
© 2012 Galois, Inc. All rights reserved.© 2013 Galois, Inc. All rights reserved. PA approval number: *88 ABW/PA 2012-2905

TrackOS: a Security-Aware

RTOS

Lee Pike, Pat Hickey, Trevor Elliott, Aaron Tomb, Eric Mertens (Galois Inc.)

David Kapp (AFRL)

HCSS | 2013

© 2013 Galois, Inc. All rights reserved.

Embedded System (in)Security

Siemens Simatic S7-300.
src: http://en.wikipedia.org/wiki/File:S7300.JPG

Stuxnet

src: The New York Times

src: http://www.securitymanagement.com/news/trouble-with-uavs-008118

src: http://en.wikipedia.org/wiki/File:FIRESCOUT-VUAS.jpg

© 2013 Galois, Inc. All rights reserved.

How to Attack Embedded Software

● Let's focus on software integrity

● The same attacks from the 80s still work!

● Typical approaches:

– Shellcode: inject a new program

– Return-oriented programming: build a new program from spare parts

– Reflashing: overwrite data (including the original program)

● In addition, for real-time programs, you can also change timing

– Used in Stuxnet to destroy centrifuges

© 2013 Galois, Inc. All rights reserved.

Traditional Approaches to Security

Traditional security approaches make attacks harder...

● Address-space layout randomization

● Write XOR Execute (W^X)

● Stack canaries

© 2013 Galois, Inc. All rights reserved.

Traditional Approaches to Security

Traditional security approaches make attacks harder...

● Address-space layout randomization

● Write XOR Execute (W^X)

● Stack canaries

But not impossible:

Nobody ever defended anything successfully, there is only
attack and attack and attack some more.

– General George S. Patton

© 2013 Galois, Inc. All rights reserved.

From Roadblocks
to Unbypassable Detection

Control-flow Integrity (CFI): does a program respect its
statically-computed call-graph?

© 2013 Galois, Inc. All rights reserved.

From Roadblocks
to Unbypassable Detection

Control-flow Integrity (CFI): does a program respect its
statically-computed call-graph?

executable

source
file 0

src: http://en.wikipedia.org/wiki/File:PIC18F8720.jpg

call-graph

source
file 1

source
file n

. . .

execution trace

compile

execution

© 2013 Galois, Inc. All rights reserved.

From Roadblocks
to Unbypassable Detection

Control-flow Integrity (CFI): does a program respect its
statically-computed call-graph?

src: http://en.wikipedia.org/wiki/File:PIC18F8720.jpg

call-graph
execution trace

execution

trace?
function

return
address

executable

source
file 0

source
file 1

source
file n

. . .

compile

© 2013 Galois, Inc. All rights reserved.

CFI Philosophy

Don't focus preventing specific attacks, but unbypassable
detection of any control-flow violation

What we show is that these defenses would not be worthwhile
even if implemented in hardware. Resources would instead be
better spent deploying a comprehensive solution, such as CFI.

– Checkoway et al. “Comprehensive experimental analysis of
automotive attack surfaces,” USENIX 2011

© 2013 Galois, Inc. All rights reserved.

CFI for High-Integrity Embedded Systems

● CFI makes a new instrumented program. Now you traded
one problem (insecurity) for two:

1. Timing: instrumented code has new (possibly unpredicable) timing

2. Certification: new programs may require re-certification

● State-based CFI (SBCFI) extends CFI: sample control-flow
to find CFI violations

● Decomposes the monitor and the observed program

● Approaches have relied on virtualization and OS debugging features

● And they don't do full CFI checks (i.e., return-oriented programming is not
detected)

Our contribution: SBCFI for real-time embedded systems

© 2013 Galois, Inc. All rights reserved.

RTOS-Based SBCFI

● Scheduling:

● An RTOS already handles
scheduling—CFI checker is just
another task

● Specialize CFI checks to
specific applications—don't
worry about concurrency

● Trust:

● An RTOS is a small (< 5KB
binaries) trustworthy basis

● The weaknesses in embedded
systems is often the application
code

real-time operating system

CFI 0 Task 0 CFI 1 Task 1 Task 2

© 2013 Galois, Inc. All rights reserved.

TrackOS

Additional aspects:

● Lightweight static analyzer to generate control-flow graphs

● Static analysis of binaries—don't trust the compiler, or need to see sources

● No frame-pointers—we compute stack data-usage

● Configuration data for function pointers, assembly code

● Able to analyze a 10k LOC sources/200KB machine imagine in ~10secs

● Data-integrity protection: software-based attestation to
ensure the CFI checkers/data is not modified

See SWATT: Arvind Seshadri et al. SoftWare-based ATTestation for
embedded devices. In IEEE Symposium on Security and Privacy, May
2004.

challenge

response

Challenger TrackOS +
applications

© 2013 Galois, Inc. All rights reserved.

Real-Time Operating System (RTOS)

CFI
Task

Untrusted
Task 0

control stack

return address

data

Untrusted
Task n

. . .

OS-provided
access

© 2013 Galois, Inc. All rights reserved.

control stack

return address

data

non-volatile memory

constructed trace

Real-Time Operating System (RTOS)

CFI
Task

Untrusted
Task 0

Untrusted
Task n

. . .

OS-provided
access

© 2013 Galois, Inc. All rights reserved.

CFI Algorithm

1. Easier: Walk down a
control stack from a known
return address

2. Harder: discovering the first
valid return address

© 2013 Galois, Inc. All rights reserved.

Cooperative Yield

task context

ret: coop_yield()

stored context

© 2013 Galois, Inc. All rights reserved.

Pre-emptive Yield

task context

ret: preempt_yield()

stored context

interrupt address (inside foo())

ret: foo()?

valid number of
data bytes?

© 2013 Galois, Inc. All rights reserved.

Yield from ISR

task context

stored context for ISR call

interrupt address

ret: coop_yield()

© 2013 Galois, Inc. All rights reserved.

Beyond CFI: TrackOS Extensions

● Timing integrity: did control
transfer in the expected
time?

● Example: is GPS data parsed in
the expected time?

● Blacklisting: check the
control stack for functions
in the call-graph that
become invalid

● Example: calling startup code
after initialization completes

● Temporal Logic

200ms

© 2013 Galois, Inc. All rights reserved.

src: https://github.com/diydrones/ardupilot

image srcs: diydrones.com

© 2013 Galois, Inc. All rights reserved.

Setup

● Software tasks:

● Fast task 1: read the pilot input, adjust attitude, signal servos

● Fast task 2: read SPI-bus devices: gyro, barometer

● Slow task: read GPS data, read navigation data from the ground station
radio, update altitude, throttle

New functionality:

● Program-data task: response to SWATT attestation

● Recovery task: disable ground-control station, disable attitude/position
change

● CFI monitor: monitoring the slow task

● Attack: latent buffer overflow in the slow task

● CFI monitor runs at 20Hz (16 MHz processor)

© 2013 Galois, Inc. All rights reserved.

Summary

● TrackOS is real-time and returns no false-positives
(assuming conservative static analysis)

● TrackOS provides unbypassable detection of malicious
control-flow modifications (assuming sufficient frequency)

● TrackOS scales to large current programs

● TrackOS requires no access to the source code of the
analyzed program and is compiler-independent

© 2013 Galois, Inc. All rights reserved.

Questions?

leepike@galois.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

