institutes of Health / NIBIB Quantum Program.

Health Care Involves A Variety of System Components

Motivation

- What are the types of things we could do with device integration?
 - Information forwarding
 - Automation of clinical workflows
 - Closed loop control between devices
- Unlike personal computing, medical devices are not designed to work together
- Integrating medical devices would bring myriad benefits
- how can we do so safely?

Outline

Background

- PCA Interlock Scenario
- Medical Application Platforms
- Tooling
- Status Quo
- STPA + AADL
- Impacts / Future

PCA Interlock Scenario

- Patients are commonly given patient-controlled analgesics after surgery
- Crucial to care, but numerous issues related to safety
- Data for disabling the pump exists now (just a system invariant) -- we just need to integrate it

PCA Pump Safety Interlock

Fully leverage device data streams and the ability to control devices

Medical Application Platforms

- A Medical Application Platform is a safety- and securitycritical real-time computing platform for...
 - Integrating heterogeneous devices, medical IT systems, and information displays via communications infrastructure, and
 - Hosting applications ("apps") that provide medical utility via the ability to acquire information from and update/control integrated devices, IT systems, and displays

Extension beyond medicine

- We use medicine in our examples
 - ... but this can extend to other compositional systems
- Core idea:
 - Integration of heterogeneous
 - Sensors,
 - Actuators, and
 - Complete systems,
 - by small chunks of software,
 - in a verifiable manner

Background

PCA Pump Interlock Architecture

Tooling Vision

Analyses and Regulatory Artifacts

Tooling Vision

Code Generation

- A. The app's architecture is specified in a suitable formalism
 - 1. Components as AADL Devices / Processes
 - 2. Connections are specified
 - RT/QoS Parameters are via AADL's propertyspecification mechanism
- B. The app is programmatically translated to Java and XML
 - 1. Only "Business Logic" is written by the developer
- C. The app is launched on a compatible MAP

Component Development

- Development of component architecture using architecture formalism
- Automatic generation of component architecture (skeletons)
- Automatic generation of component layout and app topology (configuration)
 - Development of core behavioral code (business logic) using IDE of choice
- Translator can be retargeted to other languages as desired

Outline

- Background
- Status Quo
 - Existing Hazard Analyses
 - Application to MAP domain
- STPA + AADL
- Impacts / Future

History: FTA

FTA: Bell Labs, 1962

Looks for contributory causes to undesired

History: FMEA

• FMEA: US Military, 1949

Analyses impacts of individual components

System: PCA Interlock Scenario			Subsystem: Pulse Oximeter Device				Mode/Phase: Execution			
Function	Failure Mode	Fail Rate	Causal Factors	Effect	System Effect	Detected by	Current Control	Hazard	Risk	Rec. Action
Provide SpO ₂	Fails to Provide	N/A	Network or dev. Failure	No SpO ₂ data	Unknown patient state	Арр		Potential OD	3D	Default to KVO
	Provides late	N/A	Network slowness	No SpO ₂ data	Unknown patient state	Арр		Potential OD	3C	Default to KVO
	Provides wrong	N/A	Device error	SpO ₂ wrong	Wrong patient state	None		Potential OD	1E	Dev. should report data quality
Analyst: Sam Procter			Date: September 26, 2014				Page 3/14			

Unique aspects of MAP domain

- Software based
 - Hardware is interchangeable
- Component oriented
 - Compositional system needs compositional safety
- Unclear how FTA / FMEA might apply

Early, firm notion of system architecture

Formalized Notion of Architecture

- Formal architecture descriptions become the scaffolding on which:
 - Requirements,
 - Development,
 - Risk management,
 - Deployment, and
 - Ecosphere coordination is organized.

Outline

- Background
- Status Quo
- STPA + AADL
 - STPA
 - AADL
 - Tool-based Integration: MDCF Architect
- Impacts / Future

Leveraging Semiformal Architectural Descriptions

History: STPA

- STPA: Nancy Leveson / MIT, 2005(ish)
- Applies systems theory, focuses on control...
 - Loops
 - Actions

History: STPA

- STPA: Nancy Leveson / MIT, 2005(ish)
- Applies "Systems" theory, focuses on control...

Loops

Actions

Can STPA be improved?

- STPA enables reasoning about
 - Hardware,
 - Software, and
 - Socio-technical elements
- And is driven by architecture ("Boundary Crossing")
- No open tooling
 - Tooling isn't bound to architecture
- Existing work is largely manual

Why use AADL?

- Architecture Analysis and Design Language
- History of successful safety-critical projects
 - Avionics / Boeing (SAVI): "integrate-thenbuild" approach
- Annexes support a number of regulatory and verification artifacts
 - Hazard Analysis (EM) extends notion of interface to include faults

Model

System

System

STPA: Fundamentals

STPA: Background & Fundamentals

- Fundamentals
 - Accident Levels
 - Accidents
 - System
 Boundaries
 - Hazards
 - Safety Constraints
 - Control Actions
 - Control Structure

STPA: Fundamentals

Fundamentals

- Accident Levels
- Accidents
- System Boundaries
- Hazards
- Safety Constraints
- Control Actions
- Control Structure

Example

- 1. A human is killed or seriously injured.
- 2. A medical device's services are unavailable

Tie into ISO 14971's notions of criticality?

STPA: Fundamentals

Fundamentals

- Accident Levels
- Accidents
- System Boundaries
- Hazards
- Safety Constraints
- Control Actions
- Control Structure

Example

- 1. The patient is killed or seriously injured [DeathOrInjury]
- 2. The PCA pump stops responding to commands [DenialOfService]

```
PatientHarmed : constant MAP_Error_Properties::Accident => [
    Number => 1;
    Description => "Patient is killed or seriously injured.";
    Level => PulseOx_Forwarding_Error_Properties::DeathOrInjury;
];
```

STPA: Fundamentals

Fundamentals

- Accident Levels
- Accidents

System Boundaries

- Hazards
- Safety Constraints
- Control Actions
- Control Structure

STPA: Fundamentals

Fundamentals

- Accident Levels
- Accidents
- System Boundaries
- Hazards
- Safety Constraints
- Control Actions
- Control Structure

];

Example

- 1. An inadvertent "Pump Normally" command is sent to the pump [PatientHarmed]
- 2. Commands are sent to the pump too quickly [PCADoS]

InadvertentPumpNormally : constant MAP_Error_Properties::Hazard => [
 Number => 1;
 Description => "An inadvertent `Pump Normally` command is sent to the pump.";
 Accident => PulseOx_Forwarding_Error_Properties::PatientHarmed;

STPA: Fundamentals

Fundamentals

- Accident Levels
- Accidents
- System Boundaries
- Hazards
- Safety Constraints
- Control Actions
- Control Structure

Example

- 1. The app must only instruct the pump to run at a normal rate when the patient can tolerate more analgesic [InadvertentPumpNormally]
- 2. The app must wait for a designated length of time between sending pump commands [TooManyCommands]

STPA: Fundamentals

Fundamentals

- Accident Levels
- Accidents
- System Boundaries
- Hazards
- Safety Constraints
- Control Actions
- Control Structure

Example

- 1. App -> Pump: Pump Normally
- 2. PulseOx -> App: $SpO_2 = 95$
- 3. App -> Display: Patient = Ok

STPA: Fundamentals

Fundamentals

- Accident Levels
- Accidents
- System Boundaries
- Hazards
- Safety Constraints
- Control Actions

Control Structure

STPA: Identifying Hazardous Control Actions

Hazardous Control Action Table

Cross-product of control actions and STPA guidewords

Control Action	Providing	Not Providing	Applied too Long	Stopped too Soon	Early	Late
App -> Pump: Pump Normally	PH	Not Hazardous	PH	Not Hazardous	РН	Not Hazardous
App -> Disp: Patient Ok	BID	BID	BID	BID	BID	BID
PulseOx->App: Provide SpO ₂	Not Hazardous	PH, BID	Not Hazardous	PH, BID	Not Hazardous	PH, BID
PulseOx->App: Provide Pulse Rate	Not Hazardous	PH, BID	Not Hazardous	PH, BID	Not Hazardous	PH, BID

PH = Patient Harmed BID = Bad Info Displayed

STPA: Hazardous Causes and Compensations

Control Action: App -> Pump: Pump Normally

Providing:

- Bad Data:
 - Cause:
 - Incorrect values are gathered from one of the physiological sensors
 - Compensation:
 - Rely on multiple sensed physiological parameters to provide redundancy
- Not Providing:
 - Not hazardous

STPA: Hazardous Causes and Compensations

Control Action: App -> Pump: Pump Normally

Wrong Timing or Order:

Not applicable

Too Long

- Network Drop
 - Cause:
 - Network drops out, leaving the pump running normally regardless of the patient's health
 - Compensation:
 - Commands to pump normally have an associated maximum time, after which the pump returns to KVO

STPA Control Loop

Including Causality Guidewords

Returning to our Architectural Model

Annotating our Architectural Model

Annotating our Architectural Model

system PCA_Shutoff_System end PCA_Shutoff_System; How would the control action be unsafe?						
system implementation PCA_Shutoff_System.imp subcomponents What hazard would be caused?						
pulseOx : device PulseOx_Interface::ICEpoInterfac appLogic : process PCA_Shutoff_Logic::ICEpcaShut What constraint would be violated?						
spo2_data : port pulse0x.Sp02 -+ appLogic.Sp02; What should the occurrence be named?						
use types PCA_Shutoff_Errors; What would cause this to occur?						
<pre>MAP_Error_Properties::Occurrence => [Kind => AppliedTooLong;</pre> How can this occurrence be compensated for?						
<pre>Hazard => PCA_Shutoff_Error_Properties::InadvertentPumpNormally; ViolatedConstraint => PCA_Shutoff_Error_Properties::PumpWhenSafe; Title => "Network Drop";</pre>						
<pre>Cause => "Network drops out, leaving the Sp02 value pot Compensation => "Physiological readings have a maximum Impact => reference(Sp02ValueHigh); applies to spo2_data; **};</pre>						

```
end PCA_Shutoff_System.imp;
end PCA_Shutoff;
```

Report Generation Development

- Development of component architecture using AADL / OSATE2
- Addition of Hazard Analysis Annotations
- Automatic generation of STPA-Styled Hazard Analysis Report

Example "In Progress" Report Online at: http://santoslab.org/pub/mdcf-architect/HazardAnalysis.html

Annotating our Architectural Model

Inside the AADL System Component

```
package PCA_Shutoff
public
system PCA Shutoff System
end PCA Shutoff System;
system implementation PCA_Shutoff_System.imp
subcomponents
   pulseOx : device PulseOx_Interface::ICEpoInterface.imp;
   appLogic : process PCA Shutoff Logic::ICEpcaShutoffProcess.imp;
connections
   spo2 data : port pulseOx.SpO2 -> appLogic.SpO2;
annex EMV2 {**
   use types PCA_Shutoff_Errors;
                                                 What control action will be affected?
   properties
   MAP Error Properties::Occurrence =>
                                                 What specific fault will result?
      Kind => AppliedTooLong;
      Hazard => PCA_Shutoff_Error_Properties::InadvertentPumpNormally:
      ViolatedConstraint => PCA_Shutoff_Error_Properties::PumpWhenSafe;
Title => "Network Drop";
      Cause => "Network drops out, leaving the SpO2 value potentially too high";
      Compensation => "Physiological readings have a maximum time, after which they are no longer valid";
      Impact => reference(SpO2ValueHigh);
                                                                           What can we do with our
   ] applies to spo2 data;
**};
                                                                                model + specific
                                                                                fault information?
end PCA Shutoff System.imp;
end PCA_Shutoff;
```

Fault Types

EMV2 Type Hierarchy

Error Library Type	STPA Error Type	App Error Type					
Errors with Physiological Monitors							
LateDelivery	DelayedOperation	SpO2ValueLate					
IncorrectValue	IncorrectInformation	SpO2ValueLow					
N/A	NoInformation	NoSpO2Data					
Errors with App Logic							
ServiceCommission	InnapropriateCtrlAction	InadvertentPumpNormally					
ServiceOmission	MissingCtrlAction	InadvertentPumpMinimally					
AADL Standard Error Types	STPA Error Types	App Specific Error Types					

Fault Types

App Specific Error Library

package PCA_Shutoff_Errors

public

```
annex EMV2
```

{**

error types

Application independent: Sourced from STPA

-- These errors aren't associated with unsafe states, but they're here for completeness SpO2ValueLow : type extends MAP_Errors::WrongPhysioDataError; RespiratoryRateLow : type extends MAP_Errors::WrongPhysioDataError; ETCO2ValueHigh : type extends MAP_Errors::WrongPhysioDataError;

-- These errors will cause the app to logic to think the patient is healthy when she isn't SpO2ValueHigh : type extends MAP_Errors::WrongPhysioDataError; RespiratoryRateHigh : type extends MAP_Errors::WrongPhysioDataError; ETCO2ValueLow : type extends MAP_Errors::WrongPhysioDataError;

```
-- These are errors with devices
DeviceAlarmFailsOn : type extends MAP_Errors::PhysioDeviceErrorCommission;
DeviceAlarmFailsOff : type extends MAP_Errors::PhysioDeviceErrorOmission;
BadInfoDisplayedToClinician : type extends MAP_Errors::WrongInfoDisplayedError;
InadvertentPumpNormally : type extends MAP_Errors::AppCommission;
InadvertentPumpMinimally : type extends MAP_Errors::AppCommission;
end types;
***};
end PCA_Shutoff_Errors;
```

Annotating the Architectural Model

Specification Step 1: Propagation

Specification Step 2: Flow

Error transformation

Specification Step 3: Error Transformations

Specification Step 3: Error Transformations

Error Sinks

Specification Step 4: Error Sink

Specification Step 4: Error Sink

OSATE Remembers a Neglected Connection

OSATE Remembers A Neglected Connection

```
system implementation PCA_Shutoff_System.imp
subcomponents
    -- Physiological inputs
    pulseOx : device PulseOx_Interface::ICEpoInterface.imp;
    -- App logic
    appLogic : process PCA_Shutoff_Logic::ICEpcaShutoffProcess.imp;
    appDisplay : process PCA_Shutoff_Display::ICEpcaDisplayProcess.imp;
connections
    -- From components to logic
    spo2_logic : port pulse0x.Sp02 -> appLogic.Sp02;
    -- From components to display
    spo2_disp : port pulse0x.Sp02 -> appDisplay.Sp02;
anne A No incoming error propagation from appDisplay for outgoing propagation SpO2(SpO2ValueHigh). Check for
      Unhandled Faults.
    properties
    -- Errors between the PulseOx's SpO2 channel and the App Logic
    MAP_Error_Properties::Occurrence => [
        Kind => ValueHigh:
        Hazard => PCA_Shutoff_Error_Properties::PatientHarmed;
        ViolatedConstraint => PCA_Shutoff_Error_Properties::PumpWhenSafe;
        Title => "Wrong Values (Undetected)";
        Cause => "Incorrect values are gathered from the physiological sensors";
```

Tool

OSATE2

Open-source, Eclipse-based tool

- Our work is available as a plugin
 - Uses the model-traversal built into OSATE2

Our model is updated accordingly

Interaction between Report and Model

Outline

- Background
- Status Quo
- STPA + AADL
- Impacts / Future

Contributions (1 of 2)

- Showing how STPA methods / artifacts can be integrated with a formal architecture modeling framework
- Demonstrating how AADL EM annotations can aid in supporting STPA
- Demonstrating a methodology for carrying out STPA in AADL-defined architectures

Contributions (2 of 2)

- Tool support to automate parts of the methodology
 - And to aid both analysts and reviewers in analysis and review of the generated STPA artifacts.
- Establishing the basis for very strong traceability between
 - Requirements,
 - Architecture,
 - Hazard analysis,
 - Testing / Verification, and
 - Executable code

Further Reading

- Source available online at <u>https://github.com/santoslab/aadl-medical</u>
- Installable into OSATE2 via update site: <u>http://santoslab.org/pub/mdcf-architect/</u> <u>updatesite</u>
- Full documentation online at <u>http://santoslab.org/pub/mdcf-architect</u>
- Publications online at <u>http://people.cis.ksu.edu/~samprocter</u>

Towards Assurance of a Patient-Specific Network of Medical Devices.

SCC 2015, Rockville Maryland

Sam Procter, John Hatcliff, and Robby SAnToS Lab Kansas State University

Support:

This work is supported in part by the US National Science Foundation (NSF) (#1239543), the NSF US Food and Drug Administration Scholarin-Residence Program (#1355778) and the National Institutes of Health / NIBIB Quantum Program.