

TRUST MANAGEMENT AND SECURITY IN SATELLITE TELECOMMAND

PROCESSING

THESIS

Mark C. Duncan, Captain, USAF

AFIT/GCO/ENG/11-03

DEPARTMENT OF THE AIR FORCE
AIRUNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this research are those of the author and do not reflect the
official policy or position of the United States Air Force, the Department of
Defense, or the United States Government. This material is declared a work of
the U.S. Government and is not subject to copyright protection in the United
States.

AFIT/GCO/ENG/11-03

TRUST MANAGEMENT AND SECURITY IN SATELLITE TELECOMMAND

PROCESSING

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Mark C. Duncan, BSAE

Captain, USAF

March 2011

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GCO/ENG/11-03

iv

Abstract

New standards and initiatives in satellite system architecture are moving the space

industry to more open and efficient mission operations. Primarily, these standards allow

multiple missions to share standard ground and space-based resources to reduce mission

development and sustainment costs. With the benefits of these new concepts comes

added risk associated with threats to the security of our critical space assets in a contested

space and cyberspace domain. As one method to mitigate threats to space missions, this

research develops, implements, and tests the Consolidated Trust Management System

(CTMS) for satellite flight software.

The CTMS architecture was developed using design requirements and features of

Trust Management Systems (TMS) presented in the field of distributed information

systems. This research advances the state of the art with the CTMS by refining and

consolidating existing TMS theory and applying it to satellite systems. The feasibility

and performance of this new CTMS architecture is demonstrated with a realistic

implementation in satellite flight software and testing in an emulated satellite system

environment. The system is tested with known threat modeling techniques and a specific

forgery attack abuse case of satellite telecommanding functions. The CTMS test results

show the promise of this technique to enhance security in satellite flight software

telecommand processing. With this work, a new class of satellite protection mechanisms

is established, which addresses the complex security issues facing satellite operations

today. This work also fills a critical shortfall in validated security mechanisms for

implementation in both public and private sector satellite systems.

v

Acknowledgments

I would like to thank all of those who provided guidance, camaraderie and support

during my time at AFIT. Your dedication and professionalism has enabled my success

and will serve as a positive impression in my life. As new horizons dawn, I am fortunate

to carry the legacy of my time spent at AFIT. Thank you.

 Mark C. Duncan

vi

Table of Contents

Abstract .. iv�
Acknowledgments..v�
Table of Contents ... vi�
List of Figures .. viii�
List of Tables ... ix�
I. Introduction ..1�

1.1 Overview ... 1�
1.2 Preview ... 5�

II. Literature Review ..6�
2.1 Introduction ... 6�
2.2 Satellite Systems Role... 7�
2.3 Satellite Systems Mission Areas ... 8�

2.3.1 Remote Sensing. .. 8�
2.3.2 Communications. ... 9�
2.3.3 Precision Navigation and Timing. ... 9�
2.3.4 Science/Exploration ... 10�

2.4 Space Orbits and Environment ... 10�
2.4.1 Orbits.. 11�
2.4.2 Space Environment. ... 13�

2.5 Satellite System Components ... 15�
2.5.1 Satellite Hardware. ... 15�

2.5.1.1 Telemetry Tracking and Command (TT&C) Subsystem. 15�
2.5.1.2 Electrical Power System (EPS). ... 16�
2.5.1.3 Propulsion subsystem. .. 17�
2.5.1.4 Attitude Determination and Control subsystem (ADACS). 17�
2.5.1.5 Thermal Control System (TCS). .. 18�
2.5.1.6 Payload. .. 18�

2.5.2 Satellite Flight Software (FSW). .. 19�
2.5.3 Ground Station Hardware. ... 19�
2.5.4 Ground Control Software. .. 20�
2.5.5 Telecommanding Architecture. .. 20�

2.6 Space System Threats and Security .. 23�
2.6.1 Data Corruption. .. 24�
2.6.2 Interception Of Data. ... 25�
2.6.3 Jamming. .. 25�
2.6.4 Masquerade. ... 25�
2.6.5 Replay. ... 26�
2.6.6 Software Threats. ... 26�
2.6.7 Unauthorized Access. .. 26�

2.7 Trust .. 27�
2.7.1 Trust Management System Examples. ... 28�
2.7.2 Trust Management System Design Principles. .. 30

vii

III. Methodology ..34�
3.1 Methodology Overview .. 34�
3.2 Problem Definition.. 34�

3.2.1 Goals and Hypothesis. ... 34�
3.2.2 Approach. ... 35�

3.3 Trust Management System ... 36�
3.3.1 Services. .. 36�
3.3.2 Architecture. ... 38�
3.3.3 Trust Mechanisms. ... 42�

3.3.3.1 Interaction Trust Mechanism. .. 42�
3.3.3.2 Credential Trust Mechanism. ... 49�

3.3.4 Policy Evaluation. .. 50�
3.3.5 Consolidated Trust Management System (CTMS) API. 51�

3.4 Abuse Case Development ... 51�
3.5 System Policy Development ... 53�
3.6 Satellite Test Environment .. 53�
3.7 Summary ... 54�

IV. Analysis and Results ..56�
4.1 Chapter Overview ... 56�
4.2 Test Environment Setup .. 57�
4.3 Trust Management System Integration ... 60�

4.3.1 Interaction-Based Trust Calculation. ... 61�
4.3.2 Credential Trust Evaluation. .. 63�
4.3.3 Trust Data Storage. .. 66�
4.3.4 API. .. 66�

4.4 Implementation Abuse Case ... 67�
4.5 Implementation System Policy ... 69�
4.6 Experiment Design .. 71�
4.7 Experiment Results ... 72�
4.7.1 System Performance. ... 75�
4.7.2 System Characteristics. .. 76�

V. Conclusions and Future Work...78�
5.1 Chapter Overview ... 78�
5.2 Conclusions of Research ... 79�
5.3 Recommendations for Future Research .. 81�

Appendix A. Simple I-Trust Algorithm Optimization ...83�
Appendix B. Illustrated CTMS Test Sequence ..98�
Bibliography ..106�

viii

List of Figures

Figure 1 Trust Engine Hierarchy .. 29�

Figure 2 General CTMS Architecture ... 41�

Figure 3 Simple Trust Value Graph During Confidence Attack 46�

Figure 4 Extended Trust Value Graph During Confidence Attack 48�

Figure 5 Test Satellite System .. 57�

Figure 6 Test Environment Setup ... 60�

Figure 7 Authentication Credential Structure ... 64�

Figure 8 Attempt Approximation Formula ... 86�

Figure 9 Beta Bound Pseudo Code ... 87�

Figure 10 Number Line for Optimizing Į and ȕ Parameters .. 88�

Figure 11 Į and ȕ Loop Pseudo Code ... 89�

Figure 12 Series of Encounters Pseudo Code ... 90�

Figure 13 Interaction Series Pseudo Code .. 91�

Figure 14 I-Trust Parameter Optimization Tool ... 92�

Figure 15 Example 1: Initial I-Trust Optimization ... 93�

Figure 16 Optimization Example 2: No Average Constraint, Min Alpha for Beta 94�

Figure 17 Optimization Example 3: Average Constraint, Minimum Alpha for Beta 96�

Figure 18 Optimization Result Selection .. 97�

Figure 19 Step 1, Satellite Diagnostic Port Output ... 99�

Figure 20 Step 2, Custom Commanding Tool Setup .. 101�

Figure 21 Step 2, Invalid Command Authentication Count Error 101�

Figure 22 Step 2, Trust Policy Check During Attack ... 102�

Figure 23 Secure Unlock Command Transmission .. 103�

Figure 24 Step 3, Secure Unlock Command Processing .. 104�

Figure 25 Step 4, Legitimate Commanding Following Unlock 105�

ix

List of Tables

Table 1 Simple Interaction Trust Algorithm [43] ... 44�

Table 2 Extended Interaction Trust Algorithm ... 47�

Table 3 CTMS I-Trust Marker List .. 62�

Table 4 Credential Trust List .. 65�

Table 5 CTMS Member List ... 66�

Table 6 I-Trust Member Evidence List ... 66�

Table 7 Abuse case steps .. 68�

Table 8 Implemented Policy Options ... 70�

Table 9 Experiment Design .. 72�

Table 10 Experiment Results .. 74�

Table 11 FSW Build Characteristics... 77�

Table 12 CTMS Function Performance .. 77�

Table 13 Optimization Example 1 .. 91�

Table 14 Optimization Example 2 .. 94�

Table 15 Optimization Example 3 .. 96�

1

TRUST MANAGEMENT AND SECURITY IN SATELLITE TELECOMMAND

PROCESSING

I. Introduction

1.1 Overview

This chapter gives a general introduction to the problem domain and provides an

overview of the thesis research area. The significance of the problem being addressed

and motivation for research is also presented in this section. Additionally, this chapter

introduces the research goal and presents an overview of the thesis.

Satellite systems currently influence many aspects of modern society. From daily

banking transactions to personal communications to global food production, modern

society is dependent on the existence of satellite systems. These systems are launched

and maintained by both commercial and governmental organizations and consist of

ground and space-based segments. The primary entity in the ground segment of a

satellite system is the satellite control center, or ground station, which commands and

maintains the operational status of the satellite in orbit. The space-based segment of a

satellite system consists of the orbiting satellite or constellation of satellites. Whether

commercially or government owned and operated, satellite systems of all types have

made their way into our lives.

Considering the vital role satellite systems play in modern society, these assets

can be classified as national critical infrastructure. As defined in the United States Patriot

2

Act of 2001, critical infrastructure includes "systems and assets, whether physical or

virtual, so vital to the United States that the incapacity or destruction of such systems and

assets would have a debilitating impact on security, national economic security, national

public health or safety, or any combination of those matters [1]."

Current public policy in the United States regarding critical infrastructure can be

tied to Presidential Decision Directive 63 (PDD-63) "Critical Infrastructure Protection"

published in May 1998 [2]. The guidance in PDD-63 describes critical infrastructure and

sets national policy for protecting such infrastructure. This policy identifies

responsibilities the Department of Defense (DoD) has for critical infrastructure

protection, specifically, identifying the need to counter the threat of cyber attacks.

This added focus on cyber-based attacks stems from the increasing

interdependence of critical national functions, such as banking, energy, and

transportation, on advanced technology. One specific area of technology both supporting

and serving as critical infrastructure is satellite systems. While the integration of new

technology to these areas increases capacity and efficiency, it also makes the

infrastructure more vulnerable to disruption and attack both physically and through

cyberspace. Due to system integration, such an attack has the potential to create

cascading failures. Because of the relatively recent progression from disconnected

systems to complex interconnected systems, this threat is unprecedented, thus justifying

research into new security mechanisms for critical infrastructure [2].

The DoD Critical Infrastructure Protection Plan (CIPP) published in November 1998,

followed from PDD-63 to address the DoD plan to protect its portion of the nation's

critical infrastructure. The DoD portion of national critical infrastructure is divided into

3

sectors, one of which is "Defense Space" [3]. The Defense Space Infrastructure Sector

detailed in the DoD CIPP consists of both space and ground-based assets. These include

launch, specialized logistics, and control systems located worldwide on both DoD and

commercially controlled sites [3].

These national and DoD policies state that satellite systems are currently considered a

national critical infrastructure and require protection efforts. These efforts include

vulnerability assessment and mitigation methods. This reality motivates research to

identify potential vulnerabilities in satellite systems and to develop methods to mitigate

associated risks.

To begin addressing security in satellite systems, this research considers common

threats to space missions as presented in satellite security publications. The Consultative

Committee for Space Data Systems (CCSDS) has published several reports concerning

threats and security protocols relating to satellite systems [4,5,6]. A specific and the most

significant threat discussed in these and related works involve the satellite command link,

also known as the telecommand system. This threat is further categorized in this work.

Furthermore, a specific forgery attack generally referred to as an abuse case is developed

to illustrate satellite command link security issues.

Telecommand is a common term in the space industry referring to command and

control communications through a wireless command link used to control satellites in

orbit. According to the CCSDS report, Telecommand: Summary of Concept and Service,

a telecommand system conveys control information from an originating source to a

remotely located physical device or process [7]. In satellite systems, the controlled

device is primarily a satellite bus, payload, or process aboard a spacecraft. The term

4

telecommand used in this document refers to communications which initiate, modify, or

terminate certain functions of a satellite [8].

Traditional space mission telecommand systems consist of centralized, mission-

specific architecture [7]. These systems have unique components, data formats, and

procedures for each space mission. This focus on mission unique technology and

telecommand architecture is changing. The most significant of these changes are the

development and implementation of open standards for spacecraft control. The primary

motivation for the implementation of these standards is to reduce costs and satisfy cross

support activities for satellite systems [5]. With the application of a general open

telecommanding architecture, greater focus must be placed on satellite command link

security.

Traditionally, logical security in satellite systems has not been a primary concern.

Focus on system development in the space domain has primarily been on safe

functionality rather than system security from malicious intent. The predominate reason

for this is the critical fault intolerant nature of operating in space. The improper

configuration of software onboard a satellite can leave a multimillion dollar space system

useless, thus discouraging security features [9]. Another factor influencing this basic

functional versus security focus is the threat profile in the space domain.

In the past, satellite systems were off limits to individuals and many organizations

due to complexity and cost of entry. With the reduction of cost and the introduction of

system standards, satellite system technology is now more widely available than ever [5].

In an effort to remedy the current Flight Software (FSW) security situation resulting from

these factors, this work addresses the application of security features for satellite system

5

commanding. The new features considered in this work utilize the concepts of trust

management from the distributed information systems domain.

1.2 Preview

In summary, safety and security in satellite system commanding operations are in

jeopardy given the increased access to the space domain, lack of space system security

focus, and an increasing trend in global cyber threats [6,10]. It is proposed that satellite

system safety and security can be improved with a proven trust management architecture

which addresses common cyber threats to space assets. The focus of this research is to

develop an efficient and effective method of applying interaction trust via a Trust

Management System (TMS) to satellite system commanding for enhanced mission safety

and security.

Chapter II presents a review of related literature that introduces the satellite system

domain in detail along with security and trust management principles. Chapter III details

the proposed TMS for satellite telecommanding incorporating multiple trust mechanisms

and introduces abuse case methodology for evaluating the system. Chapter IV presents

the experiment setup used for testing FSW and the developed TMS with a forgery attack

abuse case. Chapter IV also covers results of the TMS testing and performance

characteristics of the TMS. Chapter V provides an analysis of the results with

recommendations for further research in the field.

6

II. Literature Review

2.1 Introduction

This chapter presents a review of literature, concepts and existing work relevant to the

development of a trust-based security model for satellite systems. First, a review of the

space domain as it relates to satellite systems is presented, covering the roles, missions,

operating environment, and components of satellite systems. Second, literature related to

satellite system threats is introduced. Third, security principles and threats which apply

to satellite and computer systems are reviewed. Finally, the concept of trust, as it relates

to distributed information systems and trust related work is presented.

This thesis focuses on threat detection and mitigation in satellite system

telecommanding operations through the application of a Trust Management System

(TMS) to satellite Flight Software (FSW). Most threats to spacecraft telecommand links

are a result of their Radio Frequency (RF) transmissions being broadcast through an

open medium [5,6]. To understand the threats and risks to satellite telecommanding

systems an investigation of existing work which classifies threats to satellite systems is

performed. To form a response to these threats, concepts of computer and satellite

security are reviewed. Principals of trust management in distributed information systems

and other fields are also examined to support this thesis. Concepts from relevant trust

research are utilized to realize the primary goal of this work, to develop and apply a new

satellite security mechanism utilizing trust management theory. This effort requires a

general understanding of space system missions, space environment, and system

7

components. These principles of satellite systems lay the foundation for common

satellite operations upon which system security can be evaluated.

2.2 Satellite Systems Role

Satellite systems influence many aspects of modern society. From daily banking

transactions to personal communications to global food production, our society is

dependent on the existence and operation of satellite systems.

Not only do many commercial industries rely on the use of satellite resources to

conduct daily operations, government entities have also grown similarly dependent on

satellite systems [11,12]. The U.S. DoD currently utilizes many types of satellite systems

and has contributed to the advancement of satellite systems in general. Official policies

of the U.S. government emphasize the critical nature of these systems to the prosperity of

the nation and call for the protection of these systems [13,12,14].

Traditionally, satellite systems operating in the public and private sectors have been

large-scale and highly proprietary in nature. With more than 50 years since the launch of

the first satellite, much has changed in the way of satellite systems and the computer

components vital to their operation. Satellite system components are now becoming

more standard across missions along with the integration of mission operations with

internet technology. This changing culture in satellite system development and

operations will increase efficiency but also provide new security challenges [6]. One

example of this phenomenon is illustrated by the CubeSat standard and its various

derivative projects. This new trend in satellite systems does not only apply to small

satellites, however applies to all of the mission areas for satellite systems.

8

2.3 Satellite Systems Mission Areas

The missions of satellite systems can be categorized into four main areas: Remote

Sensing; Communications; Precision Navigation and Timing; and Science/Exploration

[15]. One key aspect of satellite systems is that the primary mission will determine in

which orbit the satellite will operate [11,16,17,15], see Section 2.4.1. The following

sections examine the characteristics of each mission area.

2.3.1 Remote Sensing.

The primary mission of remote sensing satellite systems is to observe the Earth and

other objects from orbit. Satellites in orbit provide a unique observation platform from

which to view the Earth. Remote sensing satellites utilize Radio Detection and Ranging

(RADAR), optical, and other sensors to collect images and measurements. These systems

can also detect Infrared (IR) and other emanations from Earth.

Optical observation is used to produce images of the Earth’s surface which can be

analyzed to provide valuable information. This information aids military operations and

intelligence, as well as documentation of urban development, scientific research, and

predictions of crop yields for global food supply planning [18]. Additionally, IR sensors

aboard military satellites are used to provide missile launch and nuclear detonation

detection [19]. One of the earliest benefits of space systems was the prediction and

analysis of Earth's weather patterns. Optical and IR sensors are used to observe visible

weather phenomena as well as collect atmospheric measurements for weather forecasting

[20]. These satellites are even used to monitor space weather, see Section 2.4.2.

9

2.3.2 Communications.

Communication satellites revolutionized the way humans communicate. A satellites

unique field of view makes it an ideal communications relay platform. Satellite

communications (SATCOM) links have been used to provide intercontinental

communications for major telecommunications providers since the mid 1960s [16].

Large corporations use SATCOM to link together many geographically separated

organizational units into one network in order to facilitate logistics and enhance daily

operations [11]. SATCOM is also extensively used by military forces to conduct

operations around the globe.

2.3.3 Precision Navigation and Timing.

The United States government pioneered the development of precision navigation and

timing satellite constellations beginning with the TRANSIT satellite constellation in 1960

and culminating with the NAVSTAR Global Positioning System (GPS) which became

operational in 1993 [15]. NAVSTAR GPS satellites, along with ground control and

monitoring stations, provide accurate three-dimensional locations and timing for use in

civilian and military operations worldwide. After the introduction of GPS for

government use, the tremendous commercial implications for the GPS signal have led to

its widespread civilian use and eventual dependence.

Examples of private sector and individual use of GPS include banking, transportation

and communications. The banking and global financial markets now rely on GPS timing

to synchronize transaction systems. Individuals routinely use GPS signal for navigation

assistance. Finally, as the wireless telephone market developed with the freely available

10

timing provided by GPS, these systems are now dependent on this method of time

synchronization [21].

2.3.4 Science/Exploration

Satellites orbiting with science/exploration missions continue to advance technology

used in satellite systems and contribute to many diverse fields of science. Such missions

have led to advancements in Earth and materials science, as well as astronomy. These

science/exploration missions provide immeasurable value to the human understanding

and way of life through invaluable advancements and discoveries [22].

Examples of these space related technologies being transferred to two diverse areas of

our daily lives are advancements in medical imaging and the development of cordless

tools. The medical imaging technology advancement stems from the charged coupled

devices (CCDs) used aboard the Hubble space telescope which convert light directly into

digital images. These devices are now used to image the human body and differentiate

between benign and cancerous tissues. Additionally, technology developed to recover

lunar samples was directly transferred to domestic use as battery powered power tools

and appliances [23].

2.4 Space Orbits and Environment

Operating in space presents many challenges to the success of satellite systems. In

order to conduct a successful satellite mission, considerations must be made with regard to

a satellites orbit, and the space environment. The space environment consists of extreme

temperatures and pressure, along with multiple forms of radiation. Additionally, these

environmental factors are impacted by the orbit at which a satellite is operating [17].

11

2.4.1 Orbits.

A satellite’s primary mission will dictate the orbit in which the satellite will be

placed. The orbit placement in turn will determine when and how long a ground station

has a satellite within field of view, and how much transmission power is required for

communications between the satellite and ground stations. Orbit placement also

influences satellite power considerations, stability, and attitude control options [15].

There are two satellite orbit shapes: circular and elliptical. For both orbital shapes, the

center of the Earth is in the plane of the orbit with an inclination taken between the

orbital and equatorial plane. Circular orbits are further subcategorized by altitude: Low

Earth Orbit (LEO), Medium Earth Orbit (MEO) and geosynchronous orbits [16,15,24].

LEO satellites operate with an altitude up to 1500 km and are primarily used for

remote sensing and science missions, with some communication applications being made

with advanced cross linking satellite platforms [15]. The communication satellites

operating in LEO are primarily used to provide global mobile telephone service.

Advantages and disadvantages for LEO satellites are used to determine the orbits

suitability for a particular satellite mission. The advantages of LEO are [17,15]:

- reduced cost to place payloads in orbit
- reduced communication transmission power requirements
- simplified satellite attitude control
- lower latency for communications
- higher resolution for remote sensing applications

Some disadvantages for LEO orbits are [17,15]:

-short ground station access periods
- high satellite velocities complicate communications
- short orbital lifespan due to increased drag at lower altitudes

12

MEO satellites operate at an altitude of around 20,000 km, which is well outside the

Earth’s atmosphere. The increased altitude relative to LEO gives MEO satellites a

broader view of the Earth, making them more suitable for applications requiring more

global coverage. MEO class orbits can be semi-synchronous with the Earth’s rotation

with a satellite making two revolutions around the Earth in one day. These orbits are

most suitable to modern precision navigation and timing applications such as NAVSTAR

GPS [15].

Geosynchronous satellites operate at an altitude of 35,780 km and have the special

property of orbiting the Earth once every 24 hours [15]. This allows the spacecraft to

remain in a semi-fixed position relative to a specific ground station. Geosynchronous

satellites will have some perturbation in location relative to a fixed spot on Earth, which

may require ground stations communicating with them to track this slight movement.

Geostationary Earth Orbit (GEO) is a geosynchronous orbit which has an inclination of

exactly zero degrees. GEO satellites will remain over the same fixed spot on Earth with

proper station keeping [15].

GEO and geosynchronous satellites are ideal for communication missions where the

satellite remains fixed in the sky and can reliably relay communications between two

ground stations within the satellites field of view. Each geosynchronous satellite has a

field of view of approximately one half of the Earth. Global communications, with

exception of the high latitudes, are achievable with a three satellite constellation [15].

Elliptical orbits have unique properties which can be useful for communication

missions to high latitude areas. These orbits fill the gaps in coverage left by GEO

satellites, which at best reach latitudes of 81 degrees. One specific type of elliptical orbit

13

which can be used to simulate a stationary satellite in GEO is the Molniya orbit. These

elliptical orbits with high eccentricity and an inclination of 63.4 degrees provide long

dwell times over a location on Earth. A constellation of three Molniya satellites are

required to provide continuous service to a single ground location [15].

2.4.2 Space Environment.

The space environment consists of a vacuum with varying levels of cosmic and solar

radiation. Satellites in orbit do not have the full protection from radiation provided by the

Earth's magnetosphere. This leaves satellites vulnerable to space weather conditions

which has a detrimental effect on critical systems even when protection mechanisms are

in place [17].

Space weather consists of magnetic fields, charged particles, and radiation. The

dominant factor in space weather is solar wind from the sun consisting of charged

particles and radiation bursts. The effects of solar winds vary over time, as their strength

fluctuates and as they impact Earth's magnetic field. Highly charged particles in the

space environment, from solar wind, often disrupt electronics aboard satellites [17].

The most common occurrence of electronic disruption or failure aboard satellites is

the Single Event Upset (SEU). A SEU occurs when an ion or electro-magnetic radiation

interferes with an electronic circuit in such a way that information stored in the circuit as

bits are corrupted. This action often results in a failure of the satellite's onboard

computer logic. These errors are generally not fatal for the spacecraft and normal

operation is typically resumed after resetting the system [25]. Certain orbits and areas in

space are more prone to these types of events. One commonly known area in which

14

satellites experience an increased likelihood of a SEU is called the South Atlantic

Anomaly (SAA).

The SAA is an area over Brazil and the south Atlantic ocean where space borne

radiation comes closer to the Earth than any other place. This area is caused by a dip in

the Earth's magnetic field allowing cosmic rays and charged particles to reach lower

altitudes. Satellites crossing this area are exposed to higher levels of radiation, which

results in the increased chance of a SEU [26].

These unpredictable, disruptive events have an impact on system design. As a result,

engineers have designed systems with failsafe defaults and recovery modes which in turn

increase mission safety. These actions lead to systems which are more mission safe and

in some cases increases system complexity.

Mission safety is a concept in which the satellite system is robust to failure and the

likelihood of satellite operators losing control due to human error or space weather is

reduced. The disadvantage of a sole focus on mission safety is that systems may be more

vulnerable to malicious actions, resulting in reduced system security. Though the

concepts of mission safety and system security appear to be competing design principals,

a balance between the two must be achieved which serves the overall requirements for

the mission.

15

2.5 Satellite System Components

The components of satellite systems are generally similar, however, the mission

determines which components are found in each system. Components are organized by

their location in the system, which is divided into three categories: ground segment, space

segment, and subscriber segment. Not all satellite systems require all segments of the

general satellite system [16].

The satellite system can be broken down and described by functional areas consisting

of major components. The exact configuration of these functional areas are influenced by

and provide support to the system's primary mission. The satellite system functional

areas described here are Satellite Hardware, Satellite Software (programmed logic),

Ground Station Hardware, Ground Station Software (programmed logic), and

Telecommand Architecture [16,15].

2.5.1 Satellite Hardware.

The orbiting hardware, or satellite, typically contains the following subsystems:

Telemetry Tracking and Command Subsystem (TT&C), Electrical Power System (EPS),

Propulsion System, Attitude Determination and Control System (ADACS), and Thermal

Control System (TCS). These subsystems constitute the satellite main bus. The main bus

is constructed to support the primary payload. The following subsections will describe

the functions of the main bus subsystems and the payload integration [16,15].

2.5.1.1 Telemetry Tracking and Command (TT&C) Subsystem.

The TT&C subsystem hardware consists of a flight computer, radio, and antenna for

communicating with a controlling ground station. The TT&C subsystem provides

satellite status data (telemetry) along with functions to command the satellite and control

16

the other subsystems. The TT&C subsystem is also used to provide a tracking and

ranging service to the ground station. Tracking and ranging data is used to accurately

point high gain antennas towards the satellite and to provide accurate orbit determination

for the satellite's mission [16,15].

Commands from ground stations are received by the TT&C subsystem and command

specific actions are executed. These commands can be intended for the TT&C subsystem

itself or for any of the other subsystems. Additionally, status information from all of the

satellite subsystems is collected and formatted for transmission as satellite telemetry to

listening ground stations.

2.5.1.2 Electrical Power System (EPS).

The spacecraft's payload and satellite support systems (bus) require power provided

by the EPS to operate. The EPS manages power generation, storage, and distribution

throughout the spacecraft. These actions are done in conjunction with the logic present in

the satellite's flight computer. The power subsystem hardware consists of an EPS

controller, power source, and batteries [16].

The distribution of a spacecraft's power is managed by the EPS controller. The EPS

controller continuously monitors and adjusts connections to the power sources and the

charge/discharge rates of the onboard batteries. Additionally, the EPS controller switches

power to each of the spacecraft bus systems and payload as necessary, while reporting

power status information to the flight computer [27].

The primary power source for most satellites is photovoltaic solar cell arrays. The

power output of a solar array is proportional to the angle of incidence of solar rays on the

17

panel. If the panel is misaligned with the Sun’s radiation such that the angle of incidence

is zero, then no power will be produced [16].

Most satellites will periodically encounter eclipse periods in which no direct sunlight

reaches the spacecraft. The frequency and duration of these eclipse periods are

determined by the orbit of the satellite. During these periods, the orbiting spacecraft must

rely on a power source other than solar. Battery systems fill the gaps in power supply for

satellites during eclipse periods [15].

Satellite commands which orient a satellites solar cell arrays or configure the EPS for

power distribution are critical to the successful operation of a satellite. Any malicious or

otherwise improper processing of commands which modify the satellites power

configuration has the potential to leave the satellite crippled or otherwise inoperative.

This is one example of where specific satellite telecommands present a potential

vulnerability to satellite systems.

2.5.1.3 Propulsion subsystem.

Most long term satellites require propulsion systems to make changes to their

trajectory after being placed into orbit. These trajectory changes may be significant or

minor. Significant changes in orbit are generally made during the initial phase of a

satellites operation to reach the desired mission orbit. Once the mission orbit is

established, an onboard propulsion system is needed to maintain the orbit [15].

2.5.1.4 Attitude Determination and Control subsystem (ADACS).

The ADACS in a spacecraft is used to maintain sensor and antenna orientation for

pointing. The ADACS is composed of control logic, sensors, and mechanical systems for

adjusting the attitude of the satellite. The control logic for the ADACS is maintained by

18

the spacecraft flight computer or by a secondary microcontroller. The ADACS can be

dynamically adjusted via the satellite command link. There are many sensors and

techniques for satellite attitude determination, including star tracking, sun tracking, IR

Earth sensing, and RF tracking [15].

With accurate spacecraft attitude information, the flight computer can make

adjustments in position with the attitude control systems. These systems are used to

accurately point sensors at a desired location or place the spacecraft in a desired

orientation [15]. Any failure or malicious activity disrupting the operation of these

systems could result in total loss of the satellite.

2.5.1.5 Thermal Control System (TCS).

Space is extreme with respect to temperature. External satellite components can

experience temperatures ranging from -200 to +150 degrees Celsius [15]. These

temperature extremes drive the development of spacecraft thermal control systems. Two

methods of thermal control are passive design techniques and active thermal control

systems. Passive design techniques rely on material conduction and radiation properties.

Active thermal control systems include electric heaters and radiators which must be

operated as conditions change on the satellite. A satellite's thermal design is critical to its

successful operation. Thermal systems are monitored by telemetry sent through the

command link. Adjustments to active components of the thermal control system can be

made via specific thermal control commands [15].

2.5.1.6 Payload.

The main system payload will correspond to the satellite's mission. The payload can

consist of sensors, communication devices, or scientific equipment. The deployment and

19

control of the payload is facilitated by the flight computer and command system with

support from the other bus systems for power, pointing, and thermal management [15].

2.5.2 Satellite Flight Software (FSW).

The satellite FSW running on the main flight computer is a critical component of the

satellite and manages all aspects of the satellite hardware (TT&C, EPS, Propulsion,

ADACS, TCS, Payload) [28]. Portions of the FSW must be specifically tailored to each

function of the spacecraft bus. Some of the spacecraft management can be automated to

handle faults as they occur and alleviate the need for intervention by the commanding

ground station.

2.5.3 Ground Station Hardware.

Satellite systems are managed by ground stations which send control information to

the orbiting satellite in the form of discrete commands. These control messages are

commands, which specifically address each of the satellite subsystems previously

mentioned (TT&C, EPS, Propulsion, ADACS, TCS, Payload). Additionally, the ground

station receives satellite telemetry of the satellite's status [16].

A typical satellite ground station has three main components: RF Interface, Signal

Processing, Mission Execution. The RF Interface is composed of the antenna, low noise

amplifier, power amplifier, signal down converter and signal up converter. The Signal

Processing component consists of a transceiver, Terminal Node Controller (TNC), and

modem. The mission execution segment typically consists of command terminals

operating ground control software and integrates the mission specific processing

components with the other ground station components. Satellite systems may utilize

multiple ground stations for redundancy purposes [16].

20

2.5.4 Ground Control Software.

Ground control software facilitates the commanding of satellites within a satellite

system. The software runs on computers at the ground station or on remote systems

which connect via networks to the ground station. The function of ground control

software is to transmit commands to the satellite, receive and interpret telemetry data

passed back from the satellite, and pass updates to the satellite software [16].

The design and implementation of ground control software is driven by mission

requirements. The architecture of ground control software can be divided into two

sections: common ground control components and mission unique components. The

common ground control components are not mission specific and can be used with

multiple satellite systems. An example of software which has been developed to serve

the function of common ground control components is the Common Ground Architecture

(CGA) command software. CGA is ground control software with a large percentage of

the architecture consisting of reusable ground control code. This modular design allows

CGA to support multiple satellite missions with the same core components and mission

specific applications. Each satellite system CGA supports has specially designed mission

unique components [29].

2.5.5 Telecommanding Architecture.

Satellite system telecommanding architecture will differ by implementation, however

some key concepts are presented as features contributing to the safety and security of

satellite commanding in general. Additionally, some examples of satellite

telecommanding architecture are covered to illustrate the concept and highlight areas

where trust management concepts may be applied.

21

The telecommanding architecture and implementation play a crucial role in the safety

and security of a satellite system due to the open nature of communications between

ground stations and satellites. Critical vulnerabilities in the telecommanding architecture

implementation can allow events, whether malicious, accidental, or environmental, to

disrupt or destroy a satellite [6]. The following features have been seen in satellite

telecommanding architectures and are similar to concepts found in distributed

information systems:

x Satellite addressing is implemented in a telecommanding architecture to direct

commands to a specific satellite or decoder. This feature affords some

protection from commands being erroneously processed by the wrong satellite

or satellite subsystem [15].

x Command register verification confirms commands to be processed aboard a

satellite by transmitting the command queue to the ground station for

acknowledgment before execution [15].

x Encryption is used to provide the security service of confidentiality to the

telecommanding architecture. It can be implemented in many levels of the

architecture resulting in varying impacts on system performance, complexity,

reliability, and security [5,30].

x Command counters in the telecommanding architecture provide an element of

security and safety to the system. The command counter assigns a unique

number to each command being transmitted to the satellite. Command

counters are primarily implemented to ensure commands are executed at most

once and in the proper order. If commands are processed out of order or in

22

duplicate, the system could become unstable resulting in mission degradation

or loss of the satellite [15].

x Authenticated commands in the telecommand architecture is implemented by

checking the command counter or through more complex cryptographic

mechanisms [15]. The use of a command counter for command authentication

provides command execution safety, where cryptographic user authentication

enables system security.

x The use of time stamps in telecommanding architecture involves assigning a

time stamp to each telecommand message. The time stamp is used by the

satellite to verify the sequence of commands being received. Time stamps

feature is also useful in detecting the replay of a command [15].

The following are examples of how the telecommand architecture can be

implemented in a satellite system:

The command execution of a satellite as described by Patton [15] is typically a two-

step process. First, the satellite operator selects a command which is formatted by the

ground control software and equipment for transmission to the satellite. This command

formatting appends a preamble to the transmitted command. The preamble contains an

address key which identifies the particular satellite for which the command is intended.

This specific address key provides protection against stray signals being received and

executed by the satellites TT&C subsystem. Once the TT&C subsystem receives a

command from the ground station with the proper address, the contents of the command

register (current command to execute) are transmitted to the ground station for

verification. If the command is successfully validated by the ground station, the

23

transmission is acknowledged by transmission back to the satellite, at which time the

command is executed. It should be noted that the commanding procedures for satellite

systems can vary greatly between systems of differing size, complexity, and purpose

[15].

The command execution sequence for the satellite system used as a model in this

research is a derivative of CubeSat FSW and concept of operations. In this model,

commands are formatted at the ground station with the ground control software CGA.

CGA interprets human readable commands and builds a data stream which is then

transmitted to the satellite. The data stream transmitted to the satellite contains ground

station and space station ID numbers. These are used to confirm that the command is

originating from a valid ground station ID and is directed to the proper satellite interface.

The command data stream also contains a message protocol and command identifier

which are used to determine the satellites response to the command. As a safety feature,

a command authentication count is included in the message header. The command

authentication count is used in conjunction with most commands and verifies the satellite

and ground station is in sync during the commanding process. Command arguments

(parameters) are marshaled after the authentication count. CGA computes a checksum

over the command header and arguments, and appends it to the end of the command data

stream. The checksum ensures data integrity during the command transmission [29,31].

2.6 Space System Threats and Security

This section describes space system threats and corresponding security mechanisms.

However, this treatment of space system threats is not exhaustive, but is provided to serve

24

as a broad overview and background for the development of scenarios to aide in the

testing of new security features for satellite telecommanding. Information regarding

possible threats to space missions is necessary for mission planners to better understand

the security mechanisms and policies required to mitigate them. All systems are subject

to threats which may result in the loss of data or catastrophic damage to the system [6].

A threat is a potential violation of security. The occurrence of a violation is not

necessary for a threat to be present. An attack refers to activity related to the violation of

security. In order for a successful attack to take place, the system must be vulnerable to

the threat in action. The existence of a possible violation of security requires actions to

be taken which guard against threatening activity and mitigate system vulnerabilities

[32].

The following sub-sections serve as an overview of the most common threats to space

missions. This information highlights the findings presented in the CCSDS report

Security Threats Against Space Missions [6].

2.6.1 Data Corruption.

Data corruption occurs as the result of a fault in either the ground or space segment of

a satellite system or by the intentional or unintentional action of an individual. This

corruption event may take place in the hardware or software of the satellite system's

components. Common faults include hardware failures or a SEU in the spacecraft. The

effects of data corruption can range from an unnoticed anomaly in telemetry data to

catastrophic loss of the spacecraft due to the processing of a corrupt command [6].

25

2.6.2 Interception Of Data.

Data communications with spacecraft are achieved via RF signals which are subject

to interception. The extent to which this threat applies to a space mission is dependent

upon the orbit in which the space segment of the system is operating. LEO missions are

less susceptible due to the short access period and small beam width of the downlink

signal. Conversely, missions operating in high orbits such as GEO have large downlink

beams and long access periods and therefore increased susceptibility to interception.

Transmissions from ground stations are typically less susceptible to interception due to

the highly directional antennas and small beam widths used to communicate with

satellites. Signals may be intercepted by listening ground stations and by signal

intelligence gathering aircraft or spacecraft [6].

2.6.3 Jamming.

Persistent RF interference is characterized as jamming. The RF signals used for

communications with spacecraft are susceptible to interference. Interfering signals can

be intentional or unintentional and can result in link loss or denial of communications

with the satellite. This interference is accomplished by transmitting a competing signal

on the same frequency the satellite is operating. Interference can originate from a ground

station or from a third party satellite orbiting within line of site of the mission ground and

primary satellite [6].

2.6.4 Masquerade.

Entities in a satellite system must interact with others remotely. These interactions

may require identification prior to each requested action. If an entity can lie about its

identity, or identification is not accurately validated, entities can illegitimately pose as

26

one another in the system. If an entity in the system poses as any other entity it is said to

be masquerading. The masquerading entity can violate security policies by taking

unauthorized actions [6].

2.6.5 Replay.

There exists the possibility of a re-transmission of commands to the space segment of

a satellite system. This replay of a specific command can occur due to a commanding

protocol or by a malicious third party attempting to gain access or cause damage to a

satellite. A ground station protocol resulting in the replay of a command may be the

result of a previous command not properly acknowledged by the satellite, thereby

prompting the re-transmission of the assumed lost command. The effects of a satellite

erroneously processing duplicate commands can range from none to catastrophic loss of

the satellite due to a duplicate orbit maneuver or breach of satellite security [6].

2.6.6 Software Threats.

Computer software plays a crucial role in the operation of a satellite system in both

the space and ground segments. This software is susceptible to logic errors, data input

handling errors, among other common programming mistakes. Additionally, operators

may introduce improper configurations, resulting in security vulnerabilities or system

instability [6].

2.6.7 Unauthorized Access.

Policies set forth in the operation of a space mission determine which entities should

have access to specific systems and functions. Entities accessing systems or functions

which violate these policies constitute unauthorized access in the system [6]. Entities

may gain unauthorized access to the satellite system through a combination of other

27

threats to the system. The abuse case presented in Section 4.4 is an example of

unauthorized satellite access through a forgery attack. This attack also incorporates

elements of the other threats discussed such as data replay and masquerading.

2.7 Trust

The issue of trust has become a significant concern within distributed information

system architectures such as web services, cooperative computing, and mobile computing

[33,34]. Trust issues are not only present in business, social and operational functions,

but also in technologies used to facilitate these activities. Additionally, due to the tight

coupling between a systems operational requirements and the technology used in

implementation, trust relationships from the operational architecture must be modeled in

the distributed information system. Specific distributed information systems must

address all of the trust issues present in the operational scenario and those that arise in the

technical implementation [33].

One example of modeling operational trust relationships in a distributed system

implementation can be made for satellite system telecommanding. The operational

function of telecommanding inherently involves a trust relationship between the satellite

in orbit and a commanding ground station. The satellite in orbit must process

telecommands from the ground station in a manner which preserves the functionality and

security of the satellite. This trust relationship in the operational function of

telecommanding must be modeled in the satellites implementation in order to satisfy the

operational trust relationship.

28

2.7.1 Trust Management System Examples.

Research covering trust management in distributed computing has developed services

and applications which accommodate trust and its related elements. Some elements

which have been addressed thoroughly are reputation, and security credentials. Examples

of reputation-based systems include XREP, NICE, and P-Grid. These systems aggregate

the perception of entities in the system to calculate a local reputation value for a specific

entity. This reputation value is then used in system policy to manage interactions with

entities in the system. Credential-based systems such as X.509, PGP, PolicyMaker, and

KeyNote use credentials to address the trust management problem. The primary

evidence for trust in these credential-based systems is the verification of entity provided

credentials. These systems enable policies which restrict access to services and resources

to verified entities. [35]

While both reputation and credential-based trust management approaches address the

issue of trust in distributed information systems, neither provides a general description of

a trust management system, nor incorporate all of the desirable features found in current

trust management research. A comprehensive description of a general trust management

system is found in the works of Weiliang Zhao, Vijay Varadharajan, and George Brian

[36,37,38,35]. These papers develop a general methodology for modeling trust

relationships and provide a unified framework for trust management. The unified

framework developed incorporates aspects of trust management from a variety of related

research [35].

29

Figure 1 Trust Engine Hierarchy

The basic TMS presented by Zhao et al., referred to as TrustEngine, manages trust

through the hierarchy depicted in Figure 1. This architecture incorporates all of the trust

related components which may be separated from applications and handles trust requests

similar to database queries. Input is made to the system as a set containing trustor,

trustee, conditions, and trustee properties. The system will return a value depending on

the input received. An example response is the result of a trust relationship

evaluation [35].

TrustEngine consists of several components which serve trust functions or store trust

data for the system. The TrustDatabase component stores trust relationship information

and trust parameters. This is a persistent storage mechanism for extended storage and

retrieval of trust related information. TrustControl provides overall control of

TrustEngine at runtime by linking applications to the functional packages in TrustEngine.

LocatingTrust performs a direct query of existing trust information from the

TrustDatabase component.

30

The EvaluatingTrust component evaluates the current status of a trust relationship.

This evaluation consists of checking whether the conditions of a trust relationship are

satisfied or not. These conditions may be indicators of malicious behavior or

environmental factors, and can be computed by multiple trust mechanisms. Existing

mechanisms for checking trust conditions such as credential, reputation, or environment

evaluation may be incorporated into the EvaluatuingTrust component.

ConsumingTrust handles the EvaluatingTrust component output. This is necessary as

not all trust evaluations will be consumed immediately. Additionally, the evaluation

output may require specific formatting for use by the requesting application which is

handled by the ConsumingTrust component.

2.7.2 Trust Management System Design Principles.

The following is a discussion of trust management concepts as it relates to distributed

information systems put in the context of satellite telecommanding. Trust has become an

intrinsic part of other distributed information technology areas such as e-Business [33],

and critical infrastructure protection [39]. The nature of satellite telecommanding studied

here closely resembles the definition of a distributed information system utilizing the

client-server model [40]. With this relationship, models for trust management and design

principles in distributed information systems will be applied to telecommanding (message

passing) for satellite systems.

Weiliang Zhao and Vijay Varadharajan presented a unified trust management

framework which introduced general characteristics for consideration in TMS

development [33]. These TMS characteristics as they relate to satellite systems are:

31

x Multiple Trust Mechanisms:

Trust can be established between entities by various methods. These methods are

modeled in the TMS with specific trust mechanisms. Examples of trust mechanisms

are credential verification trust, reputation-based trust, and trust derived from local

data. TMSs can incorporate multiple trust mechanisms in concert for a single trust

decision regarding a complex trust relationship [33]. Without multiple trust

mechanisms, a TMS is limited to modeling simple relationships. These simple

relationships are commonly handled by an authentication protocol or other security

mechanism.

x Open Nature:

Satellite telecommand systems are open to all wireless transmissions, allowing

everyone to access the satellite's physical channel remotely. As the system is open,

trust relationships must be defined for known and unknown entities accessing the

system. The open nature of wireless telecommand links makes trust management a

crucial part of the entire system [33].

x Multiple Domains:

Operations involving satellite telecommanding often span several networks with

organizational, physical, and logical boundaries. The interconnection of these

networks can be hierarchical or parallel. For example, a satellite control network is

used to command a single satellite. The satellite control network consists of

command terminals which are remotely located from the uplink facility transmitting

signals to the satellite. The remote command terminals access the uplink facility

through a terrestrial communications network. In this case, there is a hierarchical

32

relationship between the remote command terminal and uplink facility sending

signals to the satellite. There is a parallel relationship between multiple ground

transmission sites. Trust relationships can be complex in the entire telecommanding

system. Issues can arise in cross-boundary operations, management, and

administration [33].

x Real-Time Trust:

For most distributed information systems, real time evaluations are required for

trust relationships. This is also true for satellite telecommanding systems. The

dynamic trust relationships in satellite telecommanding require a real time evaluation

of trust in any TMS being applied. In order to facilitate this real time trust evaluation,

evidence used to calculate trust must be collected and made immediately available for

a trust determination. An analysis of the relevant time frame for this trust evaluation

must be conducted to ensure a "current" trust result is being used when necessary [33].

x Scalability:

Each distributed system has a scale at which it operates. A TMS implementation

must be able to scale to meet the maximum requirements of the distributed system.

The scale involved with traditional satellite commanding architectures is relatively

small compared to web-based distributed systems [33].

x Complexity:

Complexity in modern distributed information systems is increased by

complicated business functions and advanced technology employed in the

architecture of such systems. TMSs introduced to or developed in these systems must

be capable of matching and modeling the complex trust relationships involved [33].

33

The above items describe key areas which should be considered for trust management

in distributed information systems. These characteristics are evaluated in this work for

the development and implementation of a TMS for satellite telecommanding.

34

III. Methodology

3.1 Methodology Overview

This thesis addresses threats to the security of satellite command links through the

development of a multi-mechanism Trust Management System (TMS) for satellite Flight

Software (FSW). The previous chapter discusses the basic domain of satellite systems,

general trust management, and computer security concepts. This chapter covers the

development of a TMS incorporating interaction, policy and credential-based trust.

Additionally, a satellite commanding abuse case is formulated to test the TMS. The

developed TMS and formulated abuse case will then be applied to a FSW model where

comparison is made between a FSW operating with and without the TMS. This chapter

presents the motivation for, and explanation of key design features of the Consolidated

Trust Management System (CTMS), a multi-mechanism TMS for application in satellite

FSW. The definitions and assumptions associated with the CTMS, FSW model, and

abuse case are also presented.

3.2 Problem Definition

3.2.1 Goals and Hypothesis.

The work presented by Zhao and Varadharajan [33] detailing a unified trust

management framework provides a high-level architecture, considerations, and theory

from which a TMS is developed. Additionally, the documentation related to the KeyNote

TMS [41] [42] provides an excellent example of implementing a TMS, although it is

35

limited to credential and policy evaluation. With the framework provided by Zhao and

Varadharajan and the implementation lessons from the KeyNote documentation, a new

TMS is developed to handle the complex trust requirements in satellite FSW.

This new TMS will be referred to as the Consolidated Trust Management System

(CTMS), and incorporates multiple trust mechanisms and policies. It is hypothesized that

the CTMS will enhance security in FSW telecommanding by allowing the detection of

anomalous behavior from the FSW's perspective. The goal is to determine if the CTMS

running within the FSW can detect the activities of a malicious ground station and

respond with a pre-programmed policy and trust thresholds.

3.2.2 Approach.

To design an effective TMS for FSW telecommanding that will detect anomalous

behavior, the multiple trust mechanism TMS framework proposed by Zhao and

Varadharajan will be implemented with an architecture similar to that of the KeyNote

TMS [33,41,42]. Additionally, the method for calculation of an Interaction Trust

(I-Trust) value as proposed by Bin Yu and Munindar Singh will be adapted to provide a

quantitative measure of I-Trust for entities in the system [43]. The I-Trust algorithm

from Yu and Singh is extended to provide a more descriptive measure of I-Trust by

basing the trust value calculation on a specific marker associated with system

interactions, see Section 3.3.3.1. This I-Trust value is used as a component in the final

trust evaluation of an entity, see Section 3.3.4. The I-Trust calculation and management

of I-Trust values will exist as a trust mechanism within the CTMS, see Section 3.3.2.

An I-Trust marker is a class of evidence in the system which is collected by observing

interactions with an entity. One example of a trust marker in FSW is the command

36

authentication counter check result. Each command contains a value for the command

counter which is compared with the satellites onboard value upon receipt. This check is

the authentication counter trust marker and is modified based upon cooperation or

defection interactions with the system. Additional markers can be associated with a

single transaction, such as message size, or argument validation checks.

With the CTMS developed, a satellite commanding abuse case is formulated as a

basis to generate policies and identify interaction markers for tracking within the system.

The abuse case is a specific instance of a threat action or attack scenario applied to the

satellite FSW system. An analysis of space mission threats is combined with a working

FSW model to formulate specific abuse case for the system, see Section 3.4 and 4.4.

With an abuse case and CTMS complete, a test setup is established which runs FSW

in an emulated environment. The test setup includes original ground station software for

normal commanding operations and custom ground station software to apply the abuse

case. From the test setup, comparisons are made between FSW with trust management

principles applied and basic FSW with no trust management. Additionally, variations on

policy options within the CTMS are compared to highlight their effectiveness and impact

on the system.

3.3 Trust Management System

3.3.1 Services.

The CTMS serves as an engine for tracking and evaluating complex trust

relationships in satellite FSW. The functionality of the CTMS is used as a security

mechanism to support the three computer security services of confidentiality, integrity,

37

and availability [32]. With a given system security policy, the CTMS acting as a security

mechanism can be implemented to prevent, detect, or recover from attacks waged on the

system [32]. This allows CMTS to monitor and support the three computer security

services.

The CTMS architecture supports the confidentiality of a system by monitoring

interactions secured through cryptographic means for activity which would be indicative

of a key compromise. An example of such activity would be repetitive failures to

successfully validate the command authentication counter. This activity could simply be

logged for detection, or further compromise could be prevented by discontinuing use of

the potentially compromised key. Furthermore, the CTMS architecture can be used to

initiate telemetry notification of the event using a secure backup key.

System integrity is supported by monitoring interactions with ground stations and

components aboard the spacecraft for potentially corrupt data. The corrupt data could be

improperly formatted messages or erroneous telemetry values. The CTMS architecture

could be used to detect or prevent this activity. Additionally, recovery features can be

initiated through the CTMS. Logging the activity being monitored provides detection

services. Further corruption can be prevented by discontinuing use of the corrupted data.

Additionally, system integrity could be recovered by rebuilding corrupt data from a valid

checksum.

CTMS functions can also secure satellite system availability by maintaining trust

relationships between the FSW and components in the untrusted environment. If these

trust relationships are degraded, the FSW can fall back to a safe state, thus preserving

system availability for recovery operations. This functionality, provided by the trust

38

management system, stems from and can be extended through the addition of trust

mechanisms within the CTMS architecture.

3.3.2 Architecture.

The CTMS architecture and implementation are primarily derived from the KeyNote

TMS documentation [44], while the concept of multiple trust mechanisms and additional

trust management theory stems from Zhao and Varadharajan's trust management

framework [33]. The development of the CTMS architecture considers the major

characteristics for trust management systems from Zhao and Varadharajan [33] as they

relate to the trust issues for satellite FSW.

The first characteristic included in CTMS is multiple trust mechanisms. The trust

mechanisms incorporated initially into the CTMS architecture for this work are the

I-Trust and credential trust mechanisms. Additionally, the CTMS architecture is flexible

with the provision for additional trust mechanisms to be added as needed.

The second characteristic considered for the CTMS is to address the open nature of

telecommanding in satellite systems. Illegitimate ground stations can broadcast signals

or commands to an orbiting satellite. This open nature influences the development of a

TMS architecture for satellite FSW and illustrates the need for TMS monitoring of open

interactions.

Authentication mechanisms within the system can be used to filter known from

unknown user communications, but only after some processing of the transmission is

performed. Some FSW systems may not include authentication mechanisms [31]. The

CTMS addresses unauthenticated communications with a trust pool for unregistered users

and handles commands attributed to these entities as anonymous. Without a mechanism

39

for authenticating users, to isolate them from the anonymous trust pool, policies cannot

be implemented which discriminate between entities. This issue is addressed with the

credential mechanism in the CTMS architecture.

The third major characteristic of the CTMS is the availability of real-time trust

evaluations. Trust relationships in FSW are continuously changing. An example of the

dynamic trust relationships in satellite systems is demonstrated with the satellite

command link. Messages received through the command link are validated based upon

system parameters resulting in trust evidence from the interaction. This evidence can

indicate a potentially legitimate (cooperation) or malicious (defection) interaction with an

entity. The resulting trust relationship must reflect an entity's cooperation or defection

behavior.

The CTMS architecture provides the capability to dynamically evaluate interactions

based upon markers in the system. These markers are specific characteristics of the

interaction, such as a valid command authentication count. The I-Trust value for an

entity is computed in real-time during interactions and is immediately available as TMS

data. The policy evaluation function then uses this TMS data to compute entity trust

relationships and return a policy compliance status.

The fourth trust management characteristic considered is that of scalability. Within

satellite FSW, the TMS scale is limited by the resources onboard the satellite and the

number of external entities involved in operations. The CTMS architecture can scale to

accommodate varying types and numbers of entities paired with multiple trust

mechanisms and policies. For example, all ground stations expected to communicate

with the satellite can be added to the credential and I-Trust mechanisms. Trust data can

40

then be computed individually for each ground station with proper authentication.

Additionally, satellite local entities (onboard components) can each be added as members

in CTMS by establishing an authentication procedure and tracking an I-Trust value for

each identifiable component of interactions with them.

Lastly, the complexity of satellite systems is considered in the CTMS architecture.

The complexity inherent in satellite systems through the incorporation of multiple

advanced technologies influences trust relationships. As the satellite FSW integrates all

spacecraft functions it serves as a mission critical subsystem and hub for processing and

evaluating the trust relationships in the spacecraft. The complexities found in satellite

systems trust relationships, embodied in the FSW, can be modeled with CTMS

components due to its modular design.

From the KeyNote TMS implementation, all TMS functions are contained within the

KeyNote Interpreter. This consolidation of trust management functions allows the TMS

to be implemented with minimal complication to the overall software system. Similarly,

the CTMS functions are implemented outside of the FSW application code. Trust

management operations are accessed with simple function calls to the CTMS. As

requests arrive to applications within the FSW, these applications will make updates to

trust mechanisms as necessary to maintain trust evidence in the system. Before

applications process potentially hazardous external requests, a trust determination is

requested from the CTMS based upon a selected policy.

41

All of the considerations for design and implementation details as discussed can be

seen in the general CTMS architecture Figure 2. The general CTMS architecture shows

the integration of trust management modules with the satellite FSW. Additionally,

interactions between the entities and components in the system are shown.

The primary function of the CTMS is to provide policy evaluations based upon trust

evidence within the FSW . The components which provide this capability are the

Interaction Trust Mechanism, Credential Trust Mechanism, Policy Evaluation Function,

and CTMS Application Programming Interface (API).

Figure 2 General CTMS Architecture

Telecommand

Ground�Station

Command�
Handler

Application

(Untrusted�Environment)

Remote�
(Trusted�Environment)�Local�

Applications

Credential�
Trust�

Mechanism

Policy�
Evaluation

Interaction�
Trust�

Mechanism

*Additional�
Trust�

Mechanism�

(Untrusted�Environment)

Local�

Telemetry

Command

CTMS�
Data

*�Additional�trust�mechanisms�may�be�added

CTMS

FSW�
Mission

Application

Satellite�
Component

42

3.3.3 Trust Mechanisms.

The CTMS architecture is flexible and can employ many trust mechanisms. The

incorporation of additional trust mechanisms to the CTMS allows more complex trust

relationships to be evaluated by system policies. Much like the I-Trust mechanism

monitors the behavior of entities in the system based upon interaction markers; additional

trust mechanisms can be used to determine how entities should be trusted in the system.

One example is an environmental trust mechanism. Environmental parameters can be

evaluated against a standard in real-time with the results being evaluated by system

policy. Policy defines which entities should be trusted in the system and what actions

should be taken considering trust evidence in the system.

3.3.3.1 Interaction Trust Mechanism.

The I-Trust mechanism consists of functions which calculate and maintain I-Trust

values for entities communicating with the FSW. Each entity being tracked by CTMS

can have multiple trust markers associated with it. A separate I-Trust value is calculated

for each marker associated with an entity. These I-Trust values are later used to make

policy determinations in the system.

I-Trust markers are defined as key indicators in the system either inherent to the FSW

or specifically added to characterize entity interactions. As previously indicated, an

example I-Trust marker is the command authentication count field in a command

message. If a message authentication count field does not correspond to the current value

held in the satellites state, it is considered invalid and indicates the receipt of a potentially

malicious command. Other examples of inherent I-Trust markers include command

arguments, command time stamps, and the overall command format.

43

An example of an I-Trust marker added to the system specifically for the purpose of

trust calculation is a consecutive command failure counter. This counter would be

checked against a maximum threshold and an I-Trust value would be calculated based

upon this marker. System policies can then make references to the I-Trust value

computed based upon the consecutive command failure marker. An example policy

using this marker is to generate an alert log entry with the date and time of the failed

attempts. This log would be reviewed by satellite controllers for further investigation.

The I-Trust value calculation algorithm used in the I-Trust mechanism is largely

based upon the work of Yu and Singh in the field of reputation management in electronic

communities (social interaction) [43]. The I-Trust value presented here is applied to the

communications in FSW and calculates an I-Trust value based upon a series of

interactions. The resulting trust value is then compared with a policy limit on trust

regarding the monitored marker (this limit is set for each marker in a trust policy). The

result of an I-Trust value check is a trust rating for the marker, which contributes to the

entity's overall trust rating. This marker trust rating is considered in an active system

policy which determines how the system will react to low trust interactions.

To achieve the previously described trust-based policy enforcement, an I-Trust value

is defined.

DEFINITION 1: jxT is the trust value assigned by the I-Trust mechanism to entity j

for interaction marker x. It is required that -1 < jxT < 1 and jxT is initialized to zero.

The I-Trust mechanism calculates a trust value for entity j based upon its observation

of interactions involving entity j affecting marker x. Cooperation is an instance of system

interaction in which the trust marker in question is positively affected; meaning the

44

marker indicates legitimate activity. A cooperation interaction by entity j results in a net

increase of the trust value with the factor Į, while defection reduces the trust value with

the factor ȕ. The positive and negative associations for Į and ȕ require Į � 0 and ȕ � 0.

The specific magnitudes of Į and ȕ are determined by the nature of the interactions

taking place which modify the trust marker. Typically, trust relationships are such that

trust is hard to gain and easy to lose. This results in the relationship |Į| < |ȕ|. The values

of Į and ȕ can be either static or dynamic depending on the nature of the environment to

which the trust system is being applied [43]. Further detail regarding the selection of

suitable Į and ȕ values for the command authentication count I-Trust marker is presented

in Chapter IV.

DEFINITION 2: After an interaction, the resultant trust value '
jxT is calculated by

the algorithm presented in Table 1 which considers the previous trust value jxT .

Table 1 Simple Interaction Trust Algorithm [43]

jxT Cooperation interaction by j Defection interaction by j

< 0 ' (1)jx jx jxT T TD � �
'

1 min(,)
jx

jx
jx

T
T

T
E

E
�

�

> 0 '

1 min(,)
jx

jx
jx

T
T

T
D

D
�

�

 ' (1)jx jx jxT T TE � �

= 0 D E

45

Table 1 presents the algorithm for computing interaction trust, which will be referred

to as the simple I-Trust algorithm. Following the work of Abari and White, the simple

interaction trust algorithm was tested against a confidence attack [45]. This initial testing

was performed to gain an understanding of the simple interaction trust algorithm and to

characterize it's performance under a specific attack scenario.

A confidence attack, or con man attack is a sequence of interactions where an entity

conducts a series of consecutive cooperation interactions to elevate an associated trust

rating in the system. These cooperation interactions are followed by a single defection

interaction, which would result in a benefit to the con man (malicious) entity. This

defection interaction also lowers the system trust value for the con man. The attackers

intended result of this activity is the systems continued processing of defection

interactions resulting in a net benefit to the attacker.

An initial analysis of the simple trust value calculation was performed by simulating a

number of cooperation and defection interactions with entity j. These interaction

sequences were based upon the concept of a con man attack where entity j interacts

cooperatively Ĭ times before a single defection. This Simple Con man Attack (SCA(Ĭ))

pattern was repeated for 250 individual interactions with a graph of the calculated trust

values shown in Figure 3 [45].

46

Figure 3 Simple Trust Value Graph During Confidence Attack

Figure 3 displays a graph of calculated I-Trust values throughout four different con

man attack patterns. The interaction trust values for each attack pattern begin at the

initialized value of zero. The interaction trust values for each pattern increase with the

initial cooperation interactions and subsequently drop at the first defection interaction.

For SCA(5) the interaction trust value reaches 0.23 before the first defection interaction,

which results in an interaction trust value of -0.35. With SCA(20), 20 cooperation

interactions are calculated before the initial defection interaction is processed. The

interaction trust value for SCA(20) before the initial defection interaction is 0.64 and is

0.28 after. Figure 3 shows the simple interaction trust value can converge to a high value

with extended intervals between defection interactions [45].

Ͳ1

Ͳ0.5

0

0.5

1

0 50 100 150 200 250

SCA(5)

SCA(10)

SCA(15)

SCA(20)

Simple�Interaction�Trust and�Confdence�Attack
Alpha�=�.05,����Beta�=�Ͳ.5

IͲTrust�
Value

Interaction�Number

47

This characteristic of the simple interaction trust algorithm to maintain a steady

positive trust value with a known number of defection interactions is important to

modeling certain trust relationships. In particular, this method is used to model trust

relationships between a satellite and ground stations based upon the command

authentication count marker. This is due to the nature of satellite telecommanding where

legitimate ground stations may have a number of defection interactions during a

telecommanding encounter.

To make the system of trust value calculation resistant to potential confidence attacks,

values of Į and ȕ may be dynamically adjusted based upon entity interaction and the

current trust value. This method follows work presented by Abari and White [45].

The initial value for Į is preserved as Į0 during the entire series of interactions by the

I-Trust mechanism. The algorithm for Į and ȕ determination to achieve a con-resistant

trust value calculation is shown in Table 2. The algorithm described in Definition 3

along with the trust calculation in Table 1 and Table 2 will be referred to as the extended

I-Trust algorithm.

DEFINITION 3: Į and ȕ are determined for con-resistant trust value calculation by

the algorithm in Table 2, where C is a constant 0 < C � 1:

Table 2 Extended Interaction Trust Algorithm
Cooperation interaction by j Defection interaction by j

0 0min((),)cD D J D D D � �
(1)

(1)d

D D E
E E J E
 �

 � �

1cJ E � d jxC TJ u

48

Figure 4 is a plot containing the basic test results of the extended I-Trust algorithm

during a confidence attack. The interaction patterns used in this initial evaluation of the

extended I-Trust algorithm are the same as those used for the simple I-Trust algorithm

shown in Figure 3. Figure 4 shows the I-Trust values are more severely impacted by

defection activity and none of the interaction patterns converge to a high trust value. The

extended interaction trust algorithm may be suitable for interactions which provide

benefit to malicious entities for repeated abuse.

Figure 4 Extended Trust Value Graph During Confidence Attack

Ͳ1

Ͳ0.5

0

0.5

1

0 50 100 150

SCA(5)

SCA(10)

SCA(15)

SCA(20)

Extended�Interaction�Trust and�Confidence�Attack
Alpha�=�.05,����Beta�=�Ͳ.5,�C�=�1/e

IͲTrust�
Value

Interaction�Number

49

For the I-Trust mechanism, the I-Trust value corresponding to each marker tracked

for entities in the system is initialized to zero. The I-Trust value alone may not provide

enough information determine how an entity will be trusted by the system. This value is

simply an indicator of one entity’s behavior based upon evidence concerning a specific

trust marker. How the I-Trust value will be interpreted is up to the system policy

utilizing the value, see Section 3.3.4.

Applications within the FSW call upon to the I-Trust Mechanism to update trust

evidence based on system interactions. Once an interaction has been sent to the I-Trust

mechanism, system policy can be evaluated based upon the current system status. FSW

applications use the result of the system policy evaluation to process interactions.

The system policy making use of I-Trust values defines a threshold for acceptance.

The threat being addressed by any policy must be characterized and resulting parameters

required for I-Trust calculation must be established by the developer. To properly

identify the threat, the I-Trust calculation must fit within the threat model and accepted

use of the system. Chapter IV and Appendix A provides additional discussion relating to

system characterization and policy determination to mitigate threats to satellite systems

with the CTMS architecture.

3.3.3.2 Credential Trust Mechanism.

The credential trust mechanism processes authentication credentials to provide

cryptographic authentication within the FSW. The use of cryptographic authentication

identifies entities with a high degree of assurance. The credential trust mechanism can be

implemented with any one or a number of different authentication protocols. The

50

CCSDS has recommended the HMAC authentication algorithm SHA-1 as a standard for

message authentication in satellite systems [30].

Some satellite FSW does not have authentication services included in system

code [31]. Authentication services can be integrated into FSW with a robust TMS

architecture or dedicated authentication service. A dedicated authentication service

would require developers to implement an authentication protocol and integrate its

functionality into the FSW. The credential trust mechanism in the CTMS architecture

provides entity authentication for the FSW through standard function calls. This

mechanism will receive a credential provided by an entity and determines if the

credential is valid thereby identifying the entity. With user (entity) authentication

available to the FSW, policies can be implemented which consider the authentication

status of entities interacting with the system. This authentication is critical to the

performance of security related protection functions with CTMS architecture.

3.3.4 Policy Evaluation.

The CTMS serves as a security mechanism by evaluating the systems security policy.

These evaluations are performed by the policy evaluation function in the CTMS

architecture. This function requires the system security policy to be stated in quantifiable

terms which can then be evaluated for compliance. Additionally, the policy evaluation

function must have access to the objects and variables referenced in the system security

policy.

The policies evaluated can model complex trust relationships making full use of all

trust mechanisms and trust evidence collected in the system. The result returned from the

policy evaluation function is used in the FSW application as the final trust rating for the

51

entity in question. The policy evaluation function gives FSW applications a mechanism

for enforcing system security policies.

3.3.5 Consolidated Trust Management System (CTMS) API.

In order for FSW applications to make use of the trust management system, the

CTMS Application Programming Interface (API) must be incorporated into application

code. The CTMS API consists of function specifications which are used to update trust

evidence information in trust mechanisms, gather information from trust mechanisms,

and request policy evaluations. The API also specifies where CTMS functions should be

placed in application code to perform the desired trust management activity. With the

applications making use of the CTMS API, trust evidence and policy evaluations may be

processed in the FSW.

3.4 Abuse Case Development

The specification of an abuse case describes a complete and detailed set of

interactions that result in actual harm to the system. A maximal abuse case has been

characterized as gaining complete control of the system through an abuse of privileges.

The maximal abuse is not always necessary to characterize an abuse of the system.

Simple abuses minimally compromise the privilege necessary to accomplish an intended

harm on the system [46].

Within an abuse case, actors are described by their characteristics. The critical

characteristics necessary for modeling an actor in an abuse case include the actors

resources, skills, and objectives [46]. For this work, actors in the satellite

52

telecommanding abuse case must be modeled with characteristics relevant to the satellite

systems domain.

The purpose of an abuse case is to describe a family of undesirable interactions with

the goal of reducing security requirement oversights and design flaws. The abuse case

definition includes many abstract transactions which may be used to accomplish a single

abuse of the system [46]. Specific features or components in a system which may be

exploited are selected and included in the abuse cases description.

The concept for a satellite commanding abuse case is derived from the CCSDS report

concerning threats to space systems and known computer system intrusion techniques [6].

Additionally, related research on telecommanding security refers to a specific attack case

for satellite commanding communications.

The related attack case involves a malicious entity attempting unauthorized access to

a satellite command link through a forgery attack. This forgery attack requires an

attacker to possess knowledge about the spacecrafts orbital and physical channel access

parameters. Additionally, the attacker is modeled to have access to the command

message structure, and can transmit modified messages to the satellite [47].

The steps of the referenced forgery attack begin with the attacker intercepting

legitimate satellite command messages. These messages are then analyzed for the

underlying protocols. Once identified, fields in the message relating to satellite access

are modified in a manner which will allow the attacker to successfully command the

satellite [47].

The objective of the attacker in the previous scenario is to gain control of the satellite.

It is this activity that this thesis serves to address with the CTMS architecture. Further

53

discussion regarding the specific forgery attack satellite telecommanding abuse case used

in this work is presented in Chapter IV.

3.5 System Policy Development

The system policy used in this research will be based upon the abuse case activities

being tested in the system. Through this relationship, system policy plays a critical part

in addressing security in the satellite system. One of the primary benefits of CTMS is to

provide mechanisms with which to implement system policy. For example, the CTMS

interaction trust mechanism will allow system policies to be implemented which take into

consideration a users interactions. Additionally, the system policies used for testing are

designed to demonstrate the logging, detection, and prevention of malicious activities

utilizing the CTMS.

3.6 Satellite Test Environment

A functional satellite system is required to support implementation of the CTMS

architecture to satisfy the goal of this thesis. The final implementation and associated

testing demonstrates the feasibility of the CTMS architecture. This testing is also

performed to demonstrate the use of a CTMS implementation to support satellite system

security. The necessary components for constructing this system are, realistic satellite

FSW, realistic FSW executing environment, and a functional ground station to

communicate with the emulated satellite.

An example of such a satellite system test environment known as the Flight-Cyber

Vulnerability Assessment Testbed has been developed and implemented by the Aerospace

54

Corporation (funded by the USAF and Aerospace Internal Research and Development)

[48]. The vulnerability assessment testbed was developed to perform specific

experiments supporting vulnerability assessments for USAF programs of record. The

vulnerability assessment testbed consists of two major components, the Unit Under Test

(UUT), and testbed supporting infrastructure. The UUT is the satellite being tested, and

is the subject for experimentation. The testbed supporting infrastructure provides all

necessary hardware and software to communicate or otherwise interface with the

UUT [48].

The satellite test environment developed for this research includes the major

components found in the Aerospace testbed. This research testbed is required to support

CTMS testing once integrated into a satellite system. The testbed components used in

this work were selected to provide a realistic environment for satellite FSW security

testing. My test environment implementation details, including FSW development,

ground station setup, and test components, are presented in Chapter IV.

3.7 Summary

This chapter presents the design features of the CTMS for application to satellite

FSW. CTMS represents a unification of trust management theory and exiting TMS

implementation architecture for the purpose of enhancing satellite system security. The

approach of CTMS is to merge concepts from a generic TMS framework into satellite

FSW to mitigate threats associated with a specific abuse case.

The CTMS architecture incorporates multiple trust mechanisms and a policy

evaluation function to perform trust evaluations of entities within FSW. The I-Trust

55

mechanisms fundamental objective is calculating trust values for entities based upon

specific interaction markers. The credential trust mechanism provides authentication by

evaluating credentials provided by entities in the system. The component trust values and

information within the FSW are used by the policy evaluation function to define the

systems response to activity in the system. The CTMS API is used to access this

functionality from satellite FSW applications.

The concept of abuse case modeling is applied to the satellite FSW to test the security

of critical components and to evaluate the CTMS. System policy follows the abuse case

to detect and prevent malicious activities. Additionally, the specification of a satellite

test environment is presented to serve as a realistic proof of concept for the application of

trust management practices to secure satellite systems.

In summation, the CTMS architecture once implemented is expected to improve

security in satellite systems by detecting and preventing specific abuse cases. In order to

evaluate the feasibility and performance of the CTMS architecture, Chapter IV presents a

CTMS implementation in realistic satellite FSW. Finally, Chapter IV describes testing of

the CTMS implementation with an abuse case and system policy.

56

IV. Analysis and Results

4.1 Chapter Overview

This chapter documents the study of how trust management concepts can be used to

protect a satellite system from a specific abuse case. Satellite system protection is shown

as the outcome of abuse case testing on satellite Flight Software (FSW). The specific

trust mechanisms within the Consolidated Trust Management System (CTMS)

architecture are characterized to determine their suitability for implementation in actual

systems. Additionally, implementation specific results of FSW performance are

presented to demonstrate the feasibility of trust management integration into satellite

systems.

The goal of the current experimentation is to determine the applicability of trust

management concepts in general, and CTMS specifically, to address satellite system

threats embodied in the forgery attack abuse case. The primary hypothesis is that the

CTMS will improve security in FSW telecommanding. This improvement in security is

measured through the detection and prevention of a forgery attack with the CTMS.

This research does not focus on completely securing the satellite system emulated in

the test environment; rather, it develops a methodology which can address specific

concerns regarding satellite security. This methodology includes a specific architecture

with which to incorporate trust management concepts into satellite system FSW. The

experiments designed for this research apply the abuse case, system policy, and CTMS to

the existing FSW as a proof of concept.

57

4.2 Test Environment Setup

A functional satellite system is required to perform the work set forth in this thesis.

To serve as a functional model of a satellite system, realistic FSW, dedicated flight

hardware, and satellite commanding ground station software have been acquired and

configured to emulate a satellite system. An overall view of the satellite system emulated

to conduct this work is shown in Figure 5.

The satellite system consists of a single satellite, and two command ground stations.

One of the command ground stations serves as a legitimate ground station which is

authorized to command the satellite. The second is a malicious ground station which will

perform attack behavior as described in the abuse case.

Figure 5 Test Satellite System

Legitimate Ground Station
Ground�Station�Hardware�/�Software:
Virtual�Machine

CGA

Satellite:
8051TB

CubeSat�Flight�Software

Command�/�Telemetry:

USB�Ͳ>�TTL�Cable

Malicious Ground Station
Ground�Station�Hardware�/�Software:
Virtual�Machine

Custom�Commanding�Tool

Malicious�Commands:

USB�Ͳ>�RS232

58

The satellite hardware is emulated with a microcontroller Test Board (TB) which is

logically identical to the flight processor and memory for some CubeSat missions. The

microcontroller test board contains a processor which runs the 8051 instruction set.

Along with the 8051 CPU, memory and digital communication peripherals are located on

the TB. The primary communication peripheral used is a Universal Asynchronous

Receiver Transmitter (UART) which is connected to a Recommended Standard 232

(RS232) transceiver onboard [49].

The ground station hardware consists of a single computer workstation. The

computer workstation divides and shares hardware resources with multiple virtual

computer workstations (virtual machines). These virtual machines run the command

ground station software which communicates with the emulated satellite/TB.

The ground stations utilize USB ports and signal converters to connect with the RS232

port on the TB.

The legitimate command ground station in the satellite system is modeled by a virtual

machine running Common Ground Architecture (CGA). Mission unique components

present in CGA were specifically designed to interact with the FSW. The CGA ground

station receives telemetry from the satellite and displays system status in formatted

tables. Additionally, commands can be sent from the CGA ground station to demonstrate

functionality of the satellite FSW and hardware in the emulated environment.

The malicious ground station in the satellite system is implemented by custom

commanding software. This commanding software was written to communicate with the

satellite and perform malicious actions as described by the satellite commanding abuse

59

case. The custom commanding software also implements new commands added to the

FSW in conjunction with this thesis research.

The satellite FSW is modeled after software currently operating on CubeSat missions.

The FSW is written in the C programming language with specific 8051 assembly code for

system initialization and critical operations. The FSW was developed in the Keil

Integrated Development Environment (IDE); which manages source code and compiles,

links, and flashes complete software to the TB.

To facilitate debugging of the system and to view transmissions between ground

stations and satellite, a logic analyzer was connected to monitor UART signals on the test

board. The logic analyzer used for this testing was a USBee ZX module which reports

the transmit and receive signals on the communication path between the TB and ground

stations. The entire test environment setup described is shown in Figure 6.

Additional debugging and data output from experimentation was provided by a

diagnostic port on the TB. This port served as a window into the operation of the FSW

and reported real time system status directly from the TB. CTMS and FSW status was

observed from this port along with any system errors generated during testing. An

illustrated test using this setup is presented in Appendix B.

60

Figure 6 Test Environment Setup

4.3 Trust Management System Integration

The CTMS architecture discussed in Section 3.3.2 is integrated into the CubeSat FSW

directly. The CTMS consists of functions written in the C programming language, which

are compiled into the FSW. These functions are referenced by FSW applications with the

CTMS API to handle trust management tasks. The modified FSW containing CTMS

Application Programming Interface (API) calls, CTMS functions, and system policy are

then compiled to a single binary and flashed onto the 8051 test board.

8051TB

AB1

UART0

232

TTL

UART0

PC

(VMWare)

WinXP

(Custom)

WinXP

(Logic�
Analyzer)

CentOS

(CGA)

US232R TTL-
232R

TTL-
232R

USBee
ZX

COM7 COM4

COM20

COM9

Telemetry�/�
Commanding

TTL

UART1

TTL-
232R

Telemetry�/�
Commanding

Diagnostic�
Port

Virtual�Port�
Splitter

Telemetry�/�
Commanding

61

These actions would be accomplished during the development and testing phase for

actual satellite mission. The complete satellite and FSW incorporating all safety and

security features would be fully integrated and tested prior to launch. The following

subsections describe the setup and operation of the two trust mechanisms, CTMS data

storage, policy evaluation function, and CTMS API.

4.3.1 Interaction-Based Trust Calculation.

Calculations for interaction-based trust used in the CTMS implementation are

performed as described in Section 3.3.3.1, with static values for Į and ȕ. The I-Trust

values are calculated for every command interaction, however, cannot be attributed to

specific actors due to lack of user authentication in the basic FSW. The lack of

authentication leads to I-Trust values which characterize the trust of anonymous entities

in the system. The resultant I-Trust values are used in conjunction with system policy to

make a final trust determination and define the systems response commands being

received from anonymous entities.

The command access security policies defines threshold values for I-Trust and states

how these values will be acted upon in the system, see Section 4.5. The first step in

setting up this policy is to configure the I-Trust mechanism. The initial I-Trust

parameters are set to (T = 0,Į = 0.05, ȕ = -0.2) for the command authentication count

marker based upon an initial characterization of the I-Trust algorithm. Further discussion

regarding the optimization of simple I-Trust parameters is found in Appendix A. With

these parameters set, the I-Trust value for this marker will fall below -0.5 after four

consecutive defective interactions. Section 4.7.2 discusses in detail the rationale behind

why these parameters were chosen and their effect on the system.

62

The only I-Trust marker utilized during experimentation was the command

authentication count marker. Additional markers were considered, however were not

utilized for experimentation. Table 3 shows a list of markers which may be used in the

CTMS system as implemented in this work.

Table 3 CTMS I-Trust Marker List
Marker Evidence Attributable
Authentication Counter Identify poor connection or attempt on

authentication counter
NO*

Check Vector Identify attempt on authentication crypto
key

NO

Current Password Identify attempt on password, indicates
compromised authentication crypto key

YES**

* If the command authentication counter is checked after credential trust
authentication of a message the command authentication attempt can be attributed.

** If the credential trust mechanism identifies an invalid password after successfully
comparing the check vector then the attempt is attributed to the crypto key used to
encrypt the credential.

Both the simple and extended algorithms for calculating interaction trust were

implemented in the course of this work. Only the simple interaction trust algorithm was

suitable for computing interaction trust using the authentication count marker. This is

due to the nature of the radio link used for satellite commanding, which is discussed

further in Section 4.7.1.

The simple interaction trust algorithm is suited for characterization of interactions

with no incentive for repeated abuse after positive interactions. This is the case for

satellite commanding and the command authentication counter. The extended trust

algorithm may work well for interactions which benefit the attacker for presenting

defective interactions after consecutive cooperation interactions. This would be suitable

for the protection of features prone to repeated abuse, i.e., the attacker gets benefit from

63

failing the marker check. One example in the context of satellite systems would be for an

attacker, once gaining access, to probe a satellite with known good commands for a

number of interactions and then send a malformed command in an effort to disrupt the

satellite.

4.3.2 Credential Trust Evaluation.

The credential trust mechanism implemented for experimentation utilized the

Advanced Encryption Standard (AES) cryptography algorithm published in the Federal

Information Processing Standards Publication 197 [50]. The AES source code used in

this work was adapted from an open source implementation by Niyaz PK [51]. With the

AES algorithm implemented as part of the CTMS, cryptographic verification of an

authentication credential was possible in the FSW.

AES was selected to provide cryptographic authentication due to its availability and

the possibility for re-use in the system. The AES functions implemented for

authentication can also be used to add encryption to the commanding or telemetry

communications to and from the satellite. Additionally, AES is the CCSDS proposed

standard for encryption in satellite systems [30]. With a cryptographic algorithm

implemented, an authentication credential was developed for processing by the credential

trust mechanism.

The authentication credential introduced for testing purposes consisted of the

following elements: key index, check vector, and an encrypted password component.

The key index was a value used to select the AES key for decryption of the password

component of the credential. The check vector was a random value used to introduce a

random component to the message and to serve as a check upon decryption of the

64

password component. The encrypted password component of the authentication

credential consisted of a check vector, current authentication nonce, and next

authentication nonce. Figure 7 shows the structure of the authentication credential.

The check vector in the encrypted password component was set to the same value as

the vector in the authentication credential. Upon decryption, the check vector from the

encrypted password component was compared with the check vector from the

authentication credential. If the two vectors matched, the message was properly decoded

with the key identified by the key index. A positive check of the initialization vector is

the result of a valid entity passing the credential or an invalid entity replaying the

credential.

Figure 7 Authentication Credential Structure

The current nonce field in a credential was compared with the identification nonce

stored in the credential trust mechanism. If the current nonce from the encrypted

password component matches the internal identification nonce, then the credential is

deemed to be valid. Each key index had an identification nonce associated with it for

65

entity identification. A valid check of the credential was then associated with the key

index and any activity related to this credential was attributed to the associated key index.

The next nonce field contained the value to be stored as the identification nonce in the

credential trust mechanism for the given key index. The identification nonce was

replaced with the next nonce value after processing the current credential. The next

nonce must be different from the current nonce. If the current and next nonce are the

same value in this system, the authentication credential could be successfully validated

during a replay.

With the credential trust mechanism, CTMS can validate entities in the system and

associate them with trust information. Entities authenticated by the credential trust

mechanism were associated with CTMS members as defined in Table 4. Additionally,

secure functionality can be built into the system, which can be used to mitigate system

threats. An example of this is demonstrated by the experiments presented in Section 4.6.

Table 4 Credential Trust List
CTMS Member AES Key

Index
Authentication Password
Index

0 - Anonymous N/A N/A
1 - Administrator 0 0

The authentication credential structure and associated validation mechanism was

developed for use in this research as a proof of concept for a generic authentication

mechanism. As such, extensive characterization and cryptanalysis of this implementation

was not performed. A validated cryptographically secure algorithm and implementation

should be used for credential generation and authentication in the credential trust

mechanism for a flight ready system.

66

4.3.3 Trust Data Storage.

The Trust Data Storage component of the CTMS was used to maintain the systems

current status. Each entity interacting with the system, whether authenticated or not, was

categorized into CTMS members. The CTMS implementation contained data regarding

CTMS members and their nominal mapping to ground station ID; see Table 5.

Additionally, I-Trust data associated with each marker and entity was also stored in the

Trust Data Storage component; see Table 6.

Table 5 CTMS Member List
CTMS
Member

Ground Station
ID

Role

0 0001 Anonymous commanding
1 0002 Administrator Level Authenticated Commanding

Table 6 I-Trust Member Evidence List
CTMS Member Marker

ID
I-Trust Marker

0 - Anonymous 0 Authentication Count I-Trust Marker Simple

1 - Administrator 0 Authentication Count I-Trust Marker Simple
 1 Credential Check Vector I-Trust Marker Simple
 2 Credential Current Password I-Trust Marker Simple

4.3.4 API.

The CTMS API implemented for testing consisted of function prototypes for the

credential trust mechanism, I-Trust mechanism, and policy evaluation function. The

credential trust mechanism returned the credential validation status for a given ground

station ID and credential. The I-Trust mechanism did not return data directly to the

calling function, however, it updated I-Trust data for a given ground station ID, marker

ID and interaction result (cooperation or defection). The policy evaluation function

67

returned the result of a policy evaluation for a given ground station ID and policy

identifier.

Specific API calls were made in the command handler application, as it was being

tested by the commanding abuse case. The CTMS API calls implemented in the FSW

command handler application were to the I-Trust mechanism, credential trust mechanism

and policy evaluation function. The I-Trust mechanism was called to update trust

evidence for an entity in the system using the command authentication count marker.

The credential trust mechanism was used to implement the secure unlock command

discussed in Section 4.6. The policy evaluation function was used to prevent the abuse

case presented in Section 4.4.

4.4 Implementation Abuse Case

Normal use for a satellite system requires commands to be transmitted from a ground

station to the satellite. These commands must be processed aboard the satellite to

maintain the system and to perform the primary mission. The design of command

handling systems for satellites which only incorporate this simple use case with little

regard for misuse or abuse of the system may lead to vulnerabilities in the system.

The scenario presented here is the result of applying the abuse case development

methodology presented in Section 3.4 to the system being used to implement and test the

CTMS architecture. This abuse case is modeled for the satellite telecommanding

subsystem. The specific component in the telecommanding subsystem that may be

exploited is the command handler application of the satellite FSW.

68

For this case, a third party either has access to command formatting information, or

can intercept transmissions emanating from the primary satellite ground station. Once a

command session has been recorded, satellite specific information is recovered from the

command link data. This information is then replayed with modified/malicious values in

an effort to gain access to the satellite.

The nature of the basic FSW is such that the simple replay of a previously transmitted

authenticated command fails. This is due to the incremental nature of the command

sequence, where previously executed commands will not be processed. These design

characteristics of the FSW, however are vulnerable to a modified replay attack.

The specific abuse case is a forgery attack by a malicious ground station. This

forgery attack is the replay of a previously transmitted legitimate message by an attacker.

In an effort to guess the dynamic command authentication counter onboard the satellite,

the authentication count field for the illegitimate message is incremented during the

replay in an effort to brute force the authentication count in the FSW. The intent is to

have a malicious command processed. See Table 7 for a summary of the steps involved

in the abuse case.

Table 7 Abuse case steps
Step Action
1 Record commanding session or otherwise acquire command header and format

information
2 Transmit desired malicious command in an attempt to have it processed by the

satellite.
3 If the command execution fails at the satellite, increment the authentication count in

the command message and resend.
4 Continue to increment the authentication count in the command sequence until the

command is accepted.

69

The abuse case activity described in Table 7 is similar to the model of attack behavior

against a space communication link published by researchers investigating command link

attack detection [47]. This pattern is also similar to that taken by attackers to exploit

terrestrial software and networks [52].

4.5 Implementation System Policy

The system policies defined for this work were formulated to address the satellite

telecommanding forgery attack. The broad system security policy requires only

legitimate commands be processed by the satellite. This security policy must be enforced

by a security mechanism. The CTMS implementation is the security mechanism which

was used to address this broad system security policy in the following experiments.

The detailed system security policies used for CTMS implementation testing are

shown in Table 8. The first system security policy requires an alert to be logged once the

I-Trust value for the authentication count marker reaches -0.5. The result of this policy is

attack activity detection based upon interaction trust calculation. As each command is

received, the I-Trust value is updated based upon a check of the command authentication

count. Failed checks will reduce the I-Trust value, while successful checks increase the

value.

Policy 2 is aimed at preventing the same attack activity detected with Policy 1. Once

the I-Trust value for the general ground station based upon the authentication count

marker reaches -0.5 all commands from anonymous ground stations will be rejected. This

policy results in denying unauthenticated users access to the system. As this policy does

70

not specify the authentication of ground stations, it results in denial of service for all

ground stations. This issue is addressed with Policy 3.

Table 8 Implemented Policy Options
 Policy Implications

 1. Trust Management Event Logging Only Credential Trust not required
 Description: Command authentication count is checked

upon receipt and I-Trust value is calculated for
authentication count marker. Once the I-Trust value for
authentication count reaches
-0.5 an alert is logged indicating excessive invalid
command attempts.

P- fewer satellite resources required
P-legitimate ground station is alerted to
review detailed logs
N-malicious ground station may tamper
with logs if access is acquired

 2. Trust Management Event Logging and Prevention Credential Trust not required
 Description: Command authentication count is checked

upon receipt and I-Trust value is calculated for
authentication count marker. Once the I-Trust value for
authentication count reaches
 -0.5 command processing is halted for anonymous users
and an alert is logged indicating excessive invalid
command attempts.

P-malicious behavior is prevented

N-denial of service without entity
authentication

 3. Trust Management Event Logging, Prevention and
Recovery

Credential Trust required

 Description: Command authentication count is checked
upon receipt and I-Trust value is calculated for
authentication count marker. Once the I-Trust value for
authentication count reaches
-0.5 command processing is halted for anonymous users
and an alert is logged indicating excessive invalid
command attempts. The legitimate ground station must
unlock satellite commanding and the CTMS via credential
trust mechanism to resume commanding operations.

P-legitimate ground station is alerted to
review detailed logs
P-malicious behavior is prevented
P-additional features extend policy and
security options
N- additional satellite resources are
required
N-malicious ground station may tamper
with logs if access is acquired

 P - Positive attribute for system policy
N -Negative attribute for system policy

Policy 3 extends the second policy with a provision for resuming satellite

commanding with credential authentication of entities. Again, once the authentication

count I-Trust value reaches -0.5, all commands from anonymous ground stations will be

71

rejected until the system state is acknowledged. The system state is acknowledged and

the trust management system is reset by an authenticated user with a secure CTMS

unlock command. This policy and implementation is intended to demonstrate that FSW

with CTMS can detect and respond to a low trust commanding interaction pattern. An

example test of Policy 3 is presented in Appendix B.

The system response based on this policy is defined in the command processing code

(command handler) of the FSW. The command handler filters commands from

 un-trusted IDs and logs un-trusted commanding interactions with the CTMS functions.

Logs pertaining to CTMS status are stored and can be relayed via telemetry to ground

controllers.

4.6 Experiment Design

In order to evaluate the performance of the trust management system and implement

command access policies, three FSW builds were developed and tested. The first FSW

build, referred to as the (Basic FSW), is based upon a CubeSat FSW implementation

without trust management. The second FSW build (FSW-A) expands on the Basic FSW

with an initial CTMS implementation and the first two system security policies. The

final FSW build (FSW-B) implements the CTMS architecture including the credential

trust mechanism and the third system security policy.

With the credential trust mechanism, FSW-B implements the third security policy

which requires entity identification. This identification is performed through the addition

of a secure unlock command to the FSW command handler application. The secure

unlock command utilizes the authentication credential presented earlier to identify a

72

legitimate ground station and restore access to anonymous commanding of the satellite.

Table 9 illustrates the three FSW builds with their features, policies, and procedures used

for testing.

Table 9 Experiment Design
 Build Features Test Policy Test Procedure
Basic FSW

Basic FSW + No
modifications

Broad System Policy:
Only legitimate ground
stations should command the
satellite

Apply abuse case and
record results

FSW-A

Basic FSW + CTMS
without Credential Trust

Policy 1 and 2 implemented
with CTMS; see Table 8

Apply abuse case and
record results for each
policy

FSW-B

Basic FSW + CTMS
with Credential Trust and
secure unlock command

Policy 3 implemented with
CTMS; see Table 8

Apply abuse case and
record results; execute
secure CTMS reset
command and record
results

The abuse case was presented to each FSW with results shown in Section 4.7. The

outcome of the tests are presented with a focus on determining if an outsider can

successfully intrude on a commanding session or otherwise access the satellite using the

abuse case. An illustrated example of the experiment procedure for FSW-B and Policy 3

is presented in Appendix B.

4.7 Experiment Results

This section presents experimentation results from the abuse case scenarios,

comparing the three FSW builds. Additionally, characteristics of the FSW builds are

presented to support conclusions regarding the feasibility of implementing the CTMS

architecture in satellite systems. Lastly, performance of the implemented CTMS

73

architecture is presented as it relates to the accurate detection of the forgery attack on the

satellite system.

The Basic FSW was exposed to the commanding abuse case in the first experiment.

This experiment resulted in a system compromise by the malicious ground station

executing commands on the satellite. This activity is prohibited by the general system

policy which limits access to the legitimate ground station.

FSW-A with Policy 1 was utilized in the second experiment where the satellite was

challenged by the commanding abuse case. The system was again compromised,

however the CTMS implementation successfully reported the malicious activity. The

broad system policy to deny unauthorized access to the satellite was violated, however

test Policy 1 was successfully enforced.

For experiment three, FSW-A with Policy 2 was tested with the forgery attack. The

malicious ground station was unable to execute commands on the satellite. However, by

blocking the malicious ground station Policy 2 also caused a denial of service for all

ground stations. This denial of service is due to the lack of entity authentication in the

FSW-A build. The broad system policy to deny access to malicious ground stations was

enforced along with Policy 2.

The fourth and final experiment utilized the FSW-B build, which implemented

system security Policy 3. When the forgery attack was applied to this FSW build, the

malicious activity was detected through the I-Trust mechanism with the command

authentication count marker. Upon detection of the activity, an alert was logged and

anonymous commanding was disabled. These actions satisfied the general security

policy. A secure CTMS unlock command was then transmitted from a legitimate ground

74

station with identifying credential, which was subsequently processed by the satellite.

Normal commanding operations were restored on the satellite with the secure CTMS

unlock command. The fourth experiment demonstrated the FSW-B successfully enforced

Policy 3, which prevented malicious commanding of the satellite. The malicious

commanding activity presented in these experiments is a specific forgery attack presented

in the telecommanding abuse case, Section 4.4. An overview of the experimentation

results for the three FSW builds and policies is shown in Table 10.

Table 10 Experiment Results
FSW Build Test Policy Test Results

Basic FSW

Broad System Policy: Only
legitimate ground stations should
command the satellite

Broad System Policy: Failure
Note:
malicious ground station gains access

FSW-A

Policy 1:
Trust Management Event Logging
Only;
see Table 8

Broad System Policy: Failure
Policy 1 Implementation: Success
Note:
malicious ground station gains access

FSW-A

Policy 2:
Trust Management Event Logging and
Prevention;
see Table 8

Broad System Policy: Success
Policy 2 Implementation: Success
Note:
malicious ground station denied
access;
denial of service experienced

FSW-B

Policy 3:
Trust Management Event Logging,
Prevention and Recovery;
see Table 8

Broad System Policy: Success
Policy 3 Implementation: Success
Note:
malicious ground station denied
access

In summary, basic FSW takes no specific action to prevent or report malicious

activity as described in the commanding abuse case. When the abuse case is applied to

the basic FSW, malicious commands are successfully executed when the authentication

counter is reached during the forgery attack. This scenario, when presented to FSW-B is

identified and processing of the malicious commands is prevented. These results serve to

75

validate the initial hypothesis that trust management principals can be applied to satellite

systems to detect and prevent malicious activity.

4.7.1 System Performance.

This section discusses the I-Trust mechanism's performance for detecting the forgety

attack abuse case. For satellite commanding operations, signals are transmitted from a

ground station through open space to the satellite orbiting above. This transmission path

has characteristics which affect transmitted messages. The primary factor to be

considered in this research for the command link is the Bit Error Rate (BER).

The command link BER directly affects the number of command messages that are

improperly transmitted to the receiver aboard the satellite. This phenomenon affects both

malicious and legitimate ground stations resulting in legitimate ground stations

occasionally transmitting a command with an invalid command authentication count.

Each satellite system in operation has different satellite commanding procedures and

command link parameters. Both of these factors contribute to the number of commands

received at the satellite with an invalid authentication count.

Due to the nature of satellite commanding in which legitimate commands are lost in

transmission, a simple counter for the number of invalid commands received is not

directly suitable for security monitoring. The I-Trust mechanism utilized in the CTMS

calculates a trust value for entities interacting with the satellite. This value is based upon

the quality of interactions relative to an I-Trust marker. The marker for these interactions

demonstrated in this work is the command authentication count. As previously

76

discussed, legitimate and malicious ground stations will present commands with invalid

authentication counts.

The I-Trust mechanism adjusts the trust value for anonymous entities based the

command authentication count field in messages received. An encounter with a

malicious entity is flagged when the I-Trust value falls below a specified threshold value.

This threshold value, along with the parameters that determine the I-Trust mechanisms

operation, must be set according to the specific system in which it is implemented. These

settings are determined based upon the number of commands typically lost during a

commanding session with a legitimate ground station. Appendix A presents a method

and results of optimizing the simple I-Trust algorithm parameters for the command

authentication count marker. The performance characteristics for optimal I-Trust

parameters are also discussed in Appendix A.

4.7.2 System Characteristics.

The primary goal of demonstrating CTMS architecture in an emulated satellite system

environment was to determine the feasibility of implementation in flight ready satellite

systems. The characteristics which contribute to the implementations feasibility are

Software Compile Size, RAM Utilization, and Function Execution Speed. These

characteristics are significant to the implementation of new features into satellite flight

software due to a satellites limited hardware resources. A summary of Compile Size and

RAM utilization for the Basic FSW and FSW-B builds is shown in Table 11.

Additionally, the performance of specific functions which implement the CTMS

architecture is shown in terms of execution time in Table 12.

77

Table 11 FSW Build Characteristics
FSW Build Constant Data Code RAM

FSW-B
 2111 Bytes 61443 Bytes 50725 Bytes

Basic FSW
 1687 Bytes 51547 Bytes 48600 Bytes

Difference 424 Bytes 9896 Bytes 2125 Bytes

Table 12 CTMS Function Performance
CTMS Function Execution Time
Simple Interaction 2.4 ms
Policy Evaluation 0.76 ms
Credential Evaluation (AES Decrypt) 21 ms

The compiled characteristics for the FSW builds illustrate the increase in memory

usage for an example implementation of the CTMS architecture. Additionally, the

function performance shows the added computational time required to process

interactions, policies, and credentials with the CTMS implementation. The performance

measure taken for the credential evaluation function incorporates the initialization of the

AES cryptography function and decryption of the single block of data in the credential.

Each satellite system has unique requirements for hardware and software

configurations. Engineers must balance these requirements by making decisions as to

which features to implement in the system. Based upon the data presented above, an

initial estimate for the system impacts of adding a TMS to a CubeSat mission is realized.

78

V. Conclusions and Future Work

5.1 Chapter Overview

This chapter presents the conclusions and implications of this thesis. Conclusions

for this research focus on the primary thesis question. Additionally, ancillary findings

derived from experimentation are discussed. Finally, recommendations for future

research are made.

This work developed a multi mechanism Trust Management System (TMS) to

address cyber threats to satellite systems. Additionally, methods for threat assessment

and vulnerability analysis were presented for use in satellite system development and

testing. Chapter I introduced the research problem and focus. Chapter II presented an

introduction to the satellite system domain along with computer security and trust

management principles. Chapter III covered my approach to the problem and introduced

the proposed TMS architecture for satellite telecommanding. Chapter III also covered

system security policy, telecommanding abuse case, and satellite Flight Software (FSW)

test environment development methodology. Chapter IV presented the test setup used for

experimentation and integration of the Consolidated Trust Management System (CTMS)

with satellite FSW. Additionally, Chapter IV illustrated the specific forgery attack

satellite telecommanding abuse case, and policy used for testing the CTMS

implementation. Experiment design, results, and system performance were also

presented in Chapter IV.

79

5.2 Conclusions of Research

This thesis demonstrates the development and use of a TMS to detect the presence

of a telecommand forgery attack on satellite FSW. Once detected, the satellite FSW can

log or prevent the attack activity. The advantage of using trust management concepts for

security in satellite systems is their ability to manage data quality, whereas traditional

security mechanisms such as cryptography and access control schemes cannot.

The primary research question of this thesis was to study the application of trust

management concepts from the distributed information systems domain to satellite

telecommanding. This cross application of research was hypothesized to enhance

security in satellite system telecommanding by allowing the detection and denial of

adversaries exploiting the command link. This primary research question was broken

down into smaller tasks or incremental research questions to fully address the complex

nature of the problem.

The first incremental research question was to assess the vulnerability of the basic

FSW used as a model in this work. This was accomplished by implementing the basic

FSW in the emulated satellite system test environment and applying the forgery attack

abuse case. Once the basic FSW was shown to be vulnerable to the forgery attack the

effectiveness of the trust management approach could be measured.

The trust management approach addresses the second incremental research

question of whether a TMS can be used to detect the forgery attack. This question was

addressed by implementing the CTMS architecture in the basic FSW and applying the

forgery attack abuse case. Characterization of the FSW with CTMS demonstrated that

the system could detect the forgery attack event with a high reliability. The performance

80

of the CMTS architecture can be tuned based upon the environment in which it is

operating. A method of selecting tuning parameters for the CTMS architecture was

developed and presented in Appendix A for application of the architecture to any specific

satellite system. This flexible performance selection feature of the CTMS makes it a

robust option for threat detection in satellite FSW.

The third incremental research question in support of this thesis addressed the

ability to implement multiple system security policies with the CTMS architecture. The

security policies tested addressed the detection and prevention of the telecommanding

forgery attack. The policies implemented exercised all components of the CTMS

architecture including the Interaction Trust (I-Trust) and credential mechanisms. With

the FSW, CTMS implementation, and system security policies configured, the system

was tested with the telecommand forgery attack. These tests demonstrated that the

CTMS architecture implementation can successfully detect the forgery attack and prevent

the execution of malicious commands transmitted by an attacker. As the basic FSW has

no inherent user authentication, these malicious commands were prevented by denying all

anonymous commands. Notification of the malicious activity and normal system

operation was subsequently recovered through the use of a secure command which

utilizes the credential trust mechanism for authentication.

The tests performed in this work demonstrates how the CTMS architecture can be

used in a satellite system. Through this testing it was shown that the CTMS architecture

can be used to consolidate and provide security functions to FSW applications.

Additionally, the CTMS architecture has demonstrated potential to be used in conjunction

with existing safety and security features found in current satellite systems. An example

81

of these findings is to either merge existing cryptographic authentication with the CTMS

architecture as a new trust mechanism, or to simply apply the CTMS architecture in

parallel with a dedicated authentication protocol. For the case of a parallel

implementation, the authentication protocol would be used to associate entities with trust

evidence within the CTMS and also be used for policy evaluation.

Results from the incremental research questions prove the hypothesis that trust

management principles may be applied to satellite system telecommanding to enhance

security. The work completed in this thesis is the demonstration of a powerful new

satellite security methodology and tool. This approach can not only be used to protect

satellites from the specific forgery attack case presented here, however may be applied as

a method to protect satellites from a wide range of threats.

5.3 Recommendations for Future Research

This work consisted of an effort to bring trust management practices from the

distributed information systems and computer security domain to satellite system FSW.

The concepts presented in this thesis can be extended in several ways.

First, further identification and characterization of satellite system abuse cases

will benefit work towards securing these systems. New abuse cases can then be applied

to satellite systems to identify vulnerabilities, which can then be addressed with trust

management architectures such as CTMS. Second, further characterization of the I-Trust

calculation methods can be performed to better understand how to apply the algorithms to

solve security problems in satellite systems. Finally, a more detailed implementation of

82

CTMS could be applied to a FSW with authentication and encryption to further

demonstrate the TMS capabilities in supporting these traditional security mechanisms.

83

Appendix A. Simple I-Trust Algorithm Optimization

The command authentication count used in a satellite telecommanding

architecture is primarily a safety feature. The function of the command authentication

count is to identify commands which are received out of sequence. The typical response

to receiving a command with an invalid authentication count is to discard the message.

This response inadvertently addresses commands sent with malicious intent. A third

party whom is unaware of the current command authentication count in the satellite will

be unable to transmit valid commands to be processed by the satellite. This indicates a

potential security benefit of the command authentication count feature.

In order to evaluate the command authentication count for use as a security

mechanism, an analysis of the feature's properties is performed. The first issue addressed

is the probability an attacker will accurately guess the authentication count. Second is

how to detect an attacker attempting to access the system by guessing the authentication

count. Lastly, an analysis of the Interaction Trust (I-Trust) mechanism and optimization

of the I-Trust configuration parameters is presented.

The probability an attacker will guess the authentication count is directly related

to the range of values for the authentication count field. The authentication count used as

a demonstration implementation in this work is a 16-bit variable. This results in 162

possible values with a maximum of 65,535 and a minimum of 0. An adversary

attempting to guess this value has a one in 65,536 chance to succeed on the first try.

Using the forgery attack scenario an attacker will choose a value only once and the

probability of correctly selecting the authentication count is computed with Equation 1.

84

The number of attempts to guess the authentication count is n and the probability of

success will increase with each attempt. At this rate the attacker must try 656 times to

have approximately 1% chance of guessing the authentication count.

1

16
0

1
2

n

x
P

x

�

�¦

Equation 1 Probability

An attacker attempting to access a system utilizing an authentication counter must

first acquire the current authentication count. One attack scenario presented in this work

involves the attacker sending multiple commands with an incrementally different

authentication count for each. This method of starting from an initial value for the

authentication count and making a series of attempts with sequential authentication count

values allows the attacker to cover all values of the authentication counter and access the

satellite.

Abuse of the command authentication with this activity leaves evidence in the

satellite system. This evidence is the pattern and history of commands received by the

system with an invalid authentication count. The evidence will appear differently

depending on whether this attempt is made independent of a legitimate ground station's

telecommanding session or during a legitimate telecommanding session.

Failure to present the proper authentication count can indicate either indicate lost

legitimate commands or the presence of an attacker attempting illegitimate commands.

In order to differentiate between legitimate ground station and attacker in a commanding

encounter, these authentication failures are aggregated with the use of an I-Trust

algorithm. This algorithm computes a value which is an indicator of the reliability or

85

trustworthiness of a remote system. The algorithm computes the trust value based upon

an interaction's modification of a specific marker in the system. If the marker indicates

cooperation by the remote system then the interaction trust value is increased.

Conversely, if the marker indicates defection by the remote system the interaction trust

value is reduced. This system of computing a trust value which incorporates the outcome

of interactions is used to detect the presence of an attacker in the system.

The particular algorithm used to perform this trust value calculation is adapted

from the agent rating process presented by Yu and Sing. This algorithm utilizes two

parameters to define how much the trust value should increase or decrease following an

interaction. The environment in which this algorithm is being used will have an effect on

how these parameters should be set. The remainder of this Appendix documents the

characterization of the satellite system telecommanding environment relevant to the

command authentication counter. Additionally, a procedure for optimizing the algorithm

parameters used to detect attack behavior in the command system is presented.

The optimization and characterization of the simple I-Trust algorithm is presented

in the context of malicious activity detection in satellite system telecommanding. The

algorithm parameter optimization is presented in steps to configure the I-Trust algorithm

for a particular satellite system. This procedure was developed after the analysis and

optimization of the algorithm's parameters Į and ȕ for a specific satellite system.

The first step to configure the I-Trust algorithm is to establish a desired false

negative threshold. This threshold is based upon the users tolerance for potential false

negatives in the system. For this example, a value of 0.001 is chosen. This indicates that

the user will accept at the very most a one in one thousand chance an attacker will

86

succeed unnoticed. This value is used to compute the approximate maximum number of

command attempts which are made during an attack on the system before being detected.

The calculation is performed by multiplying the probability of success by the

number of possible values in the command authentication counter. For my test system,

the command authentication counter is 16 bits, which results in 65,536 possible values.

See Figure 8 Attempt Approximation Formula for the approximation formula and

example computation. Alternatively, the user may pick the number of attempts an

attacker may make on the system and compute the false negative probability.

1()
2

() 2
(.001) 65,536
65

b

b

P x n

n P x
n
n

|

Figure 8 Attempt Approximation Formula

The second step in configuring optimal parameters for the I-Trust algorithm is to

establish a system security policy, which sets a threshold on the I-Trust value. This

policy limit value is also related to the security posture of the system. A high value (less

negative) will result in a sensitive system, which is in turn more susceptible to false

positives. A low value will result in a system which requires higher penalties to reach the

policy limit. This is due to the requirement to identify malicious behavior within the

number of defection interactions calculated in step one.

The value of -0.8 was chosen and is used here as it falls just below the

approximately linear portion of the trust curve for a series of defection interactions. This

87

is best illustrated by the attack curve in Figure 17. A policy limit at the end of this

approximately linear portion of the curve allows the system to accommodate both a high

security posture and low false positive rate.

With the chosen security policy limit on the I-Trust value, the third step to

configure the I-Trust mechanism is to establish a bound for the value ȕ. This is done by

computing the final trust value after 65 defections with consecutively decreasing values

of ȕ. The iteration that results in a final trust value less than or equal to the policy limit

value, e.g., -0.8 is the upper bound on the ȕ parameter. No Į value is required to compute

this bound for ȕ as all of the interactions used in the calculation are defection. This

method is also described by the pseudo code in Figure 9.

for(Beta = -.0001; Beta >= -.5; Beta = Beta - .0001){
T = 0; // I-Trust Variable

 for(count = 1; count <= MAX_ATTEMPTS; count++){
Simple_Interaction(Defection); // Computes I-Trust with
Beta

 }
 if (T <= POLICY_LIMIT){

 return Beta;
 }
}

Figure 9 Beta Bound Pseudo Code

The fourth step is to determine additional bounds for Į and ȕ. These bounds are

used to reduce the search space required to establish the optimal I-Trust parameters for a

specific system. With the upper bound for ȕ computed previously, the lower bound for ȕ

along with bounds for Į are established.

The lower bound on ȕ is based upon the nature of the modeled behavior and the

design of the I-Trust algorithm. This lower bound for ȕ is set at -0.5 for this system

optimization, as higher values would be unrealistic for this. As the parameter beta

approaches -0.5, the parameter Į must also increase in magnitude to avoid false positives

88

in the system. Values for ȕ above -0.5 do not provide effective results when modeling

trust based on the command authentication count. This is due to instability associated

with large ȕ values and the associated large Į values required to maintain low false

positive rates. The bounds for ȕ as discussed are shown on a number line representing

the search space for optimal Į and ȕ values, see Figure 10.

With both bounds for ȕ established, the bounds for optimal Į are addressed. The

upper bound for Į is limited by the absolute value of ȕ. Additionally, the Į parameter has

a lower bound of zero. The zero Į lower bound is a result of the positive nature of the Į

parameter discussed in Section 3.3.3.1. These relationships are also captured in Figure 3,

which highlights the bounds and exclusion areas for Į and ȕ. The exclusion areas are

marked by hashed boxes, which indicate values not included in the parameter search.

Horizontal arrows on the number line indicate the direction of the parameter search.

ɴ

Ͳ.5

ɴͲBound�

ɲ

Min�Effective�ɴ
ɲ�ч|ɴ|

Optimal�ɲ,�ɴ�Search�Space

Figure 10 Number Line for Optimizing Į and ȕ Parameters

89

The final step in configuring the I-Trust mechanism is to search the possible

values of Į and ȕ that provides the fewest false positives, and meets the desired security

posture. Searching the available values of Į and ȕ requires additional information

regarding the system being configured. The critical factors based upon system design

necessary to perform Į, ȕ optimization are the expected failure (defection) rate for a

legitimate user and the number of interactions per encounter. Additionally, the

configurable search parameters are: the step size for incrementing Į and ȕ, the number of

times to sample each random encounter, the desired maximum false positive rate for the

system, and bounds for average trust value. The average trust value relates directly to the

desired system security posture by keeping I-Trust values balanced which enables

reliable detection of an attack during a command encounter.

The search method used to identify the optimal Į and ȕ values begins with a loop

over the ȕ value starting at the previously established upper bound. This ȕ loop will run a

second loop which will search Į from zero to the absolute value of the current ȕ. These

nested loops will cover the bounded values for both I-Trust algorithm parameters, see

Figure 11.

for(Beta = Beta_Bound; Beta >= -.5; Beta = Beta - BETA_INCREMENT){
 for(Alpha = 0; Alpha <= absval(Beta); Alpha = Alpha +
ALPHA_INCREMENT){
 Series_Of_Encounters();

}
}

Figure 11 Į and ȕ Loop Pseudo Code

Within the Į loop, a series of encounters are executed base upon the number

established by the search parameter. This series of encounters is a loop over the number

of encounters which computes each series of interactions. The number of encounters

90

computed should be large enough to significantly indicate the average number of false

positives the system will generate per encounter. The average interaction trust value for

each encounter is computed, along with the average of all encounters for a given set of

parameters (Į, ȕ). Additionally, the number of false positives experienced during the

series of encounters is calculated. Pseudo code for the series of encounters loop is shown

in Figure 12.

Series_Of_Encounters(){
 for(Encounter = 0; Encounter < RANDOM_ENCOUNTERS; Encounter++){
 Interaction_Series();
 if (ISeries_False_Positive > 1){
 Encounter_False_Positive++;
 }
 ISeries_Avg_Sum = ISeries_Avg_Sum + ISeries_Avg;
 }
 Encounter_Trust_Avg = ISeries_Avg_Sum / RANDOM_ENCOUNTERS;
}

Figure 12 Series of Encounters Pseudo Code

The series of encounters loop contains a loop to execute a series of interactions in

an encounter. This interaction series loop processes the number of interactions specified

for each encounter, while calculating statistics necessary for the series of encounters.

Each interaction is determined to be either cooperation or defection based upon the

system being modeled. In this case each legitimate interaction has a one in ten chance of

being defection. If at any time in the interaction series the trust value falls below the

policy limit, a false positive is counted. A pseudo code example of this loop is shown in

Figure 13.

91

Interaction_Series(){
//All variables are initialized to zero

 for (Interaction = 1; Interaction <= NUM_INTERACTIONS;
Interaction++){
 if ((rand() % 10 + 1) == 1) IR=0;
 else IR=1;
 // Run the random interaciton through the Simple Trust
Algorithm
 // Alpha and Beta are set by their loops

// An interaction of 0 is defection; 1 is cooperation
 Simple_Interaction(IR);
 // Check for false positive in interaction set
 if(T <= POLICY_LIMIT){
 ISeries_False_Pos ++ ;
 }
 //Accumulate a sum to average the Interaction Trust Values
 ITrust_Sum = ITrust_Sum + T;
 }
 // Calculate the average interaction trust value
 ISeries_Avg = ITrust_Sum / NUM_INTERACTIONS;
}

Figure 13 Interaction Series Pseudo Code

The search for optimal I-Trust parameters is complete when user conditions are

met with regards to false positives and average trust value. These parameters are checked

at the end of each series of encounters and are reported as the result of the optimization

for Į and ȕ. The initial values returned from the search are optimized based upon the

input parameters. The results of this process is illustrated with a complete example; see

Table 13. A sample screen shot from the optimization tool which calculated the optimal

I-Trust parameters is shown in Figure 14.

Table 13 Optimization Example 1

Optimization Example Setup Optimization Example Results
False Negative Rate .001 Attempts 65
Policy Limit -.8 ȕ Bound -.0245
Step Size .0005 Į Result .0025
False Positive Rate 0 ȕ Result -.0245
Average Trust Value ±.06 Result Avg Trust -.04
Expected Failure Rate 1/10 False Positives 0
Interactions Per
Encounter

200

Encounter Samples 1,000

92

Figure 14 I-Trust Parameter Optimization Tool

With an input of 0.001 for an acceptable false negative rate the resulting number

of attempts is 65. The policy limit of -0.8 establishes an initial bound for ȕ of (-0.0245).

The initial result is Į = 0.0025, ȕ = -0.0245, which meets the requirements for false

positives and average trust rating. A graph displaying this result for Example 1 is shown

in Figure 15. From the graph of the interaction trust value versus interaction number we

see the trust value drops below the policy limit exactly at the required 65 interactions for

the initial abuse case (where the red line crosses -0.8). Additionally, the legitimate user

will maintain an average trust rating of 0.04.

A second abuse case is also shown where the attacker transmits commands to be

processed during the legitimate ground station's command session. This activity begins

at interaction 50 and continues through the end of the simulation. The I-Trust value for

this case drops below the policy limit before the end of the encounter, however it requires

93

more defection interactions to reach this limit. This is due to the occasional cooperation

interactions supplied by the legitimate ground station.

Figure 15 Example 1: Initial I-Trust Optimization

While the Į and ȕ values in the Example 1 result are optimal for the input

requirements, they can be enhanced for faster response to the malicious events while

maintaining a low false positive rate. This is achieved by continuing the search process

through Į, ȕ and selecting a set of parameters which results in zero false positives after an

increment in ȕ which results in extensive false positives. This selection of I-Trust

parameters is made without consideration for the trust average. The resulting parameters

are taken at the point where the minimum Į is given for the current ȕ, while maintaining

Ͳ1

Ͳ0.8

Ͳ0.6

Ͳ0.4

Ͳ0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

Legitimate�RAND�(1/10)

Attack�(1/10)

Pattern�(1/10)

Attack�During�Legitimate�Activity

Yu and Singh - Interaction Trust Vs Abuse Case (Forgery Attack)
Alpha = .0025 Beta = -.0245

I-Trust
Value

Interaction

94

a user acceptable false positive rate. By selecting this solution we get increased security

potential with minimal false positives. An example which illustrates this solution is

shown in Figure 16, with optimization settings in Table 14.

Figure 16 Optimization Example 2: No Average Constraint, Min Alpha for Beta

Table 14 Optimization Example 2

Ͳ1

Ͳ0.8

Ͳ0.6

Ͳ0.4

Ͳ0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

Legitimate�RAND�(1/10)

Attack�(1/10)

Pattern�(1/10)

Attack�During�Legitimate�Activity

Yu and Singh - Interaction Trust Vs Abuse Case (Forgery Attack)
Alpha = .0295 Beta = -.1638

I-Trust
Value

Interaction

Optimization Example Setup Optimization Example Results
False Negative Rate .00015 Attempts 9
Policy Limit -.8 ȕ Bound N/A
Step Size .0005 Į Result .0295
False Positive Rate 0 ȕ Result -.1638
Average Trust Value N/A Result Avg Trust .675
Expected Failure Rate 1/10 False Positives 0
Interactions Per
Encounter

200

Encounter Samples 1,000

95

Example 2 shows increased performance for identifying the initial attack pattern,

with 9 attempts bringing the trust value down to the policy limit. Additionally, the

number of false positives for the series of encounters is zero, which is the same as in

Example 1. This modified method of selecting Į and ȕ results in a higher overall trust

average of 0.675, which may not be suitable when identifying attacks during extended

encounters. An example of where this optimization would not fit a mission requirement

is where emphasis is placed on the threat of an attacker intruding on an ongoing

command session. With reference to Figure 16, if an attacker were to begin the forgery

attack after legitimate interaction 150 instead of 50 as shown, the system would require

additional defection interactions to identify the attack. This results in a final method for

selecting optimal Į and ȕ parameters.

Both methods for optimizing selecting I-Trust configuration parameters are

combined, which will result in: minimum Į for the current ȕ, an overall average trust

rating within a specified range, and false positives within a user defined range. Results

from this selection method can identify an attack independent of an active legitimate

commanding session in fewer interactions than the initial method. Additionally, this

selection method provides an active defense posture during a legitimate commanding

session not seen with the first two selection methods. An example of optimization results

utilizing this selection method are shown in Table 15 and Figure 17.

96

Table 15 Optimization Example 3

Figure 17 Optimization Example 3: Average Constraint, Minimum Alpha for Beta

Example 3 shows the result of the optimization incorporating the minimum Į for

ȕ, constrained average trust rating, and constrained false positives. The key benefit of

this method is a compromise between initial security and extended defense posture. The

Ͳ1

Ͳ0.8

Ͳ0.6

Ͳ0.4

Ͳ0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

Legitimate�RAND�(1/10)

Attack�(1/10)

Pattern�(1/10)

Attack�During�Legitimate�Activity

Yu and Singh - Interaction Trust Vs Abuse Case (Forgery Attack)
Alpha = .0095 Beta = -.0789

I-Trust
Value

Interaction

Optimization Example Setup Optimization Example Results
False Negative Rate .00035 Attempts 22
Policy Limit -.8 ȕ Bound N/A
Step Size .0005 Į Result .0095
False Positive Rate 0 ȕ Result -.0789
Average Trust Value ±.06 Result Avg Trust .059
Expected Failure Rate 1/10 False Positives 0
Interactions Per
Encounter

200

Encounter Samples 1,000

97

low absolute value of average trust rating provides relatively constant threat response

throughout a command encounter. False positives are also managed with this method

with zero false positives reported in 1,000 command encounter samples.

The optimization results with constrained average, false positives , and minimum

Į can only exist within a small band of possible parameter values. These represent the

globally optimum results and are acquired by searching the parameter space starting from

high values of ȕ. Figure 18 illustrates pseudo code implementing the three methods of

selecting and reporting results from the parameter optimization.

if (Encounter_Trust_Avg > -1 * AVG_TRUST && Encounter_Trust_Avg <
AVG_TRUST){

//Extract Result "Initial Optimization - Average in range"
{

if((false_pos_sum < false_pos_prev)&&(false_pos_sum <=
FALSE_POS_RATE)){
 if ((Encounter_Trust_Avg > -1 * AVG_TRUST) &&
(Encounter_Trust_Avg < AVG_TRUST)){
 //Extract Result "Average in range, Minimum Alpha for Current
Beta"

{
 else{

 //Extract Result "Minimum Alpha for Current Beta"
 }
}
false_pos_prev = false_pos_sum;

Figure 18 Optimization Result Selection

98

Appendix B. Illustrated CTMS Test Sequence

Utilizing the test environment described in Section 4.2, three Flight Software

(FSW) builds were tested with the forgery attack sequence presented in Section 4.4. The

FSW build used in the following illustrations is FSW-B, which consisted of basic

CubeSat FSW with the Consolidated Trust Management System (CTMS) architecture

implementation. The FSW was also modified to utilize the CTMS implementation by

inserting CTMS Application Programming Interface (API) calls into the command

handler application to monitor command interactions and enforce policy actions.

Furthermore, a CTMS specific telecommand (secure unlock) was added to the basic

flight software which utilizes the credential trust mechanism to authenticate ground

stations. The CTMS secure unlock command was used in this test scenario to

acknowledge the detection of an attack sequence and to restore commanding

functionality for anonymous ground stations. This is necessary as anonymous

commanding can be disabled by system security Policy 3 described in Section 4.5.

The first step in this example CTMS test sequence corresponds to a normal

satellite telecommanding scenario. The legitimate ground station in this step transmits a

sequence of commands without user authentication to the satellite. This activity

increments the satellite's onboard command authentication counter and increases the

Interaction Trust (I-Trust) value for the anonymous CTMS user.

The satellite diagnostic port is monitored during the legitimate command

sequence. The diagnostic port displays the following information: the byte pattern for

99

each command received, command specific details, a policy evaluation result, and the

current CTMS I-Trust data. Figure 19 is the last message displayed on the satellite

diagnostic port after the legitimate command sequence is completed.

The first line in the diagnostic output shown in Figure 19 is the byte sequence for

the last telecommand received. The second line is a header indicating the following five

lines are details regarding the processing of the last command received. These details

indicate what type of message was received (MessageID), the result of a policy check

(Trust OK...), and the action following the policy check (CMD... will be processed). The

remaining information is the current CTMS I-Trust data. This data indicates that the

entity tracked in the TMS with MemberID 0 has two associated simple I-Trust metrics.

MemberID 0 represents interactions from unauthenticated users. The I-Trust metrics

correspond to trust values computed based upon the command authentication count

marker using the simple I-Trust algorithm. The reason for computing multiple trust

values for the same marker is to demonstrate the configurable nature of the CTMS

architecture to match a target systems specific performance profile. The topic of

performance is addressed further in Section 4.7.1 and Appendix A.

Figure 19 Step 1, Satellite Diagnostic Port Output

100

The I-Trust values displayed for Metric 0 and Metric 1 are positive values, which

indicate the series of legitimate commands received during the normal command

sequence. These values were both initialized to zero and have different values in

Figure 19 due to each metric being associated with individual I-Trust parameters as

shown. MetricID 0 is used in the policy evaluation for this experiment, and as the trust

value for this metric is above the policy limit of -0.5 the command was processed.

The second step in the CTMS test is the execution of a forgery attack on the

satellite. This attack is an instance of the abuse case described in Section 4.4. Once the

legitimate command session has completed and the satellite has moved into the attackers

field of view, the malicious sequence of commands are transmitted.

The malicious commands in this experiment are transmitted by a custom

commanding tool. These commands are similar to those which were sent by CGA in

Step 1, however the proper command authentication count is unknown to the attacker.

Figure 20 shows the custom commanding tool setup for this step of the experiment.

The command selected for transmission is a simple no operation command. This

commands only function is to test the command transmission and execution path. Below

the command selection in Figure 20 are the command header fields, which are setup for

the no operation command. There are no arguments for this command so the command

data field is blank. The Command Authentication Count (Auth Count) field is shaded to

indicate that for the forgery attack this field will be incremented after transmission for the

number of attempts indicated.

101

Figure 20 Step 2, Custom Commanding Tool Setup

Figure 21 Step 2, Invalid Command Authentication Count Error

During the attack, telecommands are received by the satellite with an invalid

command authentication count value. The error generated by this activity can be seen on

the diagnostic port, see Figure 21. Portions of the diagnostic output from the last

legitimate command processed remains on the screen while the attackers command and

error information are below. Each command received with an invalid command

102

authentication count is considered a defection by an anonymous ground station and the

I-Trust value for the CTMS member ID is decreased.

Once the attack sequence reaches the current satellite command authentication

count, the attackers command is evaluated based upon system security policy. The trust

value shown in the diagnostic output for this event is now -0.9996, which is well below

the policy limit of -0.5, see Figure 22. The output also shows the policy evaluation,

which resulted in the command being rejected.

Figure 22 Step 2, Trust Policy Check During Attack

As the interaction trust values for anonymous entities is now below the policy

limit it can only be restored through the secure unlock command. This command is

generated and transmitted to the satellite using the custom commanding tool, see

Figure 23. The secure unlock command contains a unique authentication credential as an

argument in the command data field. Upon processing this command, the satellite will

restore the I-Trust values to zero which will re-enable anonymous commanding.

103

Figure 23 Secure Unlock Command Transmission

The third CTMS test step is execution of the secure unlock command. The

unlock command is processed to evaluate the authentication credential, which is a more

authoritative form of trust than the interaction trust value. The diagnostic output for the

credential evaluation follows the verification procedure outlined in Section 4.3.2. This

unlock command follows the last invalid command sent by the malicious user, which is

indicated by the error at the top of the diagnostic display, see Figure 24. The decrypted

authentication credential is displayed on the diagnostic port followed by the checks

necessary to validate the credential. All of the checks are successful in this test which

results in the I-Trust trust values for the anonymous MemberID being set to zero along

with the command authentication counter.

104

Figure 24 Step 3, Secure Unlock Command Processing

The final step in this example CTMS test is to transmit legitimate anonymous

commands to the satellite for processing. Since the secure unlock command was

executed, the I-Trust value for anonymous commanding is set to zero. Since the I-Trust

value is now greater than the policy limit of -0.5, anonymous commands will be

processed. Additionally, the command authentication counter was reset to zero, which

will allow the legitimate ground station to begin commanding with that count. The first

successful legitimate command after the unlock is verified with the diagnostic port output

shown in Figure 25.

105

Figure 25 Step 4, Legitimate Commanding Following Unlock

106

Bibliography

[1] US Congress, Uniting and Strengthening America by Providing Appropriate Tools
Required to Intercept and Obstruct Terrorism (USA PATRIOT ACT) Act of 2001,
2011.

[2] Bill Clinton. (1998, May) Presidential Decision Directive, NSC-63, Critical
Infrastructure Protection. Internet.

[3] (1998, Nov) The Department of Defense Critical Infrastructure Protection Plan.
Internet.

[4] CCSDS, "CCSDS 232.0-B-2 Telecommand (TC) Space Data Link Protocol," The
Consultative Committe for Space Data Systems, Recommendation for Space Data
Systems Standards 2003.

[5] CCSDS, "CCSDS 350.0-G-2 The Application of CCSDS Protocols to Secure
Systems," The Consultative Committe for Space Data Systems, Informational
Report 2006.

[6] CCSDS, "CCSDS 350.1-G-1 Security Threats Against Space Missions," The
Consultative Committe for Space Data Systems, Report Concerning Space Data
Systems Standards 2006.

[7] CCSDS, "CCSDS 200.0-G-6 Telecommand Summary of Concept and Rationale,"
1987.

[8] (2010, January) Ham Test Online. [Online].
http://www.hamradiolicenseexam.com/question_pools/extra_2008/E1D.htm

[9] Howard Lipson, Evolutionary Design of Secure Systems – The First Step Is
Recognizing the Need for Change, 2011.

[10] SSI, Space Security Executive Summary 2010, 2011.

107

[11] D. K. Sachdev, Success stories in satellite systems, D. K. Sachdev, Ed. Reston, VA:
AIAA, 2009.

[12] Robert F. Dacey, "Commerical Satellite Security Should Be More Fully Addressed,"
United States General Account Office, Report to the Ranking Minority Member,
Permanent Subcommittee on Investigations, Committee on Governmental Affairs,
U.S. Senate 2002.

[13] George W. Bush. (2003, December) Homeland Security Presidential Directive 7:
Critical Infrastructure Identification, Prioritization, and Protection. Internet.

[14] George W. Bush, National Security Presidential Directive, NSPD-49, U.S. National
Space Policy, 2011.

[15] Bruno Pattan, Satellite systems : principles and technologies. New York: Van
Nostrand Reinhold, 1993.

[16] Bruce R Elbert, Introduction to satellite communication. Boston: Artech House,
2008.

[17] Mark R Chartrand, Satellite Communications for the Nonspecialist.: SPIE - The
International Society for Optical Engineering, 2004.

[18] Shawana P. Johnson. (2011, January) earthzine. [Online].
http://www.earthzine.org/2010/07/23/geospatial-applications-in-agriculture-and-
global-food-security-an-nga-and-usda-project-success/

[19] USAF. (2011, January) Los Angeles Air Force Base. [Online].
http://www.losangeles.af.mil/library/factsheets/factsheet.asp?id=5514

[20] NOAA. (2011, January) National Oceanic and Atmospheric Administration.
[Online]. http://www.noaa.gov/satellites.html

[21] Chad Schweitzer. (2011, January) design concepts. [Online]. http://www.design-
concepts.com/blog/celebrate-navigation-and-timing-diversity

[22] ESA. (2011, January) European Objectives and Interests in Space Exploration.
[Online].
http://esamultimedia.esa.int/docs/exploration/EuropeanThemes/European_Objective
s_in_Space_Exploration.pdf

[23] NASA. (2011, January) NASA Solutions. [Online].
www.nasasolutions.com/at_home.html

108

[24] Zhili Sun, Satellite Networking : principles and protocols.: John Wiley \& Sons Ltd,
2005.

[25] Radiation Effects and Analysis Group. (2011, January) Radiation Effects and
Analysis. [Online]. http://radhome.gsfc.nasa.gov/radhome/see.htm

[26] (2011, January) Goddard Space Flight Center. [Online].
http://heasarc.gsfc.nasa.gov/docs/rosat/gallery/misc_saad.html

[27] Clyde Space. (2011, January) Clyde Space EPS. [Online]. http://www.clyde-
space.com/cubesat_shop/eps

[28] W.A. Dos Santos, A.M. da Cunha, and O.A. Martins, "Exploring round-trip
engineering capabilities for satellite flight software projects," , vol. 2, 2005, p. 11
pp. Vol. 2.

[29] Brian Davis. (2011, January) Workshops on Spacecraft Flight Software. [Online].
http://flightsoftware.jhuapl.edu/files/FSW08_Davis.ppt

[30] CCSDS, "CCSDS 350.2-G-1 Encryption Algorithm Trade Survey," The
Consultative Committe for Space Data Systems, Informational Report 2008.

[31] "Colony-I Space to Ground Interface Control Document, Core Elements [DRAFT],
Volume 1 Command and Telemetry Definitions," 2010.

[32] Matt Bishop, Computer Security. New Jersey, USA: Addison-Wesley, 2003.

[33] Weiliang W. Zhao and Vijay Varadharajan, "An Approach to Unified Trust
Management Framework," in Collaborative computer security and trust
management., 2009, ch. An Approach to Unified Trust Management Framework, pp.
111-134.

[34] Vijay Varadharajan, "Authorization and Trust Enhanced Security for Distributed
Applications," in Information Systems Security, Sushil Jajodia and Chandan
Mazumdar, Eds.: Springer Berlin / Heidelberg, 2005, vol. 3803, pp. 1-20,
10.1007/11593980_1.

[35] Weiliang Zhao, Vijay Varadharajan, and George Bryan, "A Unified Framework for
Trust Management," , 2006, pp. 1-8.

109

[36] Weiliang Zhao, Vijay Varadharajan, and George Bryan, "Modelling Trust
Relationships in Distributed Environments," , 2004, pp. 40-49.

[37] Weiliang Zhao, Vijay Varadharajan, and George Bryan, "General methodology for
analysis and modeling of trust relationships in distributed computing," Journal of
Computers, vol. 1, no. 2, pp. 42-53, 2006.

[38] Weiliang Zhao, Vijay Varadharajan, and George Bryan, "Analysis and Modelling of
Trust in Distributed Information Systems," in Information Systems Security, Sushil
Jajodia and Chandan Mazumdar, Eds.: Springer Berlin / Heidelberg, 2005, vol.
3803, pp. 106-119, 10.1007/11593980_8.

[39] Jose E. Fadul, Kenneth M. Hopkinson, Christopher A. Sheffield, James T. Moore,
and Todd R. Andel, "Trust Management and Security in the Future Communication-
Based "Smart" Electric Power Grid," in 44th Hawaii International Conference on
System Sciences (HICSS) , 2011, pp. 1-10.

[40] Kenneth P. Birman, Reliable Distributed Systems.: Springer Science + Business
Media, 2005.

[41] Matt Blaze, Joan Feigenbaum, Joan Ioannidis, and Angelos Keromytis, "The
KeyNote Trust Management System," IETF, RFC 1999.

[42] Matt Blaze, Using the KeyNote Trust Management System, 2001.

[43] Bin Yu and Munindar P. Singh, "A Social Mechanism of Reputation Management in
Electronic Communities," in In Proceedings of Fourth International Workshop on
Cooperative Information Agents, 2000, pp. 154-165.

[44] Matt Blaze, John Ioannidis, and Angelos Keromytis, "Experience with the KeyNote
Trust Management System: Applications and Future Directions," in Trust
Management, Paddy Nixon and Sotirios Terzis, Eds.: Springer Berlin / Heidelberg,
2003, vol. 2692, pp. 1071-1071, 10.1007/3-540-44875-6_21.

[45] Amirali Salehi-Abari and Tony White, "Towards con-resistant trust models for
distributed agent systems," in Proceedings of the 21st international jont conference
on Artifical intelligence, 2009, pp. 272-277.

110

[46] J. McDermott and C. Fox, "Using abuse case models for security requirements
analysis," , 1999, pp. 55-64.

[47] Lei Zhang, Chengjin An, Quan Zhang, and Chaojing Tang, "Misbehavior Detection
Algorithm in CCSDS Space Telecommand System," Communications Letters,
IEEE, vol. 14, no. 8, pp. 746-748, 2010,

[48] Dan Balderston, "Space Segment Cyber Defense," Aerospace Corporation, El
Segundo, Technical Presentation 2010.

[49] Silicon Labs, "C8051F12x-13x," Silicon Labs, Austin, Technical Report 2005.

[50] National Institute of Standards and Technology, "FIPS 197 ADVANCED

ENCRYPTION STANDARD," NIST, FIPS Pub 197, 2001.

[51] niyazpk. (2011, January) Hoozi Resources. [Online].
http://www.hoozi.com/post/0m3lb/advanced-encryption-standard-aes-
implementation-in-c-c

[52] Greg Hoglund and Gary McGraw, Exploiting Software: How To Break Code.:
Addison-Wesley, 2008,

[53] William J. Lynn. (2010, January) DoDD 3020.40 : DoD Policy and Responsibilities
for Critical Infrastructure. Internet.

[54] Bin Yu and Munindar P. Singh, "Detecting deception in reputation management," ,
2003, pp. 73-80.

[55] Bin Yu and Munindar P. Singh, "An evidential model of distributed reputation
management," , 2002, pp. 294-301.

[56] S. S. Yau, H. Davulcu, S. Mukhopadhyay, D. Huang, and Y. Yao, "Adaptable
situation-aware secure service-based (AS3) systems," , 2005.

[57] R. Yahalom, B. Klein, and T. Beth, "Trust relationships in secure systems-a
distributed authentication perspective," , 1993, pp. 150-164.

[58] J. Whittle, D. Wijesekera, and M. Hartong, "Executable misuse cases for modeling
security concerns," , 2008, pp. 121-130.

[59] Maarten Van Steen, Distributed Systems: Principles and Paradigms, 2nd ed.:
Prentice-Hall, 2008.

111

[60] Guttorm Sindre and Andreas L. Opdahl, "Eliciting security requirements with
misuse cases," Requirements Engineering, vol. 10, pp. 34-44, 2005,
10.1007/s00766-004-0194-4.

[61] United States Senate, CYBER ATTACKS: THE NATIONAL PROTECTION
PLAN AND ITS PRIVACY IMPLICATIONS, Hearings Before Congress, February
1, 2000, 2011.

[62] Sini Ruohomaa and Lea Kutvonen, "Trust Management Survey," in Trust
Management, Peter Herrmann, Valérie Issarny, and Simon Shiu, Eds.: Springer
Berlin / Heidelberg, 2005, vol. 3477, pp. 77-92, 10.1007/11429760_6.

[63] Robin Ruefle, The Role of Computer Security Incident Response Teams in the
Software Development Life Cycle, 2011.

[64] Barbara Pusey, Dr. Carleen Maitland, Dr. Andrea Tapia, Dr. John Yen, and Barbara
Pusey, A Survey of Trust Models in Agent Applications, Looks like a draft paper.

[65] Huaizhi Li and Mukesh Singhal, "Trust Management in Distributed Systems,"
Computer, vol. 40, no. 2, pp. 45-53, 2007.

[66] Soo-Yeon Kang, Sang-Kon Lee, and Koon-Ho Yang, "The COMS telecommand
processing in the flight software," , 2009, pp. 1-3.

[67] Audun Jøsang, "The Right Type of Trust for Distributed Systems," , 1996, p. 119–
131.

[68] C.B. Haley, R. Laney, J.D. Moffett, and B. Nuseibeh, "Security Requirements
Engineering: A Framework for Representation and Analysis," Software
Engineering, IEEE Transactions on, vol. 34, no. 1, pp. 133-153, 2008.

[69] Tyrone Grandison and Morris Sloman, "A Survey of Trust in Internet Applications,"
IEEE Communications Surveys and Tutorials, vol. 3, no. 4, 2000,
http://www.comsoc.org/livepubs/surveys/public/2000/dec/index.html.

[70] T W Grandison, "Conceptions of trust: Definitions, constructs and models," , pp. 1-
28.

[71] Mary Foote, Improving Defense in Depth for NASA's Mission Network, 2011,
posted on October 31, 2003.

[72] Robert J. Ellison, Trustworthy Composition: The System Is Not Always the Sum of
Its Parts, 2011.

112

[73] B. Dragovic, E. Kotsovinos, S. Hand, and P.R. Pietzuch, "XenoTrust: event-based
distributed trust management," , 2003, pp. 410-414.

[74] Ioanna Dionysiou, "Dynamic and Composable Trust for Indirect Interactions,"
Doctoral Dissertation 2006.

[75] Ing-Ray Chen, Fenye Bao, Moonjeong Chang, and Jin-Hee Cho, "Trust
Management for Encounter-Based Routing in Delay Tolerant Networks," , 2010, pp.
1-6.

[76] David W. Chadwick and Alexander Otenko, "The PERMIS X.509 role based
privilege management infrastructure," Future Generation Computer Systems, vol.
19, no. 2, pp. 277-289, 2003.

[77] CCSDS, "CCSDS 350.3-G-1 Authentication/Integrity Algorithm Issues Survey,"
The Consultative Committe for Space Data Systems, Informational Report 2008.

[78] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos Keromytis, "The Role of
Trust Management in Distributed Systems Security," in Secure Internet
Programming, Jan Vitek and Christian Jensen, Eds.: Springer Berlin / Heidelberg,
1999, vol. 1603, pp. 185-210, 10.1007/3-540-48749-2_8.

[79] Matt Blaze, Joan Feigenbaum, and Jack Lacy, "Decentralized Trust Management,"
1996.

[80] F. Azzedin and M. Maheswaran, "Evolving and managing trust in grid computing
systems," , vol. 3, 2002, pp. 1424 - 1429 vol.3.

[81] Robert K. Ackerman, Space Now a Contested Venue, 2009.

[82] S. Aboulwafa and R. Bahgat, "DiReCT: Dirichlet-based Reputation and Credential
Trust management," , 2010, pp. 1-8.

[83] Conversation With Brian Davis SGSS, 2011.

[84] Donovan Artz and Yolanda Gil, "A survey of trust in computer science and the
Semantic Web," Web Semantics, vol. 5, no. 2, pp. 58-71, 2007.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
24-03-2011

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Mar 2010 – Mar 2011

4. TITLE AND SUBTITLE

Trust Management and Security in Satellite Telecommand Processing

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Duncan, Mark C., Capt, USAF

5d. PROJECT NUMBER
11G222
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCO/ENG/11-03

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Office of Scientific Research
Attn: Dr. Robert Bonneau
875 N. Randolph St
Ste 325 Rm 3112
Arlington, VA 22203
DSN: 426-9545
Email: robert.bonneau@afosr.af.mil

10. SPONSOR/MONITOR’S
ACRONYM(S)
AFOSR/NL
11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES

This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT
New standards and initiatives in satellite system architecture are moving the space industry to more open and efficient mission operations.
Primarily, these standards allow multiple missions to share standard ground and space based resources to reduce mission development and
sustainment costs. With the benefits of these new concepts comes added risk associated with threats to the security of our critical space
assets in a contested space and cyberspace domain. As one method to mitigate threats to space missions, this research develops, implements,
and tests the Consolidated Trust Management System (CTMS) for satellite flight software.
The CTMS architecture was developed using design requirements and features of Trust Management Systems (TMS) presented in the field
of distributed information systems. This research advances the state of the art with the CTMS by refining and consolidating existing TMS
theory and applying it to satellite systems. The feasibility and performance of this new CTMS architecture is demonstrated with a realistic
implementation in satellite flight software and testing in an emulated satellite system environment. The system is tested with known threat
modeling techniques and a specific forgery attack abuse case of satellite telecommanding functions. The CTMS test results show the
promise of this technique to enhance security in satellite flight software telecommand processing. With this work, a new class of satellite
protection mechanisms is established, which addresses the complex security issues facing satellite operations today. This work also fills a
critical shortfall in validated security mechanisms for implementation in both public and private sector satellite systems.
15. SUBJECT TERMS
Trust Management, Satellite, Flight Software, Security

16. SECURITY CLASSIFICATION
OF:

17. LIMITATION OF
 ABSTRACT

U

18. NUMBER
 OF
 PAGES
123

19a. NAME OF RESPONSIBLE PERSON
Kenneth M. Hopkinson (ENG)

REPORT
U

ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
(937)255-3636 x4579, kenneth.hopkinson@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18

