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The Context 

•  Safety-critical and security-critical software 
systems cost too much 
–  software for certified fielded systems 
–  software for the tools used to build certified 

systems 

•  Current norm: code in low-level languages 
•  Certification by inspection doesn’t scale 
•  We need high assurance by construction 
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Better Languages to the Rescue? 
•  High-level languages like Java or Haskell 

prevent many classes of bugs 
–  Strong static typing prevents pointer forging 
–  Garbage-collected memory prevents “dangling 

pointer” dereferences 
–  Array bounds checking prevents buffer overflow 

bugs and attacks 

•  Development is faster and easier too 
•  Performance is adequate for tools (at least) 
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A credibility gap 

•  These safety properties may hold for 
source programs, but… 

•  Languages have big compilers and large, 
complex run-time systems 
–  Glasgow Haskell Compiler RTS: 50k+ lines of C 
–  Java HotSpot Compiler RTS: 100k+ lines of C++ 

•  Post-hoc certification isn’t plausible for all 
this infrastructure 
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High Assurance Run-Time System 

•  Designed from scratch using principles for 
assurance: minimality, simplicity, 
modularity, mechanized verification 

•  Goal: credible implementations using 
scalable assurance techniques 

•  Essential RTS services: 
–  Garbage collection 
–  Interfacing to untrusted languages 
–  Concurrency 
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Language-based approach 

•  Use compiler intermediate languages to 
package RTS services 

•  Language formal semantics specify 
intended behavior of services and clients 

•  Use semantics-preserving compilation to 
guarantee behavior of RTS implementation 

•  Use type systems selectively to help 
guarantee that client code is well-behaved 
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CompCert Architecture 
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CompCert-based RTS strategy 
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CompCert-based RTS strategy 
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Front-end assurance 

HCSS2011 10 

Cminor code 

Enriched 
Cminor-like 
intermediate 

code 

Seman&cs‐preserving  
transforma&ons 

High-level 
language 

source code 

RTS library 
code 

(Cminor) 

+

assembly 
code 

$$$ 



Hasp  Project 

Front-end assurance 
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•  A mechanism for reclaiming and reusing 
unused memory automatically 

•  Programmer never frees memory by 
hand: 
• Memory never freed too early, so no 

“dangling pointer” bugs  
•  Unreachable memory always freed, so 

no coding-induced space leaks 
•  Many different algorithms: 

• Mark-sweep, Stop-and-copy, etc. 

Garbage Collection 
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The application program (the “mutator”) allocates 
objects from a contiguous memory “heap” 

Stop-and-copy Garbage Collection 
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Stop-and-copy Garbage Collection 

Allocating an object 
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Allocating another object 

Stop-and-copy Garbage Collection 
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Allocating another object 

Stop-and-copy Garbage Collection 
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Eventually, the heap is full of objects! 

Stop-and-copy Garbage Collection 
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But only some of the 
objects (the “live” data) 
are reachable from the 
mutator’s pointers      
(the “roots”) 

Stop-and-copy Garbage Collection 
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Everything else is 
“garbage” 

Stop-and-copy Garbage Collection 
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Assume that we have a second block of memory 
that we can use as a new heap 

(Algorithm due to Cheney, 1970) 

Stop-and-copy Garbage Collection 

C A B E D 
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Stop-and-copy Garbage Collection 
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Stop-and-copy Garbage Collection 

C 

A B 

E D A B 

Scavenge A (copy B into the new heap) 

22 HCSS2011 



Hasp  Project 

Stop-and-copy Garbage Collection 
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Stop-and-copy Garbage Collection 
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Stop-and-copy Garbage Collection 
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Stop-and-copy Garbage Collection 
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•  All live data has been copied to the new heap; 
•  Structure of the original live data graph has been 

preserved; 
•  Unused memory is now contiguous. 

Stop-and-copy Garbage Collection 
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C A B E D 
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•  Example: Widely used browsers (IE, Firefox, 
Safari), have all suffered from JavaScript engine 
GC bugs that can lead to: 

Garbage Collectors do have bugs!  

•  browser crashes 
•  denial of service 

attacks 
•  execution of 

arbitrary code 
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•  Show correctness of GC algorithm and its 
implementation 

•  Show that mutator and collector are 
correctly integrated: 
– agree about the set of roots and the 

locations of pointers within objects 
– respect each others’ private data 

structures 

How can we rule out GC bugs? 

Our previously 
reported work 
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Copying Collector Proof 
•  Have a proof for a simple Cheney-style 

copying collector implemented in 
CompCert’s Cminor language 

•  Collector specification is written in 
separation logic 

•  Proof relies on reusable tactics and 
libraries for separation logic reasoning in 
Coq [McCreight TPHOLS09] 

•  Comparable to other recent collector 
proofs 
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A B C D E 
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Cheney collector proof 

•  Demonstrating isomorphism Φ between old and 
new object graphs is the key to proving 
correctness of the GC 

Φ  
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•  Show correctness of GC algorithm and its 
implementation 

•  Show that mutator and collector are 
correctly integrated: 
– agree about the set of roots and the 

locations of pointers within objects 
– respect each others’ private data 

structures 

How can we rule out GC bugs? 

Focus of 
remainder of 

talk 
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GCminor 
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GCminor 

•  Extends Cminor language with 
–  alloc primitive to obtain fresh heap objects 

•  implicitly invokes GC if necessary 
•  contents of objects must be initialized explicitly 

–  declarations of GC roots 
•  specify which variables contain useful heap pointers  

•  Object layouts are specified separately as 
functions 
–  size : header → object size 
–  isPtr : header → offset → bool 
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GCminor semantics 
•  As for existing CompCert languages, 

GCminor is given a small-step operational 
semantics 

•  Each rule describes a valid program step, 
its impact on the program state, and any 
externally visible effects 
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state σ = heap + local variables + 
               stack + … 

trace t = system calls +  … 
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Values and memory in CompCert 
•  CompCert semantics uses a simple block-

based memory model at all stages in 
compiler pipeline 
–  A block can represent a global data area, a 

stack frame, a single memory-allocated 
variable, etc. 

•  Values in the program state can be 
–  integers VInt(n) 
–  pointers VPtr(block,offset) 
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Specifying well-behaved programs 
•  If no stepping rule applies in a given state, 

the program is stuck 
–  corresponds to an unchecked runtime error 

•  Example: trying to load memory using a 
VInt value as if it were a pointer 
–  characterizes code that forges pointers 

•  Well-behaved programs are those that 
don’t get stuck 
–  Semantic preservation theorem only applies to 

these; “Garbage in, garbage out” 
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GCminor memory semantics 
•  Each alloc creates a fresh separate block 
•  Heap blocks appear never to go away and 

never to move! 
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Semantics of root declarations 

•  Whenever GC might occur, pointers not 
declared as roots appear to be invalidated 
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Semantics of root declarations 

•  Whenever GC might occur, pointers not 
declared as roots appear to be invalidated 

•  Any subsequent load attempt will fail 
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Additional Mutator Specifications 

•  Semantics is parameterized by a nominal 
heap size: program gets stuck if live data 
size exceeds this heap size 

•  Program also gets stuck if mutator doesn’t 
initialize object properly before next 
allocation point 
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Precise but Flexible Specification 

•  GCminor semantics forms a specification 
of how the mutator and GC should interact 
–  Non-stuck GCminor programs are well-behaved 

mutators 
–  Any correct implementation of GCminor 

semantics embodies a well-behaved collector 

•  Not tied to any particular GC mechanism 
–  should work for copying, mark-sweep, and 

generational collectors 
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 GCminor implementation 

43 HCSS2011 43 

•  Translate GCminor programs to Cminor; 
then link in fixed GC library 
–  Currently use our simple proven Cheney GC 

•  Heap = single large global array 
•  alloc primitive becomes library call 
•  Save and restore live root variables 

–  at every function call and allocation site 
–  allows GC to scan and update roots 
–  “shadow stack” avoids need to change 

CompCert backend 



Hasp  Project 

ρ, T 
~ ~ 

ρ’ t

σ, S  σ’ t
GCm 

Cm 
* 

Preservation Lemma 
•  We define a simulation relation 

–  GCminor state σ   ~  Cminor state ρ 
– Maps abstract heap to concrete heap and root 

variables to shadow stack 

•  Key lemma: 
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Abstract Heap 
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Overall Semantics Preservation 
•  Theorem: 
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ρ, G 
~ ~ 

ρ’ t

σ, F σ’ t
GCm 

Asm 
* 

where GAsm= final translation of function FGCm 

Pf: Iterate Lemma + existing CompCert pfs 

•  Corollary: If program PGCm does not get 
stuck, then neither does translated 
program QAsm and P & Q behave the same 

    Pf:  Iterate Thm + determinacy of Asm 
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Assessing the Semantics 
•  We get completeness of the GC as well as 

soundness… 
•  …but only for programs that obey a 

maximum live memory bound 
•  More generally, front ends need to 

guarantee that GCminor code doesn’t get 
stuck… 

•  … type systems can help 
•  We get guarantees only for observable 

behavior of whole programs 
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Case Study : Haskell front end 

•  Proof-of-concept that exercises GCminor 
•  Feedback on interface design and 

performance for client 
•  Built on Glasgow Haskell Compiler: real 

source language 
•  Limited set of primitives  

–  no foreign functions, exceptions, concurrency 
–  compiles good part of std. benchmark suite 

•  Modest expectations for performance 
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Haskell Case Study Architecture 
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Assurance Argument 

•  Semantics preservation proof for whole 
front-end would be huge effort 

•  Much simpler to prove only safety of the 
front-end using types 

•  New Dminor IR bridges between typed 
and untyped worlds 

•  As an experiment, we kept type system 
very minimal, so much of safety argument 
relies on run-time checks 
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Current work: Habit front-end 

HCSS2011 
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Current work: Habit front-end 
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Future Challenges 

•  Extending RTS to support privileged 
hardware 
–  e.g. MMU control for secure inter-language ops 
– will require novel intermediate languages 

•  Incorporating non-determinism 
–  e.g. pre-emptive multithreading, multicores 
–  breaks CompCert’s forward simulation approach 

•  More realistic collectors; more front ends 
–  need to raise level of Coq proof automation 
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