Trust Engineering with Cryptographic Protocols

+ +

Joshua D. Guttman, F. Javier Thayer

April 2004

Supported by the **National Security Agency**
and the **MITRE-Sponsored Resea MITRE-Sponsored Research Program**

Needham-Schroeder

+ +

 K_A, K_B Public (asymmetric) keys of A, B N_a, N_b Nonces, one-time random bitstrings ${d}{t}$ _K Encryption of t with K $N_a \oplus N_b$ New shared secret

Essence of Cryptography (for today)

+ +

Public key cryptography: algorithm using two related values, one private, the other public

- Encryption: Public key makes ciphertext, only private key owner can decrypt
- Signature: Private key makes ciphertext, anyone can verify signature with public key

 A 's public key: K_A A 's private key: K_A^{-1} Symmetric key cryptography: algorithm using a single value, shared as a secret between sender, receiver

Same key makes ciphertext, extracts plaintext

 $K = K^{-1}$

Needham-Schroeder: How does it work?

Assume A 's private key K_A^{-1} uncompromised

+ +

Whoops

Needham-Schroeder Failure

Needham-Schroeder-Lowe

Protocol Analysis

Protocol analysis tells us:

– What happened (e.g. authentication properties)

+ +

– What didn't happen (e.g. secrecy failures)

Formalized in (e.g.) strand space theory

- Behaviors of regular principals are "strands"
- Adversary actions represented as special strands
- Executions are causally well-founded graphs

Very powerful proof methods: "Authentication tests"

- Compact proofs of many protocols
- Failed proofs suggest attacks
- Useful protocol design heuristics

Authentication test method illustrated on previous slides

Goal for Remainder of Talk

Reason about real world consequences of cryptographic protocols

+ +

– Capitalize on methods for protocol analysis and design

Examples:

- Distributed access control
	- o Principals cooperate to share resources selectively logical deduction
	- As formulated via trust management logic
- Electronic retail commerce
	- When is customer committed to paying?
	- When is merchant committed to shipping?
	- Whose word did you depend on when deciding?

Main idea: Enrich strand space framework with formulas from a trust management logic

- Formulas for message transmissions are guaranteed by sender
- Formulas for message receipt are assumptions the receiver relies on

control access $($ or actions $)$ via distributed

An Example: EPMO

+ +

Electronic Purchase using Money Order $\mathsf{mo} = \llbracket \ \mathsf{hash}(C, \ N_c, \ N_b, \ N_m, \ \mathsf{price}) \rrbracket_B$

Nonce-based cryptographic protocols

Authenticate peer

– Demonstrable to third party (in some protocols)

Guarantee loosely synchronous interaction

- Unpredictable nonce establishes causal ordering
- Message recent if it incorporates recently generated nonce Establish shared secrets

+ +

Strand space theory focuses on

- Causal structure of protocol interactions
- Properties of protocols mentioned above

and provides strong protocol design methods

EPMO: Commitments on sends

Trust management and protocols

Each principal P

- Reasons locally in Th $_P$
- Derives guarantee before transmitting message
- Relies on assertions of others as premises

Premises: formulas associated with message receptions

+ +

- Specifies what recipient may rely on, e.g. " B says 'I will transfer funds if authorized'"
- Provides local representation of remote guarantee
- $-$ Th $_P$ determines whether ϕ follows from $\overline{P'}$ says ϕ

Role of protocol

- When I rely on you having asserted a formula, then you did guarantee that assertion
- Coordination mechanism for rely/guarantees
- Sound protocol: "relies" always backed by "guarantees"

EPMO: Rely/Guarantee Formulas

Contrast: Earlier Work

The BAN tradition

– Messages are formulas or formulas idealize messages

+ +

- Who asserted the formulas?
- Who drew consequences from formulas?

Embedding formulas explicitly inside messages

- Main view of logical trust mgt
- Formulas parsed out of certificates
- Problem of partial information?

Our view: Formulas part of transmission/reception, not msg

- Compatible with many insights of earlier views
- Independent method to determine what events happened
- Clarity about who makes assertions, who infers consequences
- Partial information easy to handle
- Rigorous notion of soundness

starts with LAWB

EPMO and Needham-Schroeder-Lowe

EPMO Weakened

Lowe-style attack

Soundness

Let Π be an annotated protocol, i.e.

- A set of roles (parametrized behaviors)
	- A role is a sequence of transmissions/receptions (nodes)

+ +

- For each transmission node n, a guarantee γ_n
- For each reception n , a rely formula ρ_n
- The principal active on node n is prin (n)

 γ_n , ρ_n may refer to message ingredients Π is sound if, for all executions \mathcal{B} , and message receptions $n \in \mathcal{B}$

{prin(m) says
$$
\gamma_m
$$
: $m \prec_B n$ } $\longrightarrow_C \rho_n$

where $\longrightarrow_{\mathcal{L}}$ is the consequence relation of the underlying logic Soundness follows from authentication properties

- Authentication tests a good tool
- Recency easy to incorporate

One case of soundness

 $\rho_{m,3} = B$ says $\gamma_{b,2}$ and C says $\gamma_{c,5}$

Suppose $n_{m,3} \in \mathcal{B}$ where $m \in \mathsf{Merchant}[B, C, M, p, g, N_c, N_m, N_b]$ necessary keys uncompromised, nonces u.o.

Then $n_{b,2}, n_{c,5} \in \mathcal{B}$ for some $b\in \mathsf{Bank}[B,C,*,p,N_c,N_m,N_b]$ and $c \in {\sf Customer}[B,C,M,p,g,N_c,N_m,N_b]$ Moreover, $n_{m,1} \preceq_{\mathcal{B}} n_{b,2}$ and $n_{m,1} \preceq_{\mathcal{B}} n_{c,5}$

+ +

Same form as an authentication result with recency In weakened EPMO, only know

 $c \in {\sf Customer}[B,C,X,p,g,N_c,N_m,N_b]$

Four Tenets of Logical Trust Management

+ +

- 1. Principal theories: Each principal P holds a theory Th_P ; P derives conclusions using Th_P
	- $-$ May rely on formulas P' says ψ as additional premises
	- P says ϕ only when P derives ϕ
- 2. Trust in others: " P trusts P' for a subject ψ " means

 $\;$ P says $((P'$ says $\psi) \supset \psi)$

- 3. Syntactic authority: Certain formulas, e.g.
	- $-$ P says ϕ
	- $-$ P authorizes ϕ

are true whenever P utters them

- 4. Access control via deduction: P may control resource r ; P takes action $\phi(r, P')$ on behalf of P' when P derives
	- P' requests $\phi(r, P')$
	- P' deserves $\phi(r, P')$

Trust and Protocols

Nonce-based, cryptographic protocols for real tasks:

+ +

- Rely on formula after message receipt
- Guard message transmissions by guarantee
- Stop if you fail to infer guard

Key technical idea: Soundness

- Annotated protocol is sound if (in every execution) each rely supported by earlier guarantees
- Strand space authentication tests establish soundness

Clean method to export pure properties of protocol to support trust needs of real systems

http://www.ccs.neu.edu/home/guttman

Permissible Bundles

Let $\mathcal B$ a bundle; let each P hold theory Th $_P$

 B is permissible if

$$
\{\rho_m\colon m\Rightarrow^+ n\}\longrightarrow_{\text{Th}_P} \gamma_n
$$

+ +

for each positive, regular $n \in \mathcal{B}$

Means, every principal derives guarantee before sending each message

- permissible is vertical (strand-by-strand)
- sound is horizontal (cross-strand)

What trust is needed in permissible bundles of a sound protocol? For which P' and ψ must P accept

$$
P \text{ says } ((P' \text{ says } \psi) \supset \psi)
$$

Trust Mgt Reasoning for EPMO, 1: Bank

 $\gamma_{b,2}$ $\forall P_M$ if C authorizes transfer $(B, \text{price}, P_M, N_m)$, and P_M requests transfer $(B, \text{price}, P_M, N_m)$, **then** transfer $(B, \text{price}, P_M, N_m)$.

 $\rho_{b,3}$ C says C authorizes transfer $(B, \text{price}, M, N_m)$, and M says M requests transfer $(B, \text{price}, M, N_m)$.

+ +

Universal quantifier $\forall P_M$ expresses "payable to bearer"

After node $n_{b,3}$, B can deduce

transfer $(B, \text{price}, P_M, N_m)$

Uses syntactic authority (authorizes, requests) but not trust

Trust Mgt Reasoning for EPMO, 2: Merchant

+ +

After node $n_{m,3}$, can M can deduce ship $(M, \text{ goods}, C)$? Yes, if M requests transfer and accepts

B says $\gamma_{b,2}$ implies $\gamma_{b,2}$

i.e. M trusts B to transfer the funds as promised $\gamma_{b,2}$ $\forall P_{M}$ if C authorizes transfer $(B,$ price, $P_{M}, N_{m}),$ and P_M requests transfer $(B, \text{price}, P_M, N_m)$, **then** transfer $(B, \text{price}, P_M, N_m)$.

Trust Mgt Formulas for EPMO, 3: Customer

+ +

Customer:

Decision to assert $\gamma_{c,5}$ depends on C's trust in M: M says $\gamma_{m,2}$ implies $\gamma_{m,2}$ and C 's trust in B :

B says $\gamma_{b,2}$ implies $\gamma_{b,2}$

A Signed Alternate: SEPMO

+ +

Signed Electronic Purchase using Money Order $\mathsf{mo} = \llbracket \ \mathsf{hash}(C, \ N_c, \ N_b, \ N_m, \ \mathsf{price}) \rrbracket_B$