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Embedded System (in)Security

Siemens Simatic S7-300.
src: http://en.wikipedia.org/wiki/File:S7300.JPG

Stuxnet

src: The New York Times

src: http://www.securitymanagement.com/news/trouble-with-uavs-008118 

src: http://en.wikipedia.org/wiki/File:FIRESCOUT-VUAS.jpg
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How to Attack Embedded Software

● Let's focus on software integrity

● The same attacks from the 80s still work!

● Typical approaches:

– Shellcode: inject a new program

– Return-oriented programming: build a new program from spare parts

– Reflashing: overwrite data (including the original program)

● In addition, for real-time programs, you can also change timing

– Used in Stuxnet to destroy centrifuges
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Traditional Approaches to Security

Traditional security approaches make attacks harder...

● Address-space layout randomization

● Write XOR Execute (W^X)

● Stack canaries
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Traditional Approaches to Security

Traditional security approaches make attacks harder...

● Address-space layout randomization

● Write XOR Execute (W^X)

● Stack canaries

But not impossible:

Nobody ever defended anything successfully, there is only 
attack and attack and attack some more.

– General George S. Patton
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From Roadblocks 
to Unbypassable Detection

Control-flow Integrity (CFI): does a program respect its 
statically-computed call-graph?
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From Roadblocks 
to Unbypassable Detection

Control-flow Integrity (CFI): does a program respect its 
statically-computed call-graph?
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From Roadblocks 
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statically-computed call-graph?
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CFI Philosophy

Don't focus preventing specific attacks, but unbypassable 
detection of any control-flow violation

What we show is that these defenses would not be worthwhile 
even if implemented in hardware.  Resources would instead be 
better spent deploying a comprehensive solution, such as CFI.

– Checkoway et al.  “Comprehensive experimental analysis of 
automotive attack surfaces,” USENIX 2011
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CFI for High-Integrity Embedded Systems

● CFI makes a new instrumented program.  Now you traded 
one problem (insecurity) for two:

1. Timing: instrumented code has new (possibly unpredicable) timing

2. Certification: new programs may require re-certification

● State-based CFI (SBCFI) extends CFI: sample control-flow 
to find CFI violations

● Decomposes the monitor and the observed program

● Approaches have relied on virtualization and OS debugging features

● And they don't do full CFI checks (i.e., return-oriented programming is not 
detected)

Our contribution: SBCFI for real-time embedded systems
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RTOS-Based SBCFI

● Scheduling:

● An RTOS already handles 
scheduling—CFI checker is just 
another task

● Specialize CFI checks to 
specific applications—don't 
worry about concurrency

● Trust:

● An RTOS is a small (< 5KB 
binaries) trustworthy basis 

● The weaknesses in embedded 
systems is often the application 
code

real-time operating system

CFI 0 Task 0 CFI 1 Task 1 Task 2
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TrackOS

Additional aspects:

● Lightweight static analyzer to generate control-flow graphs

● Static analysis of binaries—don't trust the compiler, or need to see sources

● No frame-pointers—we compute stack data-usage

● Configuration data for function pointers, assembly code

● Able to analyze a 10k LOC sources/200KB machine imagine in ~10secs

● Data-integrity protection: software-based attestation to 
ensure the CFI checkers/data is not modified

See SWATT: Arvind Seshadri et al.  SoftWare-based ATTestation for 
embedded devices.  In  IEEE Symposium on Security and Privacy, May 
2004.

challenge

response

Challenger TrackOS +
applications
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Real-Time Operating System (RTOS)
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CFI Algorithm

1. Easier: Walk down a 
control stack from a known 
return address

2. Harder: discovering the first 
valid return address
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Cooperative Yield

task context

ret: coop_yield()

stored context
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Pre-emptive Yield

task context

ret: preempt_yield()

stored context

interrupt address (inside foo())

ret: foo()?

valid number of
data bytes?
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Yield from ISR

task context

stored context for ISR call

interrupt address

ret: coop_yield()
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Beyond CFI: TrackOS Extensions

● Timing integrity: did control 
transfer in the expected 
time? 

● Example: is GPS data parsed in 
the expected time?

● Blacklisting: check the 
control stack for functions 
in the call-graph that 
become invalid

● Example: calling startup code 
after initialization completes

● Temporal Logic

200ms
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src: https://github.com/diydrones/ardupilot

image srcs: diydrones.com
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Setup

● Software tasks:

● Fast task 1: read the pilot input, adjust attitude, signal servos

● Fast task 2: read SPI-bus devices: gyro, barometer

● Slow task: read GPS data, read navigation data from the ground station 
radio, update altitude, throttle

New functionality:

● Program-data task: response to SWATT attestation

● Recovery task: disable ground-control station, disable attitude/position 
change

● CFI monitor: monitoring the slow task

● Attack: latent buffer overflow in the slow task

● CFI monitor runs at 20Hz (16 MHz processor)
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Summary

● TrackOS is real-time and returns no false-positives 
(assuming conservative static analysis)

● TrackOS provides unbypassable detection of malicious 
control-flow modifications (assuming sufficient frequency)

● TrackOS scales to large current programs

● TrackOS requires no access to the source code of the 
analyzed program and is compiler-independent
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Questions?

leepike@galois.com
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