
Hasp Project

Towards High-Assurance
Run-Time Systems

Andrew Tolmach
Andrew McCreight

Tim Chevalier

High-Assurance Systems Programming Project
Portland State University

Hasp Project

The Context

•  Safety-critical and security-critical software
systems cost too much
–  software for certified fielded systems
–  software for the tools used to build certified

systems

•  Current norm: code in low-level languages
•  Certification by inspection doesn’t scale
•  We need high assurance by construction

HCSS2011 2

Hasp Project

Better Languages to the Rescue?
•  High-level languages like Java or Haskell

prevent many classes of bugs
–  Strong static typing prevents pointer forging
–  Garbage-collected memory prevents “dangling

pointer” dereferences
–  Array bounds checking prevents buffer overflow

bugs and attacks

•  Development is faster and easier too
•  Performance is adequate for tools (at least)

HCSS2011 3

Hasp Project

A credibility gap

•  These safety properties may hold for
source programs, but…

•  Languages have big compilers and large,
complex run-time systems
–  Glasgow Haskell Compiler RTS: 50k+ lines of C
–  Java HotSpot Compiler RTS: 100k+ lines of C++

•  Post-hoc certification isn’t plausible for all
this infrastructure

HCSS2011 4

Hasp Project

High Assurance Run-Time System

•  Designed from scratch using principles for
assurance: minimality, simplicity,
modularity, mechanized verification

•  Goal: credible implementations using
scalable assurance techniques

•  Essential RTS services:
–  Garbage collection
–  Interfacing to untrusted languages
–  Concurrency

HCSS2011 5

Hasp Project

Language-based approach

•  Use compiler intermediate languages to
package RTS services

•  Language formal semantics specify
intended behavior of services and clients

•  Use semantics-preserving compilation to
guarantee behavior of RTS implementation

•  Use type systems selectively to help
guarantee that client code is well-behaved

HCSS2011 6

Hasp Project

CompCert Architecture

HCSS2011

X86
assembly

Cminor code

Seman&cs‐preserving
transforma&ons

ARM
assembly

7

C code

Power PC
assembly

Essen&ally
untyped;

 C‐like control
structures;
locals, stack,

global memory

7

Hasp Project

CompCert-based RTS strategy

HCSS2011 8

Cminor code

Enriched
Cminor-like
intermediate

code

Seman&cs‐preserving
transforma&ons

High-level
language

source code

RTS library
code

(Cminor)

+

assembly
code

Hasp Project

CompCert-based RTS strategy

HCSS2011 9

Cminor code

Enriched
Cminor-like
intermediate

code

High-level
language

source code

RTS library
code

(Cminor)

+

assembly
code

New language constructs for:
‐  Managed heap alloca&on
‐  Stacks and synchroniza&on
‐  Foreign calls
‐  etc. Support code for:

‐  Garbage collec&on
‐  Thread scheduling
‐  etc.

Hasp Project

Front-end assurance

HCSS2011 10

Cminor code

Enriched
Cminor-like
intermediate

code

Seman&cs‐preserving
transforma&ons

High-level
language

source code

RTS library
code

(Cminor)

+

assembly
code

$$$

Hasp Project

Front-end assurance

HCSS2011 11

Cminor code

Enriched
Cminor-like
intermediate

code

Seman&cs‐preserving
transforma&ons

High-level
language

source code

RTS library
code

(Cminor)

+

assembly
code

Typedness‐
preserving
transforma&ons

Strongly-
typed

intermediate
code

Flexible but
unsafe

interfaces

Safe but
restricted
interfaces

Guarantees safety,
not full behavior

Hasp Project

•  A mechanism for reclaiming and reusing
unused memory automatically

•  Programmer never frees memory by
hand:
• Memory never freed too early, so no

“dangling pointer” bugs
•  Unreachable memory always freed, so

no coding-induced space leaks
•  Many different algorithms:

• Mark-sweep, Stop-and-copy, etc.

Garbage Collection

12 HCSS2011

Hasp Project

The application program (the “mutator”) allocates
objects from a contiguous memory “heap”

Stop-and-copy Garbage Collection

13 HCSS2011

Hasp Project

Stop-and-copy Garbage Collection

Allocating an object

14 HCSS2011

Hasp Project

Allocating another object

Stop-and-copy Garbage Collection

15 HCSS2011

Hasp Project

Allocating another object

Stop-and-copy Garbage Collection

16 HCSS2011

Hasp Project

Eventually, the heap is full of objects!

Stop-and-copy Garbage Collection

17 HCSS2011

Hasp Project

But only some of the
objects (the “live” data)
are reachable from the
mutator’s pointers
(the “roots”)

Stop-and-copy Garbage Collection

A

A

B

B

C

C

D

D

E

E

root root

18 HCSS2011

Hasp Project

Everything else is
“garbage”

Stop-and-copy Garbage Collection

A

B

C D

E

C A B E D

19 HCSS2011

root root

Hasp Project

Assume that we have a second block of memory
that we can use as a new heap

(Algorithm due to Cheney, 1970)

Stop-and-copy Garbage Collection

C A B E D

20 HCSS2011

Hasp Project

Stop-and-copy Garbage Collection

C

A

B E D A

Copy root A into the new heap

21 HCSS2011

Hasp Project

Stop-and-copy Garbage Collection

C

A B

E D A B

Scavenge A (copy B into the new heap)

22 HCSS2011

Hasp Project

Stop-and-copy Garbage Collection

C A B

E

D

A B C D

Scavenge B (copy C and D into the new heap)

23 HCSS2011

Hasp Project

Stop-and-copy Garbage Collection

C A B

E

D

A B C D

Scavenge C (no objects copied)

24 HCSS2011

Hasp Project

Stop-and-copy Garbage Collection

C A B E D

A B C D E

Scavenge D (copy E into the new heap)

25 HCSS2011

Hasp Project

Stop-and-copy Garbage Collection

C A B E D

A B C D E

Scavenge E (B is already in the new heap)

26 HCSS2011

Hasp Project

•  All live data has been copied to the new heap;
•  Structure of the original live data graph has been

preserved;
•  Unused memory is now contiguous.

Stop-and-copy Garbage Collection

A B C D E

C A B E D

27 HCSS2011

Hasp Project

•  Example: Widely used browsers (IE, Firefox,
Safari), have all suffered from JavaScript engine
GC bugs that can lead to:

Garbage Collectors do have bugs!

•  browser crashes
•  denial of service

attacks
•  execution of

arbitrary code

28 HCSS2011

Hasp Project

•  Show correctness of GC algorithm and its
implementation

•  Show that mutator and collector are
correctly integrated:
– agree about the set of roots and the

locations of pointers within objects
– respect each others’ private data

structures

How can we rule out GC bugs?

Our previously
reported work

29 HCSS2011

Hasp Project

Copying Collector Proof
•  Have a proof for a simple Cheney-style

copying collector implemented in
CompCert’s Cminor language

•  Collector specification is written in
separation logic

•  Proof relies on reusable tactics and
libraries for separation logic reasoning in
Coq [McCreight TPHOLS09]

•  Comparable to other recent collector
proofs

HCSS2011 30

Collector
library code

(Cminor)

Hasp Project

A B C D E

C A B E D

C A B E D

Cheney collector proof

•  Demonstrating isomorphism Φ between old and
new object graphs is the key to proving
correctness of the GC

Φ

31 HCSS2011

Hasp Project

•  Show correctness of GC algorithm and its
implementation

•  Show that mutator and collector are
correctly integrated:
– agree about the set of roots and the

locations of pointers within objects
– respect each others’ private data

structures

How can we rule out GC bugs?

Focus of
remainder of

talk

32 HCSS2011

Hasp Project

GCminor

HCSS2011 33

Cminor code

GCminor

code

Seman&cs‐preserving
transforma&ons

+

assembly
code

Collector
library code

(Cminor)

High-level
language

source code

•  Language formalizes
mutator-collector
interface
•  Abstracts away details
of GC implementation

Hasp Project

GCminor

•  Extends Cminor language with
–  alloc primitive to obtain fresh heap objects

•  implicitly invokes GC if necessary
•  contents of objects must be initialized explicitly

–  declarations of GC roots
•  specify which variables contain useful heap pointers

•  Object layouts are specified separately as
functions
–  size : header → object size
–  isPtr : header → offset → bool

HCSS2011 34

Hasp Project

GCminor semantics
•  As for existing CompCert languages,

GCminor is given a small-step operational
semantics

•  Each rule describes a valid program step,
its impact on the program state, and any
externally visible effects

HCSS2011 35

 σ, S ➝σ’ t statement S
state σ = heap + local variables +
 stack + …

trace t = system calls + …

Hasp Project

Values and memory in CompCert
•  CompCert semantics uses a simple block-

based memory model at all stages in
compiler pipeline
–  A block can represent a global data area, a

stack frame, a single memory-allocated
variable, etc.

•  Values in the program state can be
–  integers VInt(n)
–  pointers VPtr(block,offset)

HCSS2011 36

Hasp Project

Specifying well-behaved programs
•  If no stepping rule applies in a given state,

the program is stuck
–  corresponds to an unchecked runtime error

•  Example: trying to load memory using a
VInt value as if it were a pointer
–  characterizes code that forges pointers

•  Well-behaved programs are those that
don’t get stuck
–  Semantic preservation theorem only applies to

these; “Garbage in, garbage out”

HCSS2011 37

Hasp Project

GCminor memory semantics
•  Each alloc creates a fresh separate block
•  Heap blocks appear never to go away and

never to move!

HCSS2011 38

A

B

C D

E

Hasp Project

Semantics of root declarations

•  Whenever GC might occur, pointers not
declared as roots appear to be invalidated

HCSS2011 39

A

B

C D

E

root
VPtr(A,0)

root
VPtr(P,0)

not root
VPtr(Q,0)

Hasp Project

Semantics of root declarations

•  Whenever GC might occur, pointers not
declared as roots appear to be invalidated

•  Any subsequent load attempt will fail
HCSS2011 40

A

B

C D

E

root
VPtr(A,0)

root
VPtr(P,0)

not root
Vint(42)

Hasp Project

Additional Mutator Specifications

•  Semantics is parameterized by a nominal
heap size: program gets stuck if live data
size exceeds this heap size

•  Program also gets stuck if mutator doesn’t
initialize object properly before next
allocation point

HCSS2011 41

Hasp Project

Precise but Flexible Specification

•  GCminor semantics forms a specification
of how the mutator and GC should interact
–  Non-stuck GCminor programs are well-behaved

mutators
–  Any correct implementation of GCminor

semantics embodies a well-behaved collector

•  Not tied to any particular GC mechanism
–  should work for copying, mark-sweep, and

generational collectors

HCSS2011 42

Hasp Project

 GCminor implementation

43 HCSS2011 43

•  Translate GCminor programs to Cminor;
then link in fixed GC library
–  Currently use our simple proven Cheney GC

•  Heap = single large global array
•  alloc primitive becomes library call
•  Save and restore live root variables

–  at every function call and allocation site
–  allows GC to scan and update roots
–  “shadow stack” avoids need to change

CompCert backend

Hasp Project

ρ, T
~ ~

ρ’ t

σ, S σ’ t
GCm

Cm
*

Preservation Lemma
•  We define a simulation relation

–  GCminor state σ ~ Cminor state ρ
– Maps abstract heap to concrete heap and root

variables to shadow stack

•  Key lemma:

HCSS2011 44

where TCm= translation of SGCm

Hasp Project

Abstract Heap

A B C E

A

B

C

E

45 HCSS2011

Concrete Heap

Simulation mappingΨ
 - extended by alloc

D

D

Hasp Project

Abstract Heap A

B

C

E

46 HCSS2011

Simulation mappingΨ
 - extended by alloc

A B C E D

D

C A B E D

Φ

 Copying collection
 isomorphism Φ

Concrete Heap

Hasp Project

Abstract Heap A

B

C

E

47 HCSS2011

Simulation mappingΨ
 - extended by alloc

A B C E D

D

C A B E D

 Copying collection
 isomorphism Φ

Concrete Heap

New Ψ’ = Φ Ψ º

Hasp Project

Overall Semantics Preservation
•  Theorem:

HCSS2011 48

ρ, G
~ ~

ρ’ t

σ, F σ’ t
GCm

Asm
*

where GAsm= final translation of function FGCm

Pf: Iterate Lemma + existing CompCert pfs

•  Corollary: If program PGCm does not get
stuck, then neither does translated
program QAsm and P & Q behave the same

 Pf: Iterate Thm + determinacy of Asm

Hasp Project

Assessing the Semantics
•  We get completeness of the GC as well as

soundness…
•  …but only for programs that obey a

maximum live memory bound
•  More generally, front ends need to

guarantee that GCminor code doesn’t get
stuck…

•  … type systems can help
•  We get guarantees only for observable

behavior of whole programs
HCSS2011 49

Hasp Project

Case Study : Haskell front end

•  Proof-of-concept that exercises GCminor
•  Feedback on interface design and

performance for client
•  Built on Glasgow Haskell Compiler: real

source language
•  Limited set of primitives

–  no foreign functions, exceptions, concurrency
–  compiles good part of std. benchmark suite

•  Modest expectations for performance
HCSS2011 50

Hasp Project

Haskell Case Study Architecture

HCSS2011 51

Assembly

Cminor code

GCminor
code

Seman&cs‐preserving
transforma&ons

Haskell
source code

GHC
Core IR code

Typed
Dminor IR

code

GHC

Typedness‐preserving
transforma&ons

Hasp Project

Assurance Argument

•  Semantics preservation proof for whole
front-end would be huge effort

•  Much simpler to prove only safety of the
front-end using types

•  New Dminor IR bridges between typed
and untyped worlds

•  As an experiment, we kept type system
very minimal, so much of safety argument
relies on run-time checks

HCSS2011 52

Hasp Project

Current work: Habit front-end

HCSS2011

Habit
source code

Fidget code

Typedness‐preserving
transforma&ons

Assembly

Cminor code

GCminor
code

Seman&cs‐preserving
transforma&ons

Hasp Project

Current work: Habit front-end

HCSS2011

Habit
source code

Fidget code

Typedness‐preserving
transforma&ons

Assembly

Cminor code

GCminor
code

Seman&cs‐preserving
transforma&ons

Our new Haskell‐
inspired systems

programming language

Strong type system; no
need for run&me null or

bounds checks

Hasp Project

Future Challenges

•  Extending RTS to support privileged
hardware
–  e.g. MMU control for secure inter-language ops
– will require novel intermediate languages

•  Incorporating non-determinism
–  e.g. pre-emptive multithreading, multicores
–  breaks CompCert’s forward simulation approach

•  More realistic collectors; more front ends
–  need to raise level of Coq proof automation

HCSS2011 55

