
Triceratops
Privacy-protecting Mobile Apps

Edward Wu University of Washington
Sai Zhang, Ravi Bhoraskar, Rene Just, Mike Ernst

Motivation

● Mobile security is becoming increasingly
important
○ In 2013, there are over 1 billion smartphone users

around the globe another billion users by 2015
○ F-Secure identified 275 new mobile threat families in

Q1 2014, up from 149 last year
● Mobile privacy is a leading concern

○ Over 50% of the Android malware has some private
information collection capabilities

Threat Model

● Mobile privacy: Leakage of personal or
sensitive information
○ GPS coordinates
○ Audio recordings
○ Contacts list
○ SMS messages

● Not focusing on:
○ Attacks that tries to take over the device
○ Phishing, social engineering attacks
○ Denial of Service

Android Permission

● Coarse-grained
permission system
○ Possible to hide

malicious behavior
● Weak enforcement

○ All or nothing

Malware Example

Kittey Kittey

● A real Android malware, designed to evade
detection tools

READ_FILESYSTEM INTERNET_ACCESS

Approach

An enforcement tool that allows users to
enforce fine-grained privacy policies on a
given mobile app

Design challenges:
● What is a easy-to-write and expressive

syntax for privacy policies?
● How to build a tool that precisely and

effectively enforce these policies?

Outline

● Privacy policy
● Enforcement tool

○ Survey of existing techniques
○ Static optimized dynamic enforcement

● Implementation
● Demo
● Preliminary Evaluations

What is Privacy Policy

A specification determining how sensitive
information is allowed or not allowed to be used
within the app.
Components:
● Information Flow: how sensitive data can be

exfiltrated
○ Filesystem -> Internet
○ Call logs -> SMS

● Control Flow: specific code paths or preconditions
○ Not allowed to upload GPS coordinate till a button is

pressed

Privacy Policy Example

A FSM that describes both the information flow
and the control flow specifications

● State: a list of allowed or disallowed
information flows

● Edge: a specific program instruction that
causes the state change

AUDIO –> FILESYSTEM AUDIO –> FILESYSTEM

RECORD.Click()

STOP.Click()

Audio recording is only allowed after RECORD is clicked and before STOP is pressed

Who will write the privacy policy

● App developer
○ Specifies how sensitive data are used in more detail
○ “Enhanced permission system”

● Sysadmins
○ Apply set of default “not-allowed” policies based on

app’s permission
● User

○ All sensitive data flow is not-allowed by default
○ Ask user’s permission when a flow first occurs
○ Next time this specific flow occurs, it will be

automatically allowed or blocked

Survey of existing enforcement
techniques

Metrics:
● Precision

○ No false positive
● Usability

○ Small runtime overhead
● Practicality

○ Automated
○ Does not require modification to the runtime system

Static Analysis

Privacy
Policies

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

Static
Analysis

Unsafe App

INPUT

Potential
Violations

Before
Runtime

Manual
Analysis

Inlined Dynamic Enforcement

Privacy
Policies

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

Inlined Dynamic
Enforcement

Instrumentation

Dynamically
Enforced App

Unsafe App

INPUT Before
Runtime

xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx

High
Overhead

Execution

xxxxxxxxxxx

Virtual
Machine

Interpreter

Runtime Dynamic Enforcement

Privacy
Policies

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

Runtime Dynamic
Enforcement

Instrumentation

Execute

Unsafe App

INPUT During
Runtime

xxxxxxxxxxx

Not
Portable

Next
Instruction

Comparison

Key idea: Combine static analysis and
inlined dynamic enforcement

Techniques Runtime
Overhead

Portable False
Positives

Static Analysis (Conservative) N/A N/A YES

Runtime Dynamic Enforcement Low NO NO

Inlined Dynamic Enforcement High YES NO

 Triceratops Low YES NO

Intuition

Privacy
Policies

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

Static
Analysis

Inlined Dynamic
Enforcement

Instrumentation

Safe
App

xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxx

xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx
xxxxxxxxxxx

Verified
Region

Unverified
Region

Dynamically
Enforced Region

Unsafe App

INPUT TRICERATOPS

Static Optimized Dynamic Enforcement

● Minimizes the instrumentation needed to
enforce a set of policies by using static
analysis to:
○ Apply API summaries
○ Identify unsafe code regions
○ Optimize enforcement code

API Summary

● Allows static analysis to reason about API’s
effect without executing the app

● Remove the need to instrument API bodys

File f=sensitiveFile
String x= Long.toString(f.lastModified())
uploadToInternet(x)

Long.toString(long)
File.lastModified()

String x= f

if (parameter.isSensitive)
return Sensitive

else
return NotSensitive

Identify Unsafe Code Regions

● Because the tool knows exactly what data
flow it needs to track

● Conservatively identify code regions that
help compute or propagate data from the
source

Example

uploadToInternet(x)

Filesystem -> Internet

x=”c” x=fieldA

fieldA=c fieldA=bfieldA=null

c=getFile() c=null b=”b”b=”a”

Example

uploadToInternet(x)

Filesystem -> Internet

x=”c” x=fieldA

fieldA=c fieldA=bfieldA=null

c=getFile() c=null b=”b”b=”a”

Backward Slicing

Enforcement Code Optimization

● Static taint propagation
● Constant folding
● Copy propagation
● Dead code elimination

Static Taint Propagation Example

uploadToInternet(x)

Filesystem -> Internet

x=”c” x=fieldA

fieldA=c fieldA=bfieldA=null

c=getFile() c=null b=”b”b=”a”

Static Taint Propagation Example

uploadToInternet(x)

Filesystem -> Internet

x=”c” x=fieldA

fieldA=c fieldA=NotSensitivefieldA=null

c=getFile() c=null

Implementation

● Mainly built on top of Wala analysis
framework

● Directly perform analysis on Dalvik bytecode
(no need for source code)

● Use smali assembler and disassembler
toolchain for instrumentation

● Existing API summary from SPARTA project

Triceratops Demo

Untrusted
App Safe

App
TriceratopsPrivacy Policy

Preliminary Evaluations

App No Optimization API Summary
Relevant Code

Full Optimization

Kittey Kittey 2757 75/61 6/4

SMS replicator 886 20/13 4/3

● Kittey Kittey
○ No Filesystem -> Internet

● SMS replicator
○ No SMS -> SMS before a button is clicked

Enforcement Overhead (# of additional instructions)

Very low runtime overhead!

Preliminary Evaluations
Tools Kittey

Kittey
SMS
Replicator

Root Cause

Android Permission System No IF, CF

Pegasus [Chen'13] Multiple code path to potential
violation

TaintDroid [Enck'10] No CF

Aurasium [Xu'12] No IF

Triceratops Finer-grained privacy policy
IF+CF

Supports more types of malware

Limitations

● Classical Java static analysis challenges
○ Reflection
○ Precision of points-to analysis

● Static modeling of Android runtime behavior
○ Dynamically register a callback function to a button

● Completeness of the API summary
● Native code

● Can be addressed by other research

Future Work

● Implicit Flow
○ Static analysis assisted dynamic analysis can be

used to track implicit flow while achieving high
precision

● Data tracking mechanisms for persistent
storage mediums and side channels
○ Databases and file systems
○ Displaying sensitive information on screen, then take

a screenshot

Conclusion

A powerful enforcement tool that allows users
to enforce fine-grained privacy policies on a
given mobile app

● Finer-grained privacy policy (IF+CF)
○ Defend against more types of malicious apps

● Static optimized dynamic enforcement
○ Portable, low runtime overhead, and no false

positives

