Trust Engineering with Cryptographic Protocols

Joshua D. Guttman, F. Javier Thayer

April 2004

Supported by the and the **National Security Agency MITRE-Sponsored Research** Program

Needham-Schroeder

 $egin{array}{c} K_A, K_B \ N_a, N_b \ \{ |t| \}_K \ N_a \oplus N_b \end{array}$

Public (asymmetric) keys of A, BNonces, one-time random bitstrings Encryption of t with KNew shared secret

Essence of Cryptography (for today)

Public key cryptography: algorithm using two related values, one private, the other public

- Encryption: Public key makes ciphertext, only private key owner can decrypt
- Signature: Private key makes ciphertext, anyone can verify signature with public key

A's public key: K_A A's private key: K_A^{-1}

Symmetric key cryptography: algorithm using a single value, shared as a secret between sender, receiver

- Same key makes ciphertext, extracts plaintext

 $K = K^{-1}$

Needham-Schroeder: How does it work?

Assume A's private key K_A^{-1} uncompromised

K_A, K_B	Public (asymmetric) keys of A, B
N_a, N_b	Nonces, one-time random bitstrings
$\{ t \}_K$	Encryption of t with K
$N_a\oplus N_b$	New shared secret

Whoops

Needham-Schroeder Failure

Needham-Schroeder-Lowe

K_A, K_B	Public (asymmetric) keys of A, B
N_a, N_b	Nonces, one-time random bitstrings
$\{ t \}_K$	Encryption of t with K
$N_a\oplus N_b$	New shared secret

Protocol Analysis

Protocol analysis tells us:

- What happened (e.g. authentication properties)
- What didn't happen (e.g. secrecy failures)

Formalized in (e.g.) strand space theory

- Behaviors of regular principals are "strands"
- Adversary actions represented as special strands
- Executions are causally well-founded graphs

Very powerful proof methods: "Authentication tests"

- Compact proofs of many protocols
- Failed proofs suggest attacks
- Useful protocol design heuristics

Authentication test method illustrated on previous slides

Goal for Remainder of Talk

Reason about real world consequences of cryptographic protocols

- Capitalize on methods for protocol analysis and design

Examples:

- Distributed access control
 - Principals cooperate to share resources selec logical deduction
 - As formulated via trust management logic
- Electronic retail commerce
 - When is customer committed to paying?
 - When is merchant committed to shipping?
 - Whose word did you depend on when deciding?

Main idea: Enrich strand space framework with formulas from a trust management logic

- Formulas for message transmissions are guaranteed by sender
- Formulas for message receipt are assumptions the receiver relies on

control access (or actions) via distribu logical deduction

An Example: EPMO

 $mo = \llbracket hash(C, N_c, N_b, N_m, price) \rrbracket_B$

Nonce-based cryptographic protocols

Authenticate peer

- Demonstrable to third party (in some protocols)

Guarantee loosely synchronous interaction

- Unpredictable nonce establishes causal ordering
- Message recent if it incorporates recently generated nonce
 Establish shared secrets

_	- Temporary secrets		
_	Permanent secrets	price	
_	Secrets shared among subset of principals	goods	

Strand space theory focuses on

- Causal structure of protocol interactions
- Properties of protocols mentioned above

and provides strong protocol design methods

EPMO: Commitments on sends

Trust management and protocols

Each principal P

- Reasons locally in Th_P
- Derives guarantee before transmitting message
- Relies on assertions of others as premises

Premises: formulas associated with message receptions

- Specifies what recipient may rely on, e.g. "B says 'I will transfer funds if authorized' "
- Provides local representation of remote guarantee
- Th_P determines whether ϕ follows from P' says ϕ

Role of protocol

- When I rely on you having asserted a formula, then you did guarantee that assertion
- Coordination mechanism for rely/guarantees
- Sound protocol: "relies" always backed by "guarantees"

EPMO: Rely/Guarantee Formulas

Contrast: Earlier Work

The BAN tradition

- Messages are formulas or formulas idealize messages
- Who asserted the formulas?
- Who drew consequences from formulas?

Embedding formulas explicitly inside messages

- Main view of logical trust mgt
- Formulas parsed out of certificates
- Problem of partial information?

Our view: Formulas part of transmission/reception, not msg

- Compatible with many insights of earlier views
- Independent method to determine what events happened
- Clarity about who makes assertions, who infers consequences
- Partial information easy to handle
- Rigorous notion of soundness

starts with LAWB

EPMO and Needham-Schroeder-Lowe

EPMO Weakened

Lowe-style attack

Soundness

Let Π be an annotated protocol, i.e.

- A set of roles (parametrized behaviors)
 - A role is a sequence of transmissions/receptions (nodes)
- For each transmission node n, a guarantee γ_n
- For each reception n, a rely formula ρ_n
- The principal active on node n is prin(n)

 γ_n , ρ_n may refer to message ingredients Π is sound if, for all executions \mathcal{B} , and message receptions $n \in \mathcal{B}$

$$\{\operatorname{prin}(m) \text{ says } \gamma_m \colon m \prec_{\mathcal{B}} n\} \longrightarrow_{\mathcal{L}} \rho_n$$

where $\longrightarrow_{\mathcal{L}}$ is the consequence relation of the underlying logic Soundness follows from authentication properties

- Authentication tests a good tool
- Recency easy to incorporate

One case of soundness

 $\rho_{m,3} = B \text{ says } \gamma_{b,2}$ and $C \text{ says } \gamma_{c,5}$ Suppose $n_{m,3} \in \mathcal{B}$

where $m \in Merchant[B, C, M, p, g, N_c, N_m, N_b]$ necessary keys uncompromised, nonces u.o.

$$\begin{array}{ll} \text{Then} & n_{b,2}, n_{c,5} \in \mathcal{B} & \text{for some} \\ & b \in \text{Bank}[B,C,*,p,N_c,N_m,N_b] \text{ and} \\ & c \in \text{Customer}[B,C,M,p,g,N_c,N_m,N_b] \\ & \text{Moreover,} & n_{m,1} \preceq_{\mathcal{B}} n_{b,2} \text{ and } n_{m,1} \preceq_{\mathcal{B}} n_{c,5} \end{array}$$

Same form as an authentication result with recency In weakened EPMO, only know

 $c \in \mathsf{Customer}[B, C, X, p, g, N_c, N_m, N_b]$

Four Tenets of Logical Trust Management

- 1. Principal theories: Each principal P holds a theory Th_P ; P derives conclusions using Th_P
 - May rely on formulas P' says ψ as additional premises
 - P says ϕ only when P derives ϕ
- 2. Trust in others: "P trusts P' for a subject ψ " means

- P says $((P' \text{ says } \psi) \supset \psi)$

- 3. Syntactic authority: Certain formulas, e.g.
 - P says ϕ
 - P authorizes ϕ

are true whenever \boldsymbol{P} utters them

- 4. Access control via deduction: P may control resource r; P takes action $\phi(r, P')$ on behalf of P' when P derives
 - P' requests $\phi(r, P')$
 - P' deserves $\phi(r, P')$

Trust and Protocols

Nonce-based, cryptographic protocols for real tasks:

- Rely on formula after message receipt
- Guard message transmissions by guarantee
- Stop if you fail to infer guard

Key technical idea: Soundness

- Annotated protocol is sound if (in every execution) each rely supported by earlier guarantees
- Strand space authentication tests establish soundness

Clean method to export pure properties of protocol to support trust needs of real systems

http://www.ccs.neu.edu/home/guttman

Permissible Bundles

Let \mathcal{B} a bundle; let each P hold theory Th_P

 $\ensuremath{\mathcal{B}}$ is permissible if

$$\{\rho_m \colon m \Rightarrow^+ n\} \longrightarrow_{\mathsf{Th}_P} \gamma_n$$

for each positive, regular $n \in \mathcal{B}$

Means, every principal derives guarantee before sending each message

- permissible is vertical (strand-by-strand)
- sound is horizontal (cross-strand)

What trust is needed in permissible bundles of a sound protocol? For which P' and ψ must P accept

$$P$$
 says $((P' \text{ says } \psi) \supset \psi)$

Trust Mgt Reasoning for EPMO, 1: Bank

 $\gamma_{b,2} \quad \forall P_M \quad \text{if} \qquad C \text{ authorizes transfer}(B, \text{price}, P_M, N_m), \\ \text{and} \qquad P_M \text{ requests transfer}(B, \text{price}, P_M, N_m), \\ \text{then} \quad \text{transfer}(B, \text{price}, P_M, N_m).$

 $\rho_{b,3}$ $C \text{ says } C \text{ authorizes transfer}(B, \text{price}, M, N_m),$ and $M \text{ says } M \text{ requests transfer}(B, \text{price}, M, N_m).$

Universal quantifier $\forall P_M$ expresses "payable to bearer"

After node $n_{b,3}$, B can deduce

transfer(B, price, P_M , N_m)

Uses syntactic authority (authorizes, requests) but not trust

Trust Mgt Reasoning for EPMO, 2: Merchant

$\gamma_{m,2}$	$\forall P_B$	if then	transfer(P_B , price, M, N_m), ship(M , goods, C).
ρ _{m,3}		and	B says $\gamma_{b,2}$, C says $\gamma_{c,5}$.
$\gamma_{m,4}$		and	M requests transfer(B , price, M , N_m), ship(M , goods, C).

After node $n_{m,3}$, can M can deduce ship(M, goods, C)? Yes, if M requests transfer and accepts

B says $\gamma_{b,2}$ implies $\gamma_{b,2}$

i.e. M trusts B to transfer the funds as promised $\gamma_{b,2} \forall P_M$ if C authorizes transfer $(B, \text{price}, P_M, N_m)$, and P_M requests transfer $(B, \text{price}, P_M, N_m)$, then transfer $(B, \text{price}, P_M, N_m)$.

Trust Mgt Formulas for EPMO, 3: Customer

Customer:

$ ho_{c,2}$	M says $\gamma_{m,2}$.
$ ho_{c,4}$	B says $\gamma_{b,2}.$
$\gamma_{c,5}$	C authorizes transfer $(B, price, M, N_m)$.

Decision to assert $\gamma_{c,5}$ depends on C's trust in M: M says $\gamma_{m,2}$ implies $\gamma_{m,2}$ and C's trust in B:

B says $\gamma_{b,2}$ implies $\gamma_{b,2}$

A Signed Alternate: SEPMO

Signed Electronic Purchase using Money Order mo = $[[hash(C, N_c, N_b, N_m, price)]]_B$