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Abstract 

New standards and initiatives in satellite system architecture are moving the space 

industry to more open and efficient mission operations.  Primarily, these standards allow 

multiple missions to share standard ground and space-based resources to reduce mission 

development and sustainment costs.  With the benefits of these new concepts comes 

added risk associated with threats to the security of our critical space assets in a contested 

space and cyberspace domain.  As one method to mitigate threats to space missions, this 

research develops, implements, and tests the Consolidated Trust Management System 

(CTMS) for satellite flight software. 

The CTMS architecture was developed using design requirements and features of 

Trust Management Systems (TMS) presented in the field of distributed information 

systems.  This research advances the state of the art with the CTMS by refining and 

consolidating existing TMS theory and applying it to satellite systems.  The feasibility 

and performance of this new CTMS architecture is demonstrated with a realistic 

implementation in satellite flight software and testing in an emulated satellite system 

environment.  The system is tested with known threat modeling techniques and a specific 

forgery attack abuse case of satellite telecommanding functions.  The CTMS test results 

show the promise of this technique to enhance security in satellite flight software 

telecommand processing.  With this work, a new class of satellite protection mechanisms 

is established, which addresses the complex security issues facing satellite operations 

today.  This work also fills a critical shortfall in validated security mechanisms for 

implementation in both public and private sector satellite systems. 
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TRUST MANAGEMENT AND SECURITY IN SATELLITE TELECOMMAND 

PROCESSING 

 

I. Introduction 

 
1.1   Overview 

This chapter gives a general introduction to the problem domain and provides an 

overview of the thesis research area.  The significance of the problem being addressed 

and motivation for research is also presented in this section.  Additionally, this chapter 

introduces the research goal and presents an overview of the thesis. 

Satellite systems currently influence many aspects of modern society.  From daily 

banking transactions to personal communications to global food production, modern 

society is dependent on the existence of satellite systems.  These systems are launched 

and maintained by both commercial and governmental organizations and consist of 

ground and space-based segments.  The primary entity in the ground segment of a 

satellite system is the satellite control center, or ground station, which commands and 

maintains the operational status of the satellite in orbit.  The space-based segment of a 

satellite system consists of the orbiting satellite or constellation of satellites. Whether 

commercially or government owned and operated, satellite systems of all types have 

made their way into our lives. 

Considering the vital role satellite systems play in modern society, these assets 

can be classified as national critical infrastructure.  As defined in the United States Patriot 
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Act of 2001, critical infrastructure includes "systems and assets, whether physical or 

virtual, so vital to the United States that the incapacity or destruction of such systems and 

assets would have a debilitating impact on security, national economic security, national 

public health or safety, or any combination of those matters [1]." 

Current public policy in the United States regarding critical infrastructure can be 

tied to Presidential Decision Directive 63 (PDD-63) "Critical Infrastructure Protection" 

published in May 1998 [2].  The guidance in PDD-63 describes critical infrastructure and 

sets national policy for protecting such infrastructure.  This policy identifies 

responsibilities the Department of Defense (DoD) has for critical infrastructure 

protection, specifically, identifying the need to counter the threat of cyber attacks. 

This added focus on cyber-based attacks stems from the increasing 

interdependence of critical national functions, such as banking, energy, and 

transportation, on advanced technology.  One specific area of technology both supporting 

and serving as critical infrastructure is satellite systems.  While the integration of new 

technology to these areas increases capacity and efficiency, it also makes the 

infrastructure more vulnerable to disruption and attack both physically and through 

cyberspace.  Due to system integration, such an attack has the potential to create 

cascading failures.  Because of the relatively recent progression from disconnected 

systems to complex interconnected systems, this threat is unprecedented, thus justifying 

research into new security mechanisms for critical infrastructure [2]. 

The DoD Critical Infrastructure Protection Plan (CIPP) published in November 1998, 

followed from PDD-63 to address the DoD plan to protect its portion of the nation's 

critical infrastructure.  The DoD portion of national critical infrastructure is divided into 
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sectors, one of which is "Defense Space" [3].  The Defense Space Infrastructure Sector 

detailed in the DoD CIPP consists of both space and ground-based assets.  These include 

launch, specialized logistics, and control systems located worldwide on both DoD and 

commercially controlled sites [3]. 

These national and DoD policies state that satellite systems are currently considered a 

national critical infrastructure and require protection efforts.  These efforts include 

vulnerability assessment and mitigation methods.  This reality motivates research to 

identify potential vulnerabilities in satellite systems and to develop methods to mitigate 

associated risks. 

To begin addressing security in satellite systems, this research considers common 

threats to space missions as presented in satellite security publications.  The Consultative 

Committee for Space Data Systems (CCSDS) has published several reports concerning 

threats and security protocols relating to satellite systems [4,5,6].  A specific and the most 

significant threat discussed in these and related works involve the satellite command link, 

also known as the telecommand system.  This threat is further categorized in this work.  

Furthermore, a specific forgery attack generally referred to as an abuse case is developed 

to illustrate satellite command link security issues. 

Telecommand is a common term in the space industry referring to command and 

control communications through a wireless command link used to control satellites in 

orbit.  According to the CCSDS report, Telecommand: Summary of Concept and Service, 

a telecommand system conveys control information from an originating source to a 

remotely located physical device or process [7].  In satellite systems, the controlled 

device is primarily a satellite bus, payload, or process aboard a spacecraft.  The term 
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telecommand used in this document refers to communications which initiate, modify, or 

terminate certain functions of a satellite [8].   

Traditional space mission telecommand systems consist of centralized, mission-

specific architecture [7].  These systems have unique components, data formats, and 

procedures for each space mission.  This focus on mission unique technology and 

telecommand architecture is changing.  The most significant of these changes are the 

development and implementation of open standards for spacecraft control.  The primary 

motivation for the implementation of these standards is to reduce costs and satisfy cross 

support activities for satellite systems [5].  With the application of a general open 

telecommanding architecture, greater focus must be placed on satellite command link 

security. 

Traditionally, logical security in satellite systems has not been a primary concern.  

Focus on system development in the space domain has primarily been on safe 

functionality rather than system security from malicious intent.  The predominate reason 

for this is the critical fault intolerant nature of operating in space.  The improper 

configuration of software onboard a satellite can leave a multimillion dollar space system 

useless, thus discouraging security features [9].  Another factor influencing this basic 

functional versus security focus is the threat profile in the space domain. 

In the past, satellite systems were off limits to individuals and many organizations 

due to complexity and cost of entry.  With the reduction of cost and the introduction of 

system standards, satellite system technology is now more widely available than ever [5].  

In an effort to remedy the current Flight Software (FSW) security situation resulting from 

these factors, this work addresses the application of security features for satellite system 



 

5 
 

commanding.  The new features considered in this work utilize the concepts of trust 

management from the distributed information systems domain. 

 

1.2   Preview 

In summary, safety and security in satellite system commanding operations are in 

jeopardy given the increased access to the space domain, lack of space system security 

focus, and an increasing trend in global cyber threats [6,10].  It is proposed that satellite 

system safety and security can be improved with a proven trust management architecture 

which addresses common cyber threats to space assets.  The focus of this research is to 

develop an efficient and effective method of applying interaction trust via a Trust 

Management System (TMS) to satellite system commanding for enhanced mission safety 

and security. 

Chapter II presents a review of related literature that introduces the satellite system 

domain in detail along with security and trust management principles.  Chapter III details 

the proposed TMS for satellite telecommanding incorporating multiple trust mechanisms 

and introduces abuse case methodology for evaluating the system.  Chapter IV presents 

the experiment setup used for testing FSW and the developed TMS with a forgery attack 

abuse case.  Chapter IV also covers results of the TMS testing and performance 

characteristics of the TMS.  Chapter V provides an analysis of the results with 

recommendations for further research in the field. 
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II. Literature Review 

 
2.1   Introduction 

This chapter presents a review of literature, concepts and existing work relevant to the 

development of a trust-based security model for satellite systems.  First,  a review of the 

space domain as it relates to satellite systems is presented, covering the roles, missions, 

operating environment, and components of satellite systems.  Second, literature related to 

satellite system threats is introduced.  Third, security principles and threats which apply 

to satellite and computer systems are reviewed.  Finally, the concept of trust, as it relates 

to distributed information systems and trust related work is presented.  

This thesis focuses on threat detection and mitigation in satellite system 

telecommanding operations through the application of a Trust Management System 

(TMS) to satellite Flight Software (FSW).  Most threats to spacecraft telecommand links 

are a result of  their Radio Frequency (RF) transmissions being broadcast through an 

open medium [5,6].  To understand the threats and risks to satellite telecommanding 

systems an investigation of existing work which classifies threats to satellite systems is 

performed.  To form a response to these threats, concepts of computer and satellite 

security are reviewed.  Principals of trust management in distributed information systems 

and other fields are also examined to support this thesis.  Concepts from relevant trust 

research are utilized to realize the primary goal of this work, to develop and apply a new 

satellite security mechanism utilizing trust management theory.  This effort requires a 

general understanding of space system missions, space environment, and system 
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components.  These principles of satellite systems lay the foundation for common 

satellite operations upon which system security can be evaluated. 

 

2.2   Satellite Systems Role 

Satellite systems influence many aspects of modern society.  From daily banking 

transactions to personal communications to global food production, our society is 

dependent on the existence and operation of satellite systems. 

Not only do many commercial industries rely on the use of satellite resources to 

conduct daily operations, government entities have also grown similarly dependent on 

satellite systems [11,12].  The U.S. DoD currently utilizes many types of satellite systems 

and has contributed to the advancement of satellite systems in general.  Official policies 

of the U.S. government emphasize the critical nature of these systems to the prosperity of 

the nation and call for the protection of these systems [13,12,14]. 

Traditionally, satellite systems operating in the public and private sectors have been 

large-scale and highly proprietary in nature.  With more than 50 years since the launch of 

the first satellite, much has changed in the way of satellite systems and the computer 

components vital to their operation.  Satellite system components are now becoming 

more standard across missions along with the integration of mission operations with 

internet technology.  This changing culture in satellite system development and 

operations will increase efficiency but also provide new security challenges [6].  One 

example of this phenomenon is illustrated by the CubeSat standard and its various 

derivative projects.  This new trend in satellite systems does not only apply to small 

satellites, however applies to all of the mission areas for satellite systems. 
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2.3   Satellite Systems Mission Areas 

The missions of satellite systems can be categorized into four main areas: Remote 

Sensing; Communications; Precision Navigation and Timing; and Science/Exploration 

[15].  One key aspect of satellite systems is that the primary mission will determine in 

which orbit the satellite will operate [11,16,17,15], see Section 2.4.1.  The following 

sections examine the characteristics of each mission area.  

2.3.1   Remote Sensing. 

The primary mission of remote sensing satellite systems is to observe the Earth and 

other objects from orbit.  Satellites in orbit provide a unique observation platform from 

which to view the Earth.  Remote sensing satellites utilize Radio Detection and Ranging 

(RADAR), optical, and other sensors to collect images and measurements. These systems 

can also detect Infrared (IR) and other emanations from Earth. 

Optical observation is used to produce images of the Earth’s surface which can be 

analyzed to provide valuable information.  This information aids military operations and 

intelligence, as well as documentation of urban development, scientific research, and 

predictions of crop yields for global food supply planning [18].  Additionally, IR sensors 

aboard military satellites are used to provide missile launch and nuclear detonation 

detection [19].  One of the earliest benefits of space systems was the prediction and 

analysis of Earth's weather patterns.  Optical and IR sensors are used to observe visible 

weather phenomena as well as collect atmospheric measurements for weather forecasting 

[20].  These satellites are even used to monitor space weather, see Section 2.4.2. 
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2.3.2   Communications. 

Communication satellites revolutionized the way humans communicate.  A satellites 

unique field of view makes it an ideal communications relay platform.  Satellite 

communications (SATCOM) links have been used to provide intercontinental 

communications for major telecommunications providers since the mid 1960s [16]. 

Large corporations use SATCOM to link together many geographically separated 

organizational units into one network in order to facilitate logistics and enhance daily 

operations [11]. SATCOM is also extensively used by military forces to conduct 

operations around the globe. 

2.3.3   Precision Navigation and Timing. 

The United States government pioneered the development of precision navigation and 

timing satellite constellations beginning with the TRANSIT satellite constellation in 1960 

and culminating with the NAVSTAR Global Positioning System (GPS) which became 

operational in 1993 [15].  NAVSTAR GPS satellites, along with ground control and 

monitoring stations, provide accurate three-dimensional locations and timing for use in 

civilian and military operations worldwide.  After the introduction of GPS for 

government use, the tremendous commercial implications for the GPS signal have led to 

its widespread civilian use and eventual dependence. 

Examples of private sector and individual use of GPS include banking, transportation 

and communications.  The banking and global financial markets now rely on GPS timing 

to synchronize transaction systems.  Individuals routinely use GPS signal for navigation 

assistance.  Finally, as the wireless telephone market developed with the freely available 
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timing provided by GPS, these systems are now dependent on this method of time 

synchronization [21]. 

2.3.4   Science/Exploration 

Satellites orbiting with science/exploration missions continue to advance technology 

used in satellite systems and contribute to many diverse fields of science.  Such missions 

have led to advancements in Earth and materials science, as well as astronomy.  These 

science/exploration missions provide immeasurable value to the human understanding 

and way of life through invaluable advancements and discoveries [22]. 

Examples of these space related technologies being transferred to two diverse areas of 

our daily lives are advancements in medical imaging and the development of cordless 

tools.  The medical imaging technology advancement stems from the charged coupled 

devices (CCDs) used aboard the Hubble space telescope which convert light directly into 

digital images.  These devices are now used to image the human body and differentiate 

between benign and cancerous tissues.  Additionally, technology developed to recover 

lunar samples was directly transferred to domestic use as battery powered power tools 

and appliances [23]. 

 

2.4   Space Orbits and Environment 

Operating in space presents many challenges to the success of satellite systems.  In 

order to conduct a successful satellite mission, considerations must be made with regard to 

a satellites orbit, and the space environment.  The space environment consists of extreme 

temperatures and pressure, along with multiple forms of radiation.  Additionally, these 

environmental factors are impacted by the orbit at which a satellite is operating [17]. 
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2.4.1   Orbits. 

A satellite’s primary mission will dictate the orbit in which the satellite will be 

placed.  The orbit placement in turn will determine when and how long a ground station 

has a satellite within field of view, and how much transmission power is required for 

communications between the satellite and ground stations.  Orbit placement also 

influences satellite power considerations, stability, and attitude control options [15].  

There are two satellite orbit shapes: circular and elliptical.  For both orbital shapes, the 

center of the Earth is in the plane of the orbit with an inclination taken between the 

orbital and equatorial plane.  Circular orbits are further subcategorized by altitude: Low 

Earth Orbit (LEO), Medium Earth Orbit (MEO) and geosynchronous orbits [16,15,24]. 

LEO satellites operate with an altitude up to 1500 km and are primarily used for 

remote sensing and science missions, with some communication applications being made 

with advanced cross linking satellite platforms [15].  The communication satellites 

operating in LEO are primarily used to provide global mobile telephone service.  

Advantages and disadvantages for LEO satellites are used to determine the orbits 

suitability for a particular satellite mission.  The advantages of LEO are [17,15]: 

- reduced cost to place payloads in orbit 
- reduced communication transmission power requirements 
- simplified satellite attitude control 
- lower latency for communications 
- higher resolution for remote sensing applications 
 

Some disadvantages for LEO orbits are [17,15]: 
 

-short ground station access periods 
- high satellite velocities complicate communications 
- short orbital lifespan due to increased drag at lower altitudes 
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MEO satellites operate at an altitude of around 20,000 km, which is well outside the 

Earth’s atmosphere.  The increased altitude relative to LEO gives MEO satellites a 

broader view of the Earth, making them more suitable for applications requiring more 

global coverage.  MEO class orbits can be semi-synchronous with the Earth’s rotation 

with a satellite making two revolutions around the Earth in one day.  These orbits are 

most suitable to modern precision navigation and timing applications such as NAVSTAR 

GPS [15]. 

Geosynchronous satellites operate at an altitude of 35,780 km and have the special 

property of orbiting the Earth once every 24 hours [15].  This allows the spacecraft to 

remain in a semi-fixed position relative to a specific ground station.  Geosynchronous 

satellites will have some perturbation in location relative to a fixed spot on Earth, which 

may require ground stations communicating with them to track this slight movement.  

Geostationary Earth Orbit (GEO) is a geosynchronous orbit which has an inclination of 

exactly zero degrees.  GEO satellites will remain over the same fixed spot on Earth with 

proper station keeping [15]. 

GEO and geosynchronous satellites are ideal for communication missions where the 

satellite remains fixed in the sky and can reliably relay communications between two 

ground stations within the satellites field of view.  Each geosynchronous satellite has a 

field of view of approximately one half of the Earth.  Global communications, with 

exception of the high latitudes, are achievable with a three satellite constellation [15]. 

Elliptical orbits have unique properties which can be useful for communication 

missions to high latitude areas.  These orbits fill the gaps in coverage left by GEO 

satellites, which at best reach latitudes of 81 degrees.  One specific type of elliptical orbit 
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which can be used to simulate a stationary satellite in GEO is the Molniya orbit.  These 

elliptical orbits with high eccentricity and an inclination of 63.4 degrees provide long 

dwell times over a location on Earth.  A constellation of three Molniya satellites are 

required to provide continuous service to a single ground location [15]. 

2.4.2   Space Environment. 

The space environment consists of a vacuum with varying levels of cosmic and solar 

radiation.  Satellites in orbit do not have the full protection from radiation provided by the 

Earth's magnetosphere.  This leaves satellites vulnerable to space weather conditions 

which has a detrimental effect on critical systems even when protection mechanisms are 

in place [17]. 

Space weather consists of magnetic fields, charged particles, and radiation.  The 

dominant factor in space weather is solar wind from the sun consisting of charged 

particles and radiation bursts.  The effects of solar winds vary over time, as their strength 

fluctuates and as they impact Earth's magnetic field.  Highly charged particles in the 

space environment, from solar wind, often disrupt electronics aboard satellites [17]. 

The most common occurrence of electronic disruption or failure aboard satellites is 

the Single Event Upset (SEU).  A SEU occurs when an ion or electro-magnetic radiation 

interferes with an electronic circuit in such a way that information stored in the circuit as 

bits are corrupted.  This action often results in a failure of the satellite's onboard 

computer logic.  These errors are generally not fatal for the spacecraft and normal 

operation is typically resumed after resetting the system [25].  Certain orbits and areas in 

space are more prone to these types of events.  One commonly known area in which 
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satellites experience an increased likelihood of a SEU is called the South Atlantic 

Anomaly (SAA). 

The SAA is an area over Brazil and the south Atlantic ocean where space borne 

radiation comes closer to the Earth than any other place.  This area is caused by a dip in 

the Earth's magnetic field allowing cosmic rays and charged particles to reach lower 

altitudes.  Satellites crossing this area are exposed to higher levels of radiation, which 

results in the increased chance of a SEU [26]. 

These unpredictable, disruptive events have an impact on system design.  As a result, 

engineers have designed systems with failsafe defaults and recovery modes which in turn 

increase mission safety.  These actions lead to systems which are more mission safe and 

in some cases increases system complexity. 

Mission safety is a concept in which the satellite system is robust to failure and the 

likelihood of satellite operators losing control due to human error or space weather is 

reduced.  The disadvantage of a sole focus on mission safety is that systems may be more 

vulnerable to malicious actions, resulting in reduced system security.  Though the 

concepts of mission safety and system security appear to be competing design principals, 

a balance between the two must be achieved which serves the overall requirements for 

the mission. 
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2.5   Satellite System Components 

The components of satellite systems are generally similar, however, the mission 

determines which components are found in each system.  Components are organized by 

their location in the system, which is divided into three categories: ground segment, space 

segment, and subscriber segment.  Not all satellite systems require all segments of the 

general satellite system [16]. 

The satellite system can be broken down and described  by functional areas consisting 

of major components.  The exact configuration of these functional areas are influenced by 

and provide support to the system's primary mission.  The satellite system functional 

areas described here are Satellite Hardware, Satellite Software (programmed logic), 

Ground Station Hardware, Ground Station Software (programmed logic), and 

Telecommand Architecture [16,15]. 

2.5.1   Satellite Hardware. 

The orbiting hardware, or satellite, typically contains the following subsystems: 

Telemetry Tracking and Command Subsystem (TT&C), Electrical Power System (EPS), 

Propulsion System, Attitude Determination and Control System (ADACS), and Thermal 

Control System (TCS).  These subsystems constitute the satellite main bus.  The main bus 

is constructed to support the primary payload.  The following subsections will describe 

the functions of the main bus subsystems and the payload integration [16,15]. 

2.5.1.1   Telemetry Tracking and Command (TT&C) Subsystem. 

The TT&C subsystem hardware consists of a flight computer, radio, and antenna for 

communicating with a controlling ground station.  The TT&C subsystem provides 

satellite status data (telemetry) along with functions to command the satellite and control 
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the other subsystems.  The TT&C subsystem is also used to provide a tracking and 

ranging service to the ground station.  Tracking and ranging data is used to accurately 

point high gain antennas towards the satellite and to provide accurate orbit determination 

for the satellite's mission [16,15].   

Commands from ground stations are received by the TT&C subsystem and command 

specific actions are executed.  These commands can be intended for the TT&C subsystem 

itself or for any of the other subsystems.  Additionally, status information from all of the 

satellite subsystems is collected and formatted for transmission as satellite telemetry to 

listening ground stations. 

2.5.1.2   Electrical Power System (EPS). 

The spacecraft's payload and satellite support systems (bus) require power provided 

by the EPS to operate.  The EPS manages power generation, storage, and distribution 

throughout the spacecraft.  These actions are done in conjunction with the logic present in 

the satellite's flight computer.  The power subsystem hardware consists of an EPS 

controller, power source, and batteries [16]. 

The distribution of a spacecraft's power is managed by the EPS controller.  The EPS 

controller continuously monitors and adjusts connections to the power sources and the 

charge/discharge rates of the onboard batteries.  Additionally, the EPS controller switches 

power to each of the spacecraft bus systems and payload as necessary, while reporting 

power status information to the flight computer [27]. 

The primary power source for most satellites is photovoltaic solar cell arrays.  The 

power output of a solar array is proportional to the angle of incidence of solar rays on the 
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panel.  If the panel is misaligned with the Sun’s radiation such that the angle of incidence 

is zero, then no power will be produced [16]. 

Most satellites will periodically encounter eclipse periods in which no direct sunlight 

reaches the spacecraft.  The frequency and duration of these eclipse periods are 

determined by the orbit of the satellite.  During these periods, the orbiting spacecraft must 

rely on a power source other than solar.  Battery systems fill the gaps in power supply for 

satellites during eclipse periods [15]. 

Satellite commands which orient a satellites solar cell arrays or configure the EPS for 

power distribution are critical to the successful operation of a satellite.  Any malicious or 

otherwise improper processing of commands which modify the satellites power 

configuration has the potential to leave the satellite crippled or otherwise inoperative.  

This is one example of where specific satellite telecommands present a potential 

vulnerability to satellite systems. 

2.5.1.3   Propulsion subsystem. 

Most long term satellites require propulsion systems to make changes to their 

trajectory after being placed into orbit.  These trajectory changes may be significant or 

minor.  Significant changes in orbit are generally made during the initial phase of a 

satellites operation to reach the desired mission orbit.  Once the mission orbit is 

established, an onboard propulsion system is needed to maintain the orbit [15]. 

2.5.1.4   Attitude Determination and Control subsystem (ADACS). 

The ADACS in a spacecraft is used to maintain sensor and antenna orientation for 

pointing.  The ADACS is composed of control logic, sensors, and mechanical systems for 

adjusting the attitude of the satellite.  The control logic for the ADACS is maintained by 
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the spacecraft flight computer or by a secondary microcontroller.  The ADACS can be 

dynamically adjusted via the satellite command link.  There are many sensors and 

techniques for satellite attitude determination, including star tracking, sun tracking, IR 

Earth sensing, and RF tracking [15]. 

With accurate spacecraft attitude information, the flight computer can make 

adjustments in position with the attitude control systems.  These systems are used to 

accurately point sensors at a desired location or place the spacecraft in a desired 

orientation [15].  Any failure or malicious activity disrupting the operation of these 

systems could result in total loss of the satellite. 

2.5.1.5   Thermal Control System (TCS). 

Space is extreme with respect to temperature.  External satellite components can 

experience temperatures ranging from -200 to +150 degrees Celsius [15].  These 

temperature extremes drive the development of spacecraft thermal control systems.  Two 

methods of thermal control are passive design techniques and active thermal control 

systems.  Passive design techniques rely on material conduction and radiation properties.  

Active thermal control systems include electric heaters and radiators which must be 

operated as conditions change on the satellite.  A satellite's thermal design is critical to its 

successful operation.  Thermal systems are monitored by telemetry sent through the 

command link.  Adjustments to active components of the thermal control system can be 

made via specific thermal control commands [15]. 

2.5.1.6   Payload. 

The main system payload will correspond to the satellite's mission.  The payload can 

consist of sensors, communication devices, or scientific equipment.  The deployment and 
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control of the payload is facilitated by the flight computer and command system with 

support from the other bus systems for power, pointing, and thermal management [15]. 

2.5.2   Satellite Flight Software (FSW). 

The satellite FSW running on the main flight computer is a critical component of the 

satellite and manages all aspects of the satellite hardware (TT&C, EPS, Propulsion, 

ADACS, TCS, Payload) [28].  Portions of the FSW must be specifically tailored to each 

function of the spacecraft bus.  Some of the spacecraft management can be automated to 

handle faults as they occur and alleviate the need for intervention by the commanding 

ground station. 

2.5.3   Ground Station Hardware. 

Satellite systems are managed by ground stations which send control information to 

the orbiting satellite in the form of discrete commands.  These control messages are 

commands, which specifically address each of the satellite subsystems previously 

mentioned (TT&C, EPS, Propulsion, ADACS, TCS, Payload).  Additionally, the ground 

station receives satellite telemetry of the satellite's status [16]. 

A typical satellite ground station has three main components: RF Interface, Signal 

Processing, Mission Execution.  The RF Interface is composed of the antenna, low noise 

amplifier, power amplifier, signal down converter and signal up converter.  The Signal 

Processing component consists of a transceiver, Terminal Node Controller (TNC), and 

modem.  The mission execution segment typically consists of command terminals 

operating ground control software and integrates the mission specific processing 

components with the other ground station components.  Satellite systems may utilize 

multiple ground stations for redundancy purposes [16]. 
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2.5.4   Ground Control Software. 

Ground control software facilitates the commanding of satellites within a satellite 

system.  The software runs on computers at the ground station or on remote systems 

which connect via networks to the ground station.  The function of ground control 

software is to transmit commands to the satellite, receive and interpret telemetry data 

passed back from the satellite, and pass updates to the satellite software [16]. 

The design and implementation of ground control software is driven by mission 

requirements.  The architecture of ground control software can be divided into two 

sections: common ground control components and mission unique components.  The 

common ground control components are not mission specific and can be used with 

multiple satellite systems.  An example of software which has been developed to serve 

the function of common ground control components is the Common Ground Architecture 

(CGA) command software.  CGA is ground control software with a large percentage of 

the architecture consisting of reusable ground control code.  This modular design allows 

CGA to support multiple satellite missions with the same core components and mission 

specific applications.  Each satellite system CGA supports has specially designed mission 

unique components [29]. 

2.5.5   Telecommanding Architecture. 

Satellite system telecommanding architecture will differ by implementation, however 

some key concepts are presented as features contributing to the safety and security of 

satellite commanding in general.  Additionally, some examples of satellite 

telecommanding architecture are covered to illustrate the concept and highlight areas 

where trust management concepts may be applied. 



 

21 
 

The telecommanding architecture and implementation play a crucial role in the safety 

and security of a satellite system due to the open nature of communications between 

ground stations and satellites.  Critical vulnerabilities in the telecommanding architecture 

implementation can allow events, whether malicious, accidental, or environmental, to 

disrupt or destroy a satellite [6].  The following features have been seen in satellite 

telecommanding architectures and are similar to concepts found in distributed 

information systems: 

x Satellite addressing is implemented in a telecommanding architecture to direct 

commands to a specific satellite or decoder.  This feature affords some 

protection from commands being erroneously processed by the wrong satellite 

or satellite subsystem [15]. 

x Command register verification confirms commands to be processed aboard a 

satellite by transmitting the command queue to the ground station for 

acknowledgment before execution [15]. 

x Encryption is used to provide the security service of confidentiality to the 

telecommanding architecture.  It can be implemented in many levels of the 

architecture resulting in varying impacts on system performance, complexity, 

reliability, and security [5,30]. 

x Command counters in the telecommanding architecture provide an element of 

security and safety to the system.  The command counter assigns a unique 

number to each command being transmitted to the satellite.  Command 

counters are  primarily implemented to ensure commands are executed at most 

once and in the proper order.  If commands are processed out of order or in 
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duplicate, the system could become unstable resulting in mission degradation 

or loss of the satellite [15]. 

x Authenticated commands in the telecommand architecture is implemented by 

checking the command counter or through more complex cryptographic 

mechanisms [15].  The use of a command counter for command authentication 

provides command execution safety, where cryptographic user authentication 

enables system security. 

x The use of time stamps in telecommanding architecture involves assigning a 

time stamp to each telecommand message.  The time stamp is used by the 

satellite to verify the sequence of commands being received.  Time stamps 

feature is also useful in detecting the replay of a command [15]. 

The following are examples of how the telecommand architecture can be 

implemented in a satellite system: 

The command execution of a satellite as described by Patton [15] is typically a two-

step process.  First, the satellite operator selects a command which is formatted by the 

ground control software and equipment for transmission to the satellite.  This command 

formatting appends a preamble to the transmitted command.  The preamble contains an 

address key which identifies the particular satellite for which the command is intended.  

This specific address key provides protection against stray signals being received and 

executed by the satellites TT&C subsystem.  Once the TT&C subsystem receives a 

command from the ground station with the proper address, the contents of the command 

register (current command to execute) are transmitted to the ground station for 

verification.  If the command is successfully validated by the ground station, the 
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transmission is acknowledged by transmission back to the satellite, at which time the 

command is executed.  It should be noted that the commanding procedures for satellite 

systems can vary greatly between systems of differing size, complexity, and purpose 

[15]. 

The command execution sequence for the satellite system used as a model in this 

research is a derivative of CubeSat FSW and concept of operations.  In this model, 

commands are formatted at the ground station with the ground control software CGA.  

CGA interprets human readable commands and builds a data stream which is then 

transmitted to the satellite.  The data stream transmitted to the satellite contains ground 

station and space station ID numbers. These are used to confirm that the command is 

originating from a valid ground station ID and is directed to the proper satellite interface.  

The command data stream also contains a message protocol and command identifier 

which are used to determine the satellites response to the command.  As a safety feature, 

a command authentication count is included in the message header.  The command 

authentication count is used in conjunction with most commands and verifies the satellite 

and ground station is in sync during the commanding process.  Command arguments 

(parameters) are marshaled after the authentication count.  CGA computes a checksum 

over the command header and arguments, and appends it to the end of the command data 

stream.  The checksum ensures data integrity during the command transmission [29,31]. 

 

2.6   Space System Threats and Security 

This section describes space system threats and corresponding security mechanisms.  

However, this treatment of space system threats is not exhaustive, but is provided to serve 
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as a broad overview and background for the development of scenarios to aide in the 

testing of new security features for satellite telecommanding.  Information regarding 

possible threats to space missions is necessary for mission planners to better understand 

the security mechanisms and policies required to mitigate them.  All systems are subject 

to threats which may result in the loss of data or catastrophic damage to the system [6]. 

A threat is a potential violation of security.  The occurrence of a violation is not 

necessary for a threat to be present.  An attack refers to activity related to the violation of 

security.  In order for a successful attack to take place, the system must be vulnerable to 

the threat in action.  The existence of a possible violation of security requires actions to 

be taken which guard against threatening activity and mitigate system vulnerabilities 

[32]. 

The following sub-sections serve as an overview of the most common threats to space 

missions.  This information highlights the findings presented in the CCSDS report 

Security Threats Against Space Missions [6]. 

2.6.1   Data Corruption. 

Data corruption occurs as the result of a fault in either the ground or space segment of 

a satellite system or by the intentional or unintentional action of an individual.  This 

corruption event may take place in the hardware or software of the satellite system's 

components.  Common faults include hardware failures or a SEU in the spacecraft.  The 

effects of data corruption can range from an unnoticed anomaly in telemetry data to 

catastrophic loss of the spacecraft due to the processing of a corrupt command [6]. 
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2.6.2   Interception Of Data. 

Data communications with spacecraft are achieved via RF signals which are subject 

to interception.  The extent to which this threat applies to a space mission is dependent 

upon the orbit in which the space segment of the system is operating. LEO missions are 

less susceptible due to the short access period and small beam width of the downlink 

signal.  Conversely, missions operating in high orbits such as GEO have large downlink 

beams and long access periods and therefore increased susceptibility to interception.  

Transmissions from ground stations are typically less susceptible to interception due to 

the highly directional antennas and small beam widths used to communicate with 

satellites.  Signals may be intercepted by listening ground stations and by signal 

intelligence gathering aircraft or spacecraft [6].  

2.6.3   Jamming. 

Persistent RF interference is characterized as jamming.  The RF signals used for 

communications with spacecraft are susceptible to interference.  Interfering signals can 

be intentional or unintentional and can result in link loss or denial of communications 

with the satellite.  This interference is accomplished by transmitting a competing signal 

on the same frequency the satellite is operating.  Interference can originate from a ground 

station or from a third party satellite orbiting within line of site of the mission ground and 

primary satellite [6]. 

2.6.4   Masquerade. 

Entities in a satellite system must interact with others remotely.  These interactions 

may require identification prior to each requested action.  If an entity can lie about its 

identity, or identification is not accurately validated, entities can illegitimately pose as 
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one another in the system.  If an entity in the system poses as any other entity it is said to 

be masquerading.  The masquerading entity can violate security policies by taking 

unauthorized actions [6]. 

2.6.5   Replay. 

There exists the possibility of a re-transmission of commands to the space segment of 

a satellite system.  This replay of a specific command can occur due to a commanding 

protocol or by a malicious third party attempting to gain access or cause damage to a 

satellite.  A ground station protocol resulting in the replay of a command may be the 

result of a previous command not properly acknowledged by the satellite, thereby 

prompting the re-transmission of the assumed lost command.  The effects of a satellite 

erroneously processing duplicate commands can range from none to catastrophic loss of 

the satellite due to a duplicate orbit maneuver or breach of satellite security [6]. 

2.6.6   Software Threats. 

Computer software plays a crucial role in the operation of a satellite system in both 

the space and ground segments.  This software is susceptible to logic errors, data input 

handling errors, among other common programming mistakes.  Additionally, operators 

may introduce improper configurations, resulting in security vulnerabilities or system 

instability [6]. 

2.6.7   Unauthorized Access. 

Policies set forth in the operation of a space mission determine which entities should 

have access to specific systems and functions.  Entities accessing systems or functions 

which violate these policies constitute unauthorized access in the system [6].  Entities 

may gain unauthorized access to the satellite system through a combination of other 
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threats to the system.  The abuse case presented in Section 4.4 is an example of 

unauthorized satellite access through a forgery attack.  This attack also incorporates 

elements of the other threats discussed such as data replay and masquerading. 

 

2.7   Trust 

The issue of trust has become a significant concern within distributed information 

system architectures such as web services, cooperative computing, and mobile computing 

[33,34].  Trust issues are not only present in business, social and operational functions, 

but also in technologies used to facilitate these activities.  Additionally, due to the tight 

coupling between a systems operational requirements and the technology used in 

implementation, trust relationships from the operational architecture must be modeled in 

the distributed information system.  Specific distributed information systems must 

address all of the trust issues present in the operational scenario and those that arise in the 

technical implementation [33]. 

One example of modeling operational trust relationships in a distributed system 

implementation can be made for satellite system telecommanding.  The operational 

function of telecommanding inherently involves a trust relationship between the satellite 

in orbit and a commanding ground station.  The satellite in orbit must process 

telecommands from the ground station in a manner which preserves the functionality and 

security of the satellite.  This trust relationship in the operational function of 

telecommanding must be modeled in the satellites implementation in order to satisfy the 

operational trust relationship. 
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2.7.1   Trust Management System Examples. 

Research covering trust management in distributed computing has developed services 

and applications which accommodate trust and its related elements.  Some elements 

which have been addressed thoroughly are reputation, and security credentials.  Examples 

of reputation-based systems include XREP, NICE, and P-Grid.  These systems aggregate 

the perception of entities in the system to calculate a local reputation value for a specific 

entity.  This reputation value is then used in system policy to manage interactions with 

entities in the system.  Credential-based systems such as X.509, PGP, PolicyMaker, and 

KeyNote use credentials to address the trust management problem.  The primary 

evidence for trust in these credential-based systems is the verification of entity provided 

credentials.  These systems enable policies which restrict access to services and resources 

to verified entities. [35] 

While both reputation and credential-based trust management approaches address the 

issue of trust in distributed information systems, neither provides a general description of 

a trust management system, nor incorporate all of the desirable features found in current 

trust management research.  A comprehensive description of a general trust management 

system is found in the works of Weiliang Zhao, Vijay Varadharajan, and George Brian 

[36,37,38,35].  These papers develop a general methodology for modeling trust 

relationships and provide a unified framework for trust management.  The unified 

framework developed incorporates aspects of trust management from a variety of related 

research [35]. 
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Figure 1 Trust Engine Hierarchy 
 

The basic TMS presented by Zhao et al., referred to as TrustEngine, manages trust 

through the hierarchy depicted in Figure 1.  This architecture incorporates all of the trust 

related components which may be separated from applications and handles trust requests 

similar to database queries.  Input is made to the system as a set containing trustor, 

trustee, conditions, and trustee properties.  The system will return a value depending on 

the input received.  An example response is the result of a trust relationship  

evaluation [35]. 

TrustEngine consists of several components which serve trust functions or store trust 

data for the system.  The TrustDatabase component stores trust relationship information 

and trust parameters.  This is a persistent storage mechanism for extended storage and 

retrieval of trust related information.  TrustControl provides overall control of 

TrustEngine at runtime by linking applications to the functional packages in TrustEngine.  

LocatingTrust performs a direct query of existing trust information from the 

TrustDatabase component.   
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The EvaluatingTrust component evaluates the current status of a trust relationship.  

This evaluation consists of checking whether the conditions of a trust relationship are 

satisfied or not.  These conditions may be indicators of malicious behavior or 

environmental factors, and can be computed by multiple trust mechanisms.  Existing 

mechanisms for checking trust conditions such as credential, reputation, or environment 

evaluation may be incorporated into the EvaluatuingTrust component.  

ConsumingTrust handles the EvaluatingTrust component output.  This is necessary as 

not all trust evaluations will be consumed immediately.  Additionally, the evaluation 

output may require specific formatting for use by the requesting application which is 

handled by the ConsumingTrust component.  

2.7.2   Trust Management System Design Principles. 

The following is a discussion of trust management concepts as it relates to distributed 

information systems put in the context of satellite telecommanding.  Trust has become an 

intrinsic part of other distributed information technology areas such as e-Business [33], 

and critical infrastructure protection [39].  The nature of satellite telecommanding studied 

here closely resembles the definition of a distributed information system utilizing the 

client-server model [40].  With this relationship, models for trust management and design 

principles in distributed information systems will be applied to telecommanding (message 

passing) for satellite systems. 

Weiliang Zhao and Vijay Varadharajan presented a unified trust management 

framework which introduced general characteristics for consideration in TMS 

development [33].  These TMS characteristics as they relate to satellite systems are: 
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x Multiple Trust Mechanisms: 

Trust can be established between entities by various methods.  These methods are 

modeled in the TMS with specific trust mechanisms.  Examples of trust mechanisms 

are credential verification trust, reputation-based trust, and trust derived from local 

data.  TMSs can incorporate multiple trust mechanisms in concert for a single trust 

decision regarding a complex trust relationship [33].  Without multiple trust 

mechanisms, a TMS is limited to modeling simple relationships.  These simple 

relationships are commonly handled by an authentication protocol or other security 

mechanism. 

x Open Nature: 

Satellite telecommand systems are open to all wireless transmissions, allowing 

everyone to access the satellite's physical channel remotely.  As the system is open, 

trust relationships must be defined for known and unknown entities accessing the 

system.  The open nature of wireless telecommand links makes trust management a 

crucial part of the entire system [33]. 

x Multiple Domains: 

Operations involving satellite telecommanding often span several networks with 

organizational, physical, and logical boundaries.  The interconnection of these 

networks can be hierarchical or parallel.  For example, a satellite control network is 

used to command a single satellite.  The satellite control network consists of 

command terminals which are remotely located from the uplink facility transmitting 

signals to the satellite.  The remote command terminals access the uplink facility 

through a terrestrial communications network.  In this case, there is a hierarchical 
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relationship between the remote command terminal and uplink facility sending 

signals to the satellite.  There is a parallel relationship between multiple ground 

transmission sites.  Trust relationships can be complex in the entire telecommanding 

system.  Issues can arise in cross-boundary operations, management, and 

administration [33]. 

x Real-Time Trust: 

For most distributed information systems, real time evaluations are required for 

trust relationships. This is also true for satellite telecommanding systems.  The 

dynamic trust relationships in satellite telecommanding require a real time evaluation 

of trust in any TMS being applied.  In order to facilitate this real time trust evaluation, 

evidence used to calculate trust must be collected and made immediately available for 

a trust determination.  An analysis of the relevant time frame for this trust evaluation 

must be conducted to ensure a "current" trust result is being used when necessary [33]. 

x Scalability: 

Each distributed system has a scale at which it operates.  A TMS implementation 

must be able to scale to meet the maximum requirements of the distributed system.  

The scale involved with traditional satellite commanding architectures is relatively 

small compared to web-based distributed systems [33]. 

x Complexity: 

Complexity in modern distributed information systems is increased by 

complicated business functions and advanced technology employed in the 

architecture of such systems.  TMSs introduced to or developed in these systems must 

be capable of matching and modeling the complex trust relationships involved [33]. 
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The above items describe key areas which should be considered for trust management 

in distributed information systems.  These characteristics are evaluated in this work for 

the development and implementation of a TMS for satellite telecommanding. 
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III. Methodology 

 
3.1   Methodology Overview 

This thesis addresses threats to the security of satellite command links through the 

development of a multi-mechanism Trust Management System (TMS) for satellite Flight 

Software (FSW).  The previous chapter discusses the basic domain of satellite systems, 

general trust management, and computer security concepts.  This chapter covers the 

development of a TMS incorporating interaction, policy and credential-based trust.  

Additionally, a satellite commanding abuse case is formulated to test the TMS.  The 

developed TMS and formulated abuse case will then be applied to a FSW model where 

comparison is made between a FSW operating with and without the TMS.  This chapter 

presents the motivation for, and explanation of key design features of the Consolidated 

Trust Management System (CTMS), a multi-mechanism TMS for application in satellite 

FSW.  The definitions and assumptions associated with the CTMS, FSW model, and 

abuse case are also presented. 

 

3.2   Problem Definition 

3.2.1   Goals and Hypothesis. 

The work presented by Zhao and Varadharajan [33] detailing a unified trust 

management framework provides a high-level architecture, considerations, and theory 

from which a TMS is developed.  Additionally, the documentation related to the KeyNote 

TMS [41] [42] provides an excellent example of implementing a TMS, although it is 
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limited to credential and policy evaluation.  With the framework provided by Zhao and 

Varadharajan and the implementation lessons from the KeyNote documentation, a new 

TMS is developed to handle the complex trust requirements in satellite FSW. 

This new TMS will be referred to as the Consolidated Trust Management System 

(CTMS), and incorporates multiple trust mechanisms and policies.  It is hypothesized that 

the CTMS will enhance security in FSW telecommanding by allowing the detection of 

anomalous behavior from the FSW's perspective.  The goal is to determine if the CTMS 

running within the FSW can detect the activities of a malicious ground station and 

respond with a pre-programmed policy and trust thresholds. 

3.2.2   Approach. 

To design an effective TMS for FSW telecommanding that will detect anomalous 

behavior, the multiple trust mechanism TMS framework proposed by Zhao and 

Varadharajan will be implemented with an architecture similar to that of the KeyNote 

TMS [33,41,42].  Additionally, the method for calculation of an Interaction Trust  

(I-Trust) value as proposed by Bin Yu and Munindar Singh will be adapted to provide a 

quantitative measure of I-Trust for entities in the system [43].  The I-Trust algorithm 

from Yu and Singh is extended to provide a more descriptive measure of I-Trust by 

basing the trust value calculation on a specific marker associated with system 

interactions, see Section 3.3.3.1.  This I-Trust value is used as a component in the final 

trust evaluation of an entity, see Section 3.3.4. The I-Trust calculation and management 

of I-Trust values will exist as a trust mechanism within the CTMS, see Section 3.3.2. 

An I-Trust marker is a class of evidence in the system which is collected by observing 

interactions with an entity.  One example of a trust marker in FSW is the command 
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authentication counter check result.  Each command contains a value for the command 

counter which is compared with the satellites onboard value upon receipt.  This check is 

the authentication counter trust marker and is modified based upon cooperation or 

defection interactions with the system.  Additional markers can be associated with a 

single transaction, such as message size, or argument validation checks. 

With the CTMS developed, a satellite commanding abuse case is formulated as a 

basis to generate policies and identify interaction markers for tracking within the system.  

The abuse case is a specific instance of a threat action or attack scenario applied to the 

satellite FSW system.  An analysis of space mission threats is combined with a working 

FSW model to formulate specific abuse case for the system, see Section 3.4 and 4.4. 

With an abuse case and CTMS complete, a test setup is established which runs FSW 

in an emulated environment.  The test setup includes original ground station software for 

normal commanding operations and custom ground station software to apply the abuse 

case.  From the test setup, comparisons are made between FSW with trust management 

principles applied and basic FSW with no trust management.  Additionally, variations on 

policy options within the CTMS are compared to highlight their effectiveness and impact 

on the system. 

 

3.3   Trust Management System 

3.3.1    Services. 

The CTMS serves as an engine for tracking and evaluating complex trust 

relationships in satellite FSW.  The functionality of the CTMS is used as a security 

mechanism to support the three computer security services of confidentiality, integrity, 
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and availability [32].  With a given system security policy, the CTMS acting as a security 

mechanism can be implemented to prevent, detect, or recover from attacks waged on the 

system [32].  This allows CMTS to monitor and support the three computer security 

services. 

The CTMS architecture supports the confidentiality of a system by monitoring 

interactions secured through cryptographic means for activity which would be indicative 

of a key compromise.  An example of such activity would be repetitive failures to 

successfully validate the command authentication counter.  This activity could simply be 

logged for detection, or further compromise could be prevented by discontinuing use of 

the potentially compromised key.  Furthermore, the CTMS architecture can be used to 

initiate telemetry notification of the event using a secure backup key. 

System integrity is supported by monitoring interactions with ground stations and 

components aboard the spacecraft for potentially corrupt data.  The corrupt data could be 

improperly formatted messages or erroneous telemetry values. The CTMS architecture 

could  be used to detect or prevent this activity.  Additionally, recovery features can be 

initiated through the CTMS.  Logging the activity being monitored provides detection 

services.  Further corruption can be prevented by discontinuing use of the corrupted data.  

Additionally, system integrity could be recovered by rebuilding corrupt data from a valid 

checksum. 

CTMS functions can also secure satellite system availability by maintaining trust 

relationships between the FSW and components in the untrusted environment.  If these 

trust relationships are degraded, the FSW can fall back to a safe state, thus preserving 

system availability for recovery operations.  This functionality, provided by the trust 
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management system, stems from and can be extended through the addition of trust 

mechanisms within the CTMS architecture. 

3.3.2   Architecture. 

The CTMS architecture and implementation are primarily derived from the KeyNote 

TMS documentation [44], while the concept of multiple trust mechanisms and additional 

trust management theory stems from Zhao and Varadharajan's trust management 

framework [33].  The development of the CTMS architecture considers the major 

characteristics for trust management systems from Zhao and Varadharajan [33] as they 

relate to the trust issues for satellite FSW. 

The first characteristic included in CTMS is multiple trust mechanisms.  The trust 

mechanisms incorporated initially into the CTMS architecture for this work are the  

I-Trust and credential trust mechanisms.  Additionally, the CTMS architecture is flexible 

with the provision for additional trust mechanisms to be added as needed. 

The second characteristic considered for the CTMS is to address the open nature of 

telecommanding in satellite systems.  Illegitimate ground stations can broadcast signals 

or commands to an orbiting satellite.  This open nature influences the development of a 

TMS architecture for satellite FSW and illustrates the need for TMS monitoring of open 

interactions. 

Authentication mechanisms within the system can be used to filter known from 

unknown user communications, but only after some processing of the transmission is 

performed.  Some FSW systems may not include authentication mechanisms [31].  The 

CTMS addresses unauthenticated communications with a trust pool for unregistered users 

and handles commands attributed to these entities as anonymous.  Without a mechanism 
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for authenticating users, to isolate them from the anonymous trust pool, policies cannot 

be implemented which discriminate between entities.  This issue is addressed with the 

credential mechanism in the CTMS architecture. 

The third major characteristic of the CTMS is the availability of real-time trust 

evaluations.  Trust relationships in FSW are continuously changing.  An example of the 

dynamic trust relationships in satellite systems is demonstrated with the satellite 

command link.  Messages received through the command link are validated based upon 

system parameters resulting in trust evidence from the interaction.  This evidence can 

indicate a potentially legitimate (cooperation) or malicious (defection) interaction with an 

entity.  The resulting trust relationship must reflect an entity's cooperation or defection 

behavior. 

The CTMS architecture provides the capability to dynamically evaluate interactions 

based upon markers in the system.  These markers are specific characteristics of the 

interaction, such as a valid command authentication count.  The I-Trust value for an 

entity is computed in real-time during interactions and is immediately available as TMS 

data.  The policy evaluation function then uses this TMS data to compute entity trust 

relationships and return a policy compliance status. 

The fourth trust management characteristic considered is that of scalability.  Within 

satellite FSW, the TMS scale is limited by the resources onboard the satellite and the 

number of external entities involved in operations.  The CTMS architecture can scale to 

accommodate varying types and numbers of entities paired with multiple trust 

mechanisms and policies.  For example, all ground stations expected to communicate 

with the satellite can be added to the credential and I-Trust mechanisms.  Trust data can 
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then be computed individually for each ground station with proper authentication.  

Additionally, satellite local entities (onboard components) can each be added as members 

in CTMS by establishing an authentication procedure and tracking an I-Trust value for 

each identifiable component of interactions with them. 

Lastly, the complexity of satellite systems is considered in the CTMS architecture.  

The complexity inherent in satellite systems through the incorporation of multiple 

advanced technologies influences trust relationships.  As the satellite FSW integrates all 

spacecraft functions it serves as a mission critical subsystem and hub for processing and 

evaluating the trust relationships in the spacecraft.  The complexities found in satellite 

systems trust relationships, embodied in the FSW, can be modeled with CTMS 

components due to its modular design. 

From the KeyNote TMS implementation, all TMS functions are contained within the 

KeyNote Interpreter.  This consolidation of trust management functions allows the TMS 

to be implemented with minimal complication to the overall software system.  Similarly, 

the CTMS functions are implemented outside of the FSW application code.  Trust 

management operations are accessed with simple function calls to the CTMS.  As 

requests arrive to applications within the FSW, these applications will make updates to 

trust mechanisms as necessary to maintain trust evidence in the system.  Before 

applications process potentially hazardous external requests, a trust determination is 

requested from the CTMS based upon a selected policy. 
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All of the considerations for design and implementation details as discussed can be 

seen in the general CTMS architecture Figure 2.  The general CTMS architecture shows 

the integration of  trust management modules with the satellite FSW.  Additionally, 

interactions between the entities and components in the system are shown. 

The primary function of the CTMS is to provide policy evaluations based upon trust 

evidence within the FSW .  The components which provide this capability are the 

Interaction Trust Mechanism, Credential Trust Mechanism, Policy Evaluation Function, 

and CTMS Application Programming Interface (API). 

 

 
Figure 2 General CTMS Architecture 

 
 
 
 
 
 

Telecommand

Ground�Station

Command�
Handler

Application

(Untrusted�Environment)

Remote�
(Trusted�Environment)�Local�

Applications

Credential�
Trust�

Mechanism

Policy�
Evaluation

Interaction�
Trust�

Mechanism

*Additional�
Trust�

Mechanism�

(Untrusted�Environment)

Local�

Telemetry

Command

CTMS�
Data

*�Additional�trust�mechanisms�may�be�added

CTMS

FSW�
Mission

Application

Satellite�
Component



 

42 
 

3.3.3   Trust Mechanisms. 

The CTMS architecture is flexible and can employ many trust mechanisms.  The 

incorporation of additional trust mechanisms to the CTMS allows more complex trust 

relationships to be evaluated by system policies.  Much like the I-Trust mechanism 

monitors the behavior of entities in the system based upon interaction markers; additional 

trust mechanisms can be used to determine how entities should be trusted in the system.  

One example is an environmental trust mechanism.  Environmental parameters can be 

evaluated against a standard in real-time with the results being evaluated by system 

policy.  Policy defines which entities should be trusted in the system and what actions 

should be taken considering trust evidence in the system. 

3.3.3.1   Interaction Trust Mechanism. 

The I-Trust mechanism consists of functions which calculate and maintain I-Trust 

values for entities communicating with the FSW.  Each entity being tracked by CTMS 

can have multiple trust markers associated with it.  A separate I-Trust value is calculated 

for each marker associated with an entity.  These I-Trust values are later used to make 

policy determinations in the system. 

I-Trust markers are defined as key indicators in the system either inherent to the FSW 

or specifically added to characterize entity interactions.  As previously indicated, an 

example I-Trust marker is the command authentication count field in a command 

message.  If a message authentication count field does not correspond to the current value 

held in the satellites state, it is considered invalid and indicates the receipt of a potentially 

malicious command.  Other examples of inherent I-Trust markers include command 

arguments, command time stamps, and the overall command format. 
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An example of an I-Trust marker added to the system specifically for the purpose of 

trust calculation is a consecutive command failure counter.  This counter would be 

checked against a maximum threshold and an I-Trust value would be calculated based 

upon this marker.  System policies can then make references to the I-Trust value 

computed based upon the consecutive command failure marker.  An example policy 

using this marker is to generate an alert log entry with the date and time of the failed 

attempts.  This log would be reviewed by satellite controllers for further investigation. 

The I-Trust value calculation algorithm used in the I-Trust mechanism is largely 

based upon the work of Yu and Singh in the field of reputation management in electronic 

communities (social interaction) [43].  The I-Trust value presented here is applied to the 

communications in FSW and calculates an I-Trust value based upon a series of 

interactions.  The resulting trust value is then compared with a policy limit on trust 

regarding the monitored marker (this limit is set for each marker in a trust policy).  The 

result of an I-Trust value check is a trust rating for the marker, which contributes to the 

entity's overall trust rating. This marker trust rating is considered in an active system 

policy which determines how the system will react to low trust interactions.  

To achieve the previously described trust-based policy enforcement, an I-Trust value 

is defined. 

DEFINITION 1: jxT is the trust value assigned by the I-Trust mechanism to entity j 

for interaction marker x.  It is required that -1 < jxT < 1 and jxT  is initialized to zero. 

 
The I-Trust mechanism calculates a trust value for entity j based upon its observation 

of interactions involving entity j affecting marker x.  Cooperation is an instance of system 

interaction in which the trust marker in question is positively affected; meaning the 
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marker indicates legitimate activity.  A cooperation interaction by entity j results in a net 

increase of the trust value with the factor Į, while defection reduces the trust value with 

the factor ȕ.  The positive and negative associations for Į and ȕ require Į � 0 and ȕ � 0.  

The specific magnitudes of Į and ȕ are determined by the nature of the interactions 

taking place which modify the trust marker.  Typically, trust relationships are such that 

trust is hard to gain and easy to lose.  This results in the relationship |Į| < |ȕ|.  The values 

of Į and ȕ can be either static or dynamic depending on the nature of the environment to 

which the trust system is being applied [43].  Further detail regarding the selection of 

suitable Į and ȕ values for the command authentication count I-Trust marker is presented 

in Chapter IV. 

DEFINITION 2: After an interaction, the resultant trust value '
jxT  is calculated by 

the algorithm presented in Table 1 which considers the previous trust value jxT . 

 
Table 1 Simple Interaction Trust Algorithm [43] 
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Table 1 presents the algorithm for computing interaction trust, which will be referred 

to as the simple I-Trust algorithm.  Following the work of Abari and White, the simple 

interaction trust algorithm was tested against a confidence attack [45].  This initial testing 

was performed to gain an understanding of the simple interaction trust algorithm and to 

characterize it's performance under a specific attack scenario. 

A confidence attack, or con man attack is a sequence of interactions where an entity 

conducts a series of consecutive cooperation interactions to elevate an associated trust 

rating in the system.  These cooperation interactions are followed by a single defection 

interaction, which would result in a benefit to the con man (malicious) entity.  This 

defection interaction also lowers the system trust value for the con man.  The attackers 

intended result of this activity is the systems continued processing of defection 

interactions resulting in a net benefit to the attacker. 

An initial analysis of the simple trust value calculation was performed by simulating a 

number of cooperation and defection interactions with entity j.  These interaction 

sequences were based upon the concept of a con man attack where entity j interacts 

cooperatively Ĭ times before a single defection.  This Simple Con man Attack (SCA(Ĭ)) 

pattern was repeated for 250 individual interactions with a graph of the calculated trust 

values shown in Figure 3 [45]. 
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Figure 3 Simple Trust Value Graph During Confidence Attack 
 
Figure 3 displays a graph of calculated I-Trust values throughout four different con 

man attack patterns.  The interaction trust values for each attack pattern begin at the 

initialized value of zero.  The interaction trust values for each pattern increase with the 

initial cooperation interactions and subsequently drop at the first defection interaction.  

For SCA(5) the interaction trust value reaches 0.23 before the first defection interaction, 

which results in an interaction trust value of -0.35.  With SCA(20), 20 cooperation 

interactions are calculated before the initial defection interaction is processed.  The 

interaction trust value for SCA(20) before the initial defection interaction is 0.64 and is 

0.28 after.  Figure 3 shows the simple interaction trust value can converge to a high value 

with extended intervals between defection interactions [45]. 
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This characteristic of the simple interaction trust algorithm to maintain a steady 

positive trust value with a known number of defection interactions is important to 

modeling certain trust relationships.  In particular, this method is used to model trust 

relationships between a satellite and ground stations based upon the command 

authentication count marker.  This is due to the nature of satellite telecommanding where 

legitimate ground stations may have a number of defection interactions during a 

telecommanding encounter. 

To make the system of trust value calculation resistant to potential confidence attacks, 

values of Į and ȕ may be dynamically adjusted based upon entity interaction and the 

current trust value.  This method follows work presented by Abari and White [45]. 

The initial value for Į is preserved as Į0 during the entire series of interactions by the 

I-Trust mechanism.  The algorithm for Į and ȕ determination to achieve a con-resistant 

trust value calculation is shown in Table 2.  The algorithm described in Definition 3 

along with the trust calculation in Table 1 and Table 2 will be referred to as the extended 

I-Trust algorithm. 

DEFINITION 3:  Į and ȕ are determined for con-resistant trust value calculation by 

the algorithm in Table 2, where C is a constant 0 < C � 1: 

Table 2 Extended Interaction Trust Algorithm 
Cooperation interaction by j Defection interaction by j 
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Figure 4 is a plot containing the basic test results of the extended I-Trust algorithm 

during a confidence attack.  The interaction patterns used in this initial evaluation of the 

extended I-Trust algorithm are the same as those used for the simple I-Trust algorithm 

shown in Figure 3.  Figure 4 shows the I-Trust values are more severely impacted by 

defection activity and none of the interaction patterns converge to a high trust value.  The 

extended interaction trust algorithm may be suitable for interactions which provide 

benefit to malicious entities for repeated abuse. 

 

 
Figure 4 Extended Trust Value Graph During Confidence Attack 
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For the I-Trust mechanism, the I-Trust value corresponding to each marker tracked 

for entities in the system is initialized to zero.  The I-Trust value alone may not provide 

enough information determine how an entity will be trusted by the system.  This value is 

simply an indicator of one entity’s behavior based upon evidence concerning a specific 

trust marker.  How the I-Trust value will be interpreted is up to the system policy 

utilizing the value, see Section 3.3.4.  

Applications within the FSW call upon to the I-Trust Mechanism to update trust 

evidence based on system interactions.  Once an interaction has been sent to the I-Trust 

mechanism, system policy can be evaluated based upon the current system status.  FSW 

applications use the result of the system policy evaluation to process interactions. 

The system policy making use of I-Trust values defines a threshold for acceptance.  

The threat being addressed by any policy must be characterized and resulting parameters 

required for I-Trust calculation must be established by the developer.  To properly 

identify the threat, the I-Trust calculation must fit within the threat model and accepted 

use of the system.  Chapter IV and Appendix A provides additional discussion relating to 

system characterization and policy determination to mitigate threats to satellite systems 

with the CTMS architecture. 

3.3.3.2   Credential Trust Mechanism. 

The credential trust mechanism processes authentication credentials to provide 

cryptographic authentication within the FSW.  The use of cryptographic authentication 

identifies entities with a high degree of assurance. The credential trust mechanism can be 

implemented with any one or a number of different authentication protocols.  The 
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CCSDS has recommended the HMAC authentication algorithm SHA-1 as a standard for 

message authentication in satellite systems [30]. 

Some satellite FSW does not have authentication services included in system  

code [31].  Authentication services can be integrated into FSW with a robust TMS 

architecture or dedicated authentication service.  A dedicated authentication service 

would require developers to implement an authentication protocol and integrate its 

functionality into the FSW.  The credential trust mechanism in the CTMS architecture 

provides entity authentication for the FSW through standard function calls.  This 

mechanism will receive a credential provided by an entity and determines if the 

credential is valid thereby identifying the entity.  With user (entity) authentication 

available to the FSW, policies can be implemented which consider the authentication 

status of entities interacting with the system.  This authentication is critical to the 

performance of security related protection functions with CTMS architecture. 

3.3.4   Policy Evaluation. 

The CTMS serves as a security mechanism by evaluating the systems security policy.  

These evaluations are performed by the policy evaluation function in the CTMS 

architecture.  This function requires the system security policy to be stated in quantifiable 

terms which can then be evaluated for compliance.  Additionally, the policy evaluation 

function must have access to the objects and variables referenced in the system security 

policy. 

The policies evaluated can model complex trust relationships making full use of all 

trust mechanisms and trust evidence collected in the system.  The result returned from the 

policy evaluation function is used in the FSW application as the final trust rating for the 
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entity in question.  The policy evaluation function gives FSW applications a mechanism 

for enforcing system security policies. 

3.3.5   Consolidated Trust Management System (CTMS) API. 

In order for FSW applications to make use of the trust management system, the 

CTMS Application Programming Interface (API) must be incorporated into application 

code.  The CTMS API consists of function specifications which are used to update trust 

evidence information in trust mechanisms, gather information from trust mechanisms, 

and request policy evaluations.  The API also specifies where CTMS functions should be 

placed in application code to perform the desired trust management activity.  With the 

applications making use of the CTMS API, trust evidence and policy evaluations may be 

processed in the FSW. 

 

3.4   Abuse Case Development 

The specification of an abuse case describes a complete and detailed set of 

interactions that result in actual harm to the system.  A maximal abuse case has been 

characterized as gaining complete control of the system through an abuse of privileges.  

The maximal abuse is not always necessary to characterize an abuse of the system.  

Simple abuses minimally compromise the privilege necessary to accomplish an intended 

harm on the system [46]. 

Within an abuse case, actors are described by their characteristics.  The critical 

characteristics necessary for modeling an actor in an abuse case include the actors 

resources, skills, and objectives [46].  For this work, actors in the satellite 
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telecommanding abuse case must be modeled with characteristics relevant to the satellite 

systems domain. 

The purpose of an abuse case is to describe a family of undesirable interactions with 

the goal of reducing security requirement oversights and design flaws.  The abuse case 

definition includes many abstract transactions which may be used to accomplish a single 

abuse of the system [46].  Specific features or components in a system which may be 

exploited are selected and included in the abuse cases description. 

The concept for a satellite commanding abuse case is derived from the CCSDS report 

concerning threats to space systems and known computer system intrusion techniques [6].  

Additionally, related research on telecommanding security refers to a specific attack case 

for satellite commanding communications. 

The related attack case involves a malicious entity attempting unauthorized access to 

a satellite command link through a forgery attack.  This forgery attack requires an 

attacker to possess knowledge about the spacecrafts orbital and physical channel access 

parameters.  Additionally, the attacker is modeled to have access to the command 

message structure, and can transmit modified messages to the satellite [47]. 

The steps of the referenced forgery attack begin with the attacker intercepting 

legitimate satellite command messages.  These messages are then analyzed for the 

underlying protocols.  Once identified, fields in the message relating to satellite access 

are modified in a manner which will allow the attacker to successfully command the 

satellite [47]. 

The objective of the attacker in the previous scenario is to gain control of the satellite.  

It is this activity that this thesis serves to address with the CTMS architecture.  Further 
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discussion regarding the specific forgery attack satellite telecommanding abuse case used 

in this work is presented in Chapter IV. 

 

3.5   System Policy Development 

The system policy used in this research will be based upon the abuse case activities 

being tested in the system.  Through this relationship, system policy plays a critical part 

in addressing security in the satellite system.  One of the primary benefits of CTMS is to 

provide mechanisms with which to implement system policy.  For example, the CTMS 

interaction trust mechanism will allow system policies to be implemented which take into 

consideration a users interactions.  Additionally, the system policies used for testing are 

designed to demonstrate the logging, detection, and prevention of malicious activities 

utilizing the CTMS. 

 

3.6   Satellite Test Environment 

A functional satellite system is required to support implementation of the CTMS 

architecture to satisfy the goal of this thesis.  The final implementation and associated 

testing demonstrates the feasibility of the CTMS architecture.  This testing is also 

performed to demonstrate the use of a CTMS implementation to support satellite system 

security.  The necessary components for constructing this system are, realistic satellite 

FSW, realistic FSW executing environment, and a functional ground station to 

communicate with the emulated satellite. 

An example of such a satellite system test environment known as the Flight-Cyber 

Vulnerability Assessment Testbed has been developed and implemented by the Aerospace 
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Corporation (funded by the USAF and Aerospace Internal Research and Development) 

[48].  The vulnerability assessment testbed was developed to perform specific 

experiments supporting vulnerability assessments for USAF programs of record.  The 

vulnerability assessment testbed consists of two major components, the Unit Under Test 

(UUT), and testbed supporting infrastructure.  The UUT is the satellite being tested, and 

is the subject for experimentation.  The testbed supporting infrastructure provides all 

necessary hardware and software to communicate or otherwise interface with the  

UUT [48]. 

The satellite test environment developed for this research includes the major 

components found in the Aerospace testbed.  This research testbed is required to support 

CTMS testing once integrated into a satellite system.  The testbed components used in 

this work were selected to provide a realistic environment for satellite FSW security 

testing.  My test environment implementation details, including FSW development, 

ground station setup, and test components, are presented in Chapter IV. 

 

3.7   Summary 

This chapter presents the design features of the CTMS for application to satellite 

FSW. CTMS represents a unification of trust management theory and exiting TMS 

implementation architecture for the purpose of enhancing satellite system security.  The 

approach of CTMS is to merge concepts from a generic TMS framework into satellite 

FSW to mitigate threats associated with a specific abuse case. 

The CTMS architecture incorporates multiple trust mechanisms and a policy 

evaluation function to perform trust evaluations of entities within FSW.  The I-Trust 
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mechanisms fundamental objective is calculating trust values for entities based upon 

specific interaction markers.  The credential trust mechanism provides authentication by 

evaluating credentials provided by entities in the system.  The component trust values and 

information within the FSW are used by the policy evaluation function to define the 

systems response to activity in the system.  The CTMS API is used to access this 

functionality from satellite FSW applications.  

The concept of abuse case modeling is applied to the satellite FSW to test the security 

of critical components and to evaluate the CTMS.  System policy follows the abuse case 

to detect and prevent malicious activities.  Additionally, the specification of a satellite 

test environment is presented to serve as a realistic proof of concept for the application of 

trust management practices to secure satellite systems. 

In summation, the CTMS architecture once implemented is expected to improve 

security in satellite systems by detecting and preventing specific abuse cases.  In order to 

evaluate the feasibility and performance of the CTMS architecture, Chapter IV presents a 

CTMS implementation in realistic satellite FSW.  Finally, Chapter IV describes testing of 

the CTMS implementation with an abuse case and system policy. 
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IV. Analysis and Results 

 

4.1   Chapter Overview 

This chapter documents the study of how trust management concepts can be used to 

protect a satellite system from a specific abuse case.  Satellite system protection is shown 

as the outcome of abuse case testing on satellite Flight Software (FSW).  The specific 

trust mechanisms within the Consolidated Trust Management System (CTMS) 

architecture are characterized to determine their suitability for implementation in actual 

systems.  Additionally, implementation specific results of FSW performance are 

presented to demonstrate the feasibility of trust management integration into satellite 

systems. 

The goal of the current experimentation is to determine the applicability of trust 

management concepts in general, and CTMS specifically, to address satellite system 

threats embodied in the forgery attack abuse case.  The primary hypothesis is that the 

CTMS will improve security in FSW telecommanding.  This improvement in security is 

measured through the detection and prevention of a forgery attack with the CTMS. 

This research does not focus on completely securing the satellite system emulated in 

the test environment; rather, it develops a methodology which can address specific 

concerns regarding satellite security.  This methodology includes a specific architecture 

with which to incorporate trust management concepts into satellite system FSW. The 

experiments designed for this research apply the abuse case, system policy, and CTMS to 

the existing FSW as a proof of concept. 
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4.2   Test Environment Setup 

A functional satellite system is required to perform the work set forth in this thesis. 

To serve as a functional model of a satellite system, realistic FSW, dedicated flight 

hardware, and satellite commanding ground station software have been acquired and 

configured to emulate a satellite system.  An overall view of the satellite system emulated 

to conduct this work is shown in Figure 5. 

The satellite system consists of a single satellite, and two command ground stations.  

One of the command ground stations serves as a legitimate ground station which is 

authorized to command the satellite.  The second is a malicious ground station which will 

perform attack behavior as described in the abuse case. 

 

 
Figure 5 Test Satellite System 
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The satellite hardware is emulated with a microcontroller Test Board (TB) which is 

logically identical to the flight processor and memory for some CubeSat missions.  The 

microcontroller test board contains a processor which runs the 8051 instruction set.  

Along with the 8051 CPU, memory and digital communication peripherals are located on 

the TB.  The primary communication peripheral used is a Universal Asynchronous 

Receiver Transmitter (UART) which is connected to a Recommended Standard 232 

(RS232) transceiver onboard [49].  

The ground station hardware consists of a single computer workstation.  The 

computer workstation divides and shares hardware resources with multiple virtual 

computer workstations (virtual machines).  These virtual machines run the command 

ground station software which communicates with the emulated satellite/TB.   

The ground stations utilize USB ports and signal converters to connect with the RS232 

port on the TB. 

The legitimate command ground station in the satellite system is modeled by a virtual 

machine running Common Ground Architecture (CGA).  Mission unique components 

present in CGA were specifically designed to interact with the FSW.  The CGA ground 

station receives telemetry from the satellite and displays system status in formatted 

tables.  Additionally, commands can be sent from the CGA ground station to demonstrate 

functionality of the satellite FSW and hardware in the emulated environment. 

The malicious ground station in the satellite system is implemented by custom 

commanding software.  This commanding software was written to communicate with the 

satellite and perform malicious actions as described by the satellite commanding abuse 
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case.  The custom commanding software also implements new commands added to the 

FSW in conjunction with this thesis research. 

The satellite FSW is modeled after software currently operating on CubeSat missions.  

The FSW is written in the C programming language with specific 8051 assembly code for 

system initialization and critical operations.  The FSW was developed in the Keil 

Integrated Development Environment (IDE); which manages source code and compiles, 

links, and flashes complete software to the TB. 

To facilitate debugging of the system and to view transmissions between ground 

stations and satellite, a logic analyzer was connected to monitor UART signals on the test 

board.  The logic analyzer used for this testing was a USBee ZX module which reports 

the transmit and receive signals on the communication path between the TB and ground 

stations.  The entire test environment setup described is shown in Figure 6. 

Additional debugging and data output from experimentation was provided by a 

diagnostic port on the TB.  This port served as a window into the operation of the FSW 

and reported real time system status directly from the TB.  CTMS and FSW status was 

observed from this port along with any system errors generated during testing.  An 

illustrated test using this setup is presented in Appendix B. 
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Figure 6 Test Environment Setup 
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These actions would be accomplished during the development and testing phase for 

actual satellite mission.  The complete satellite and FSW incorporating all safety and 

security features would be fully integrated and tested prior to launch.  The following 

subsections describe the setup and operation of the two trust mechanisms, CTMS data 

storage, policy evaluation function, and CTMS API. 

4.3.1   Interaction-Based Trust Calculation. 

Calculations for interaction-based trust used in the CTMS implementation are 

performed as described in Section 3.3.3.1, with static values for Į and ȕ.  The I-Trust 

values are calculated for every command interaction, however, cannot be attributed to 

specific actors due to lack of user authentication in the basic FSW.  The lack of 

authentication leads to I-Trust values which characterize the trust of anonymous entities 

in the system.  The resultant I-Trust values are used in conjunction with system policy to 

make a final trust determination and define the systems response commands being 

received from anonymous entities. 

The command access security policies defines threshold values for I-Trust and states 

how these values will be acted upon in the system, see Section 4.5.  The first step in 

setting up this policy is to configure the I-Trust mechanism.  The initial I-Trust 

parameters are set to (T = 0,Į = 0.05, ȕ = -0.2) for the command authentication count 

marker based upon an initial characterization of the I-Trust algorithm.  Further discussion 

regarding the optimization of simple I-Trust parameters is found in Appendix A.  With 

these parameters set, the I-Trust value for this marker will fall below -0.5 after four 

consecutive defective interactions.  Section 4.7.2 discusses in detail the rationale behind 

why these parameters were chosen and their effect on the system. 
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The only I-Trust marker utilized during experimentation was the command 

authentication count marker.  Additional markers were considered, however were not 

utilized for experimentation.  Table 3 shows a list of markers which may be used in the 

CTMS system as implemented in this work. 

Table 3 CTMS I-Trust Marker List 
Marker Evidence Attributable 
Authentication Counter Identify poor connection or attempt on 

authentication counter 
NO* 

Check Vector Identify attempt on authentication crypto 
key 

NO 

Current Password Identify attempt on password, indicates 
compromised authentication crypto key 

YES** 

* If the command authentication counter is checked after credential trust 
authentication of a message the command authentication attempt can be attributed. 
 
** If the credential trust mechanism identifies an invalid password after successfully 
comparing the check vector then the attempt is attributed to the crypto key used to 
encrypt the credential. 

 

Both the simple and extended algorithms for calculating interaction trust were 

implemented in the course of this work.  Only the simple interaction trust algorithm was 

suitable for computing interaction trust using the authentication count marker.  This is 

due to the nature of the radio link used for satellite commanding, which is discussed 

further in Section 4.7.1. 

The simple interaction trust algorithm is suited for characterization of interactions 

with no incentive for repeated abuse after positive interactions.  This is the case for 

satellite commanding and the command authentication counter.  The extended trust 

algorithm may work well for interactions which benefit the attacker for presenting 

defective interactions after consecutive cooperation interactions.  This would be suitable 

for the protection of features prone to repeated abuse, i.e., the attacker gets benefit from 
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failing the marker check.  One example in the context of satellite systems would be for an 

attacker, once gaining access, to probe a satellite with known good commands for a 

number of interactions and then send a malformed command in an effort to disrupt the 

satellite. 

4.3.2   Credential Trust Evaluation. 

The credential trust mechanism implemented for experimentation utilized the 

Advanced Encryption Standard (AES) cryptography algorithm published in the Federal 

Information Processing Standards Publication 197 [50].  The AES source code used in 

this work was adapted from an open source implementation by Niyaz PK [51].  With the 

AES algorithm implemented as part of the CTMS, cryptographic verification of an 

authentication credential was possible in the FSW. 

AES was selected to provide cryptographic authentication due to its availability and 

the possibility for re-use in the system.  The AES functions implemented for 

authentication can also be used to add encryption to the commanding or telemetry 

communications to and from the satellite.  Additionally, AES is the CCSDS  proposed 

standard for encryption in satellite systems [30].  With a cryptographic algorithm 

implemented, an authentication credential was developed for processing by the credential 

trust mechanism. 

The authentication credential introduced for testing purposes consisted of the 

following elements: key index, check vector, and an encrypted password component.  

The key index was a value used to select the AES key for decryption of the password 

component of the credential.  The check vector was a random value used to introduce a 

random component to the message and to serve as a check upon decryption of the 
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password component.  The encrypted password component of the authentication 

credential consisted of a check vector, current authentication nonce, and next 

authentication nonce.  Figure 7 shows the structure of the authentication credential. 

The check vector in the encrypted password component was set to the same value as 

the vector in the authentication credential.  Upon decryption, the check vector from the 

encrypted password component was compared with the check vector from the 

authentication credential.  If the two vectors matched, the message was properly decoded 

with the key identified by the key index.  A positive check of the initialization vector is 

the result of a valid entity passing the credential or an invalid entity replaying the 

credential. 

 

 
Figure 7 Authentication Credential Structure 

 

The current nonce field in a credential was compared with the identification nonce 

stored in the credential trust mechanism.  If the current nonce from the encrypted 

password component matches the internal identification nonce, then the credential is 

deemed to be valid.  Each key index had an identification nonce associated with it for 
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entity identification.  A valid check of the credential was then associated with the key 

index and any activity related to this credential was attributed to the associated key index. 

The next nonce field contained the value to be stored as the identification nonce in the 

credential trust mechanism for the given key index.  The identification nonce was 

replaced with the next nonce value after processing the current credential.  The next 

nonce must be different from the current nonce.  If the current and next nonce are the 

same value in this system, the authentication credential could be successfully validated 

during a replay. 

With the credential trust mechanism, CTMS can validate entities in the system and 

associate them with trust information.  Entities authenticated by the credential trust 

mechanism were associated with CTMS members as defined in Table 4.  Additionally, 

secure functionality can be built into the system, which can be used to mitigate system 

threats.  An example of this is demonstrated by the experiments presented in Section 4.6. 

Table 4 Credential Trust List 
CTMS Member AES Key 

Index 
Authentication Password 
Index 

0 - Anonymous N/A N/A 
1 - Administrator 0 0 

 

The authentication credential structure and associated validation mechanism was 

developed for use in this research as a proof of concept for a generic authentication 

mechanism.  As such, extensive characterization and cryptanalysis of this implementation 

was not performed.  A validated cryptographically secure algorithm and implementation 

should be used for credential generation and authentication in the credential trust 

mechanism for a flight ready system. 
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4.3.3   Trust Data Storage. 

The Trust Data Storage component of the CTMS was used to maintain the systems 

current status.  Each entity interacting with the system, whether authenticated or not, was 

categorized into CTMS members.  The CTMS implementation contained data regarding 

CTMS members and their nominal mapping to ground station ID; see Table 5.  

Additionally, I-Trust data associated with each marker and entity was also stored in the 

Trust Data Storage component; see Table 6. 

Table 5 CTMS Member List 
CTMS 
Member 

Ground Station 
ID 

Role 

0 0001 Anonymous commanding 
1 0002 Administrator Level Authenticated Commanding 
 

Table 6 I-Trust Member Evidence List 
CTMS Member Marker 

ID 
I-Trust Marker 

0 - Anonymous 0 Authentication Count I-Trust Marker Simple 
   
1 - Administrator 0 Authentication Count I-Trust Marker Simple 
 1 Credential Check Vector I-Trust Marker Simple 
 2 Credential Current Password I-Trust Marker Simple 

 

4.3.4   API. 

The CTMS API implemented for testing consisted of function prototypes for the 

credential trust mechanism, I-Trust mechanism, and policy evaluation function.  The 

credential trust mechanism returned the credential validation status for a given ground 

station ID and credential.  The I-Trust mechanism did not return data directly to the 

calling function, however, it updated I-Trust data for a given ground station ID, marker 

ID and interaction result (cooperation or defection).  The policy evaluation function 
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returned the result of a policy evaluation for a given ground station ID and policy 

identifier. 

Specific API calls were made in the command handler application, as it was being 

tested by the commanding abuse case.  The CTMS API calls implemented in the FSW 

command handler application were to the I-Trust mechanism, credential trust mechanism 

and policy evaluation function.  The I-Trust mechanism was called to update trust 

evidence for an entity in the system using the command authentication count marker.  

The credential trust mechanism was used to implement the secure unlock command 

discussed in Section 4.6.  The policy evaluation function was used to prevent the abuse 

case presented in Section 4.4. 

 

4.4   Implementation Abuse Case 

Normal use for a satellite system requires commands to be transmitted from a ground 

station to the satellite.  These commands must be processed aboard the satellite to 

maintain the system and to perform the primary mission.  The design of command 

handling systems for satellites which only incorporate this simple use case with little 

regard for misuse or abuse of the system may lead to vulnerabilities in the system. 

The scenario presented here is the result of applying the abuse case development 

methodology presented in Section 3.4 to the system being used to implement and test the 

CTMS architecture.  This abuse case is modeled for the satellite telecommanding 

subsystem.  The specific component in the telecommanding subsystem that may be 

exploited is the command handler application of the satellite FSW. 
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For this case, a third party either has access to command formatting information, or 

can intercept transmissions emanating from the primary satellite ground station.  Once a 

command session has been recorded, satellite specific information is recovered from the 

command link data.  This information is then replayed with modified/malicious values in 

an effort to gain access to the satellite. 

The nature of the basic FSW is such that the simple replay of a previously transmitted 

authenticated command fails.  This is due to the incremental nature of the command 

sequence, where previously executed commands will not be processed.  These design 

characteristics of the FSW, however are vulnerable to a modified replay attack. 

The specific abuse case is a forgery attack by a malicious ground station.  This 

forgery attack is the replay of a previously transmitted legitimate message by an attacker.  

In an effort to guess the dynamic command authentication counter onboard the satellite, 

the authentication count field for the illegitimate message is incremented during the 

replay in an effort to brute force the authentication count in the FSW.  The intent is to 

have a malicious command processed.  See Table 7 for a summary of the steps involved 

in the abuse case. 

Table 7 Abuse case steps 
Step Action 
1 Record commanding session or otherwise acquire command header and format 

information 
2 Transmit desired malicious command in an attempt to have it processed by the 

satellite. 
3 If the command execution fails at the satellite, increment the authentication count in 

the command message and resend. 
4 Continue to increment the authentication count in the command sequence until the 

command is accepted. 
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The abuse case activity described in Table 7 is similar to the model of attack behavior 

against a space communication link published by researchers investigating command link 

attack detection [47].  This pattern is also similar to that taken by attackers to exploit 

terrestrial software and networks [52]. 

 

4.5   Implementation System Policy 

The system policies defined for this work were formulated to address the satellite 

telecommanding forgery attack.  The broad system security policy requires only 

legitimate commands be processed by the satellite.  This security policy must be enforced 

by a security mechanism.  The CTMS implementation is the security mechanism which 

was used to address this broad system security policy in the following experiments. 

The detailed system security policies used for CTMS implementation testing are 

shown in Table 8.  The first system security policy requires an alert to be logged once the 

I-Trust value for the authentication count marker reaches -0.5.  The result of this policy is 

attack activity detection based upon interaction trust calculation.  As each command is 

received, the I-Trust value is updated based upon a check of the command authentication 

count.  Failed checks will reduce the I-Trust value, while successful checks increase the 

value. 

Policy 2 is aimed at preventing the same attack activity detected with Policy 1.  Once 

the I-Trust value for the general ground station based upon the authentication count 

marker reaches -0.5 all commands from anonymous ground stations will be rejected. This 

policy results in denying unauthenticated users access to the system.  As this policy does 
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not specify the authentication of ground stations, it results in denial of service for all 

ground stations.  This issue is addressed with Policy 3. 

 

Table 8 Implemented Policy Options 
 Policy Implications 

 1. Trust Management Event Logging Only Credential Trust not required 
 Description:  Command authentication count is checked 

upon receipt and I-Trust value is calculated for 
authentication count marker.  Once the I-Trust value for 
authentication count reaches  
-0.5 an alert is logged indicating excessive invalid 
command attempts.  

P- fewer satellite resources required 
P-legitimate ground station is alerted to 
review detailed logs 
N-malicious ground station may tamper 
with logs if access is acquired 

 2. Trust Management Event Logging and Prevention Credential Trust not required 
 Description:  Command authentication count is checked 

upon receipt and I-Trust value is calculated for 
authentication count marker.  Once the I-Trust value for 
authentication count reaches 
 -0.5 command processing is halted for anonymous users 
and an alert is logged indicating excessive invalid 
command attempts.   
 

P-malicious behavior is prevented 
 
N-denial of service without entity 
authentication 

 3. Trust Management Event Logging, Prevention and 
Recovery 

Credential Trust required 

 Description:  Command authentication count is checked 
upon receipt and I-Trust value is calculated for 
authentication count marker.  Once the I-Trust value for 
authentication count reaches  
-0.5 command processing is halted for anonymous users 
and an alert is logged indicating excessive invalid 
command attempts.  The legitimate ground station must 
unlock satellite commanding and the CTMS via credential 
trust mechanism to resume commanding operations. 

 

P-legitimate ground station is alerted to 
review detailed logs 
P-malicious behavior is prevented 
P-additional features extend policy and 
security options 
N- additional satellite resources are 
required 
N-malicious ground station may tamper 
with logs if access is acquired 

  P - Positive attribute for system policy 
N -Negative attribute for system policy 

 

Policy 3 extends the second policy with a provision for resuming satellite 

commanding with credential authentication of entities.  Again, once the authentication 

count I-Trust value reaches -0.5, all commands from anonymous ground stations will be 
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rejected until the system state is acknowledged.  The system state is acknowledged and 

the trust management system is reset by an authenticated user with a secure CTMS 

unlock command.  This policy and implementation is intended to demonstrate that FSW 

with CTMS can detect and respond to a low trust commanding interaction pattern.  An 

example test of Policy 3 is presented in Appendix B. 

The system response based on this policy is defined in the command processing code 

(command handler) of the FSW.  The command handler filters commands from 

 un-trusted IDs and logs un-trusted commanding interactions with the CTMS functions.  

Logs pertaining to CTMS status are stored and can be relayed via telemetry to ground 

controllers. 

 

4.6   Experiment Design 

In order to evaluate the performance of the trust management system and implement 

command access policies, three FSW builds were developed and tested.  The first FSW 

build, referred to as the (Basic FSW), is based upon a CubeSat FSW implementation 

without trust management.  The second FSW build (FSW-A) expands on the Basic FSW 

with an initial CTMS implementation and the first two system security policies.  The 

final FSW build (FSW-B) implements the CTMS architecture including the credential 

trust mechanism and the third system security policy. 

With the credential trust mechanism, FSW-B implements the third security policy 

which requires entity identification.  This identification is performed through the addition 

of a secure unlock command to the FSW command handler application.  The secure 

unlock command utilizes the authentication credential presented earlier to identify a 
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legitimate ground station and restore access to anonymous commanding of the satellite.  

Table 9 illustrates the three FSW builds with their features, policies, and procedures used 

for testing. 

Table 9 Experiment Design 
 Build Features Test Policy Test Procedure 
Basic FSW 
 

Basic FSW + No 
modifications 

Broad System Policy:  
Only legitimate ground 
stations should command the 
satellite 

Apply abuse case and 
record results 

FSW-A 
 

Basic FSW + CTMS 
without Credential Trust 

Policy 1 and 2 implemented 
with CTMS; see Table 8 

Apply abuse case and 
record results for each 
policy 

FSW-B 
 

Basic FSW + CTMS 
with Credential Trust and 
secure unlock command 

Policy 3 implemented with 
CTMS; see Table 8 

Apply abuse case and 
record results; execute 
secure CTMS reset 
command and record 
results 

 

The abuse case was presented to each FSW with results shown in Section 4.7.  The 

outcome of the tests are presented with a focus on determining if an outsider can 

successfully intrude on a commanding session or otherwise access the satellite using the 

abuse case.  An illustrated example of the experiment procedure for FSW-B and Policy 3 

is presented in Appendix B. 

 

4.7   Experiment Results 

This section presents experimentation results from the abuse case scenarios, 

comparing the three FSW builds.  Additionally, characteristics of the FSW builds are 

presented to support conclusions regarding the feasibility of implementing the CTMS 

architecture in satellite systems.  Lastly, performance of the implemented CTMS 
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architecture is presented as it relates to the accurate detection of the forgery attack on the 

satellite system. 

The Basic FSW was exposed to the commanding abuse case in the first experiment.  

This experiment resulted in a system compromise by the malicious ground station 

executing commands on the satellite.  This activity is prohibited by the general system 

policy which limits access to the legitimate ground station. 

FSW-A with Policy 1 was utilized in the second experiment where the satellite was 

challenged by the commanding abuse case.  The system was again compromised, 

however the CTMS implementation successfully reported the malicious activity.  The 

broad system policy to deny unauthorized access to the satellite was violated, however 

test Policy 1 was successfully enforced. 

For experiment three, FSW-A with Policy 2 was tested with the forgery attack.  The 

malicious ground station was unable to execute commands on the satellite.  However, by 

blocking the malicious ground station Policy 2 also caused a denial of service for all 

ground stations.  This denial of service is due to the lack of entity authentication in the 

FSW-A build.  The broad system policy to deny access to malicious ground stations was 

enforced along with Policy 2. 

The fourth and final experiment utilized the FSW-B build, which implemented 

system security Policy 3.  When the forgery attack was applied to this FSW build, the 

malicious activity was detected through the I-Trust mechanism with the command 

authentication count marker.  Upon detection of the activity, an alert was logged and 

anonymous commanding was disabled.  These actions satisfied the general security 

policy.  A secure CTMS unlock command was then transmitted from a legitimate ground 
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station with identifying credential, which was subsequently processed by the satellite.  

Normal commanding operations were restored on the satellite with the secure CTMS 

unlock command.  The fourth experiment demonstrated the FSW-B successfully enforced 

Policy 3, which prevented malicious commanding of the satellite.  The malicious 

commanding activity presented in these experiments is a specific forgery attack presented 

in the telecommanding abuse case, Section 4.4.  An overview of the experimentation 

results for the three FSW builds and policies is shown in Table 10. 

 

Table 10 Experiment Results 
FSW Build Test Policy Test Results 

Basic FSW 
 

Broad System Policy: Only 
legitimate ground stations should 
command the satellite 

Broad System Policy: Failure 
Note: 
malicious ground station gains access 

FSW-A 
 

Policy 1: 
Trust Management Event Logging 
Only; 
see Table 8 

Broad System Policy: Failure 
Policy 1 Implementation: Success 
Note: 
malicious ground station gains access 

FSW-A 
 

Policy 2: 
Trust Management Event Logging and 
Prevention; 
see Table 8 

Broad System Policy: Success 
Policy 2 Implementation: Success 
Note: 
malicious ground station denied 
access; 
denial of service experienced 

FSW-B 
 

Policy 3: 
Trust Management Event Logging, 
Prevention and Recovery; 
see Table 8 

Broad System Policy: Success 
Policy 3 Implementation: Success 
Note: 
malicious ground station denied 
access 

 

In summary, basic FSW takes no specific action to prevent or report malicious 

activity as described in the commanding abuse case.  When the abuse case is applied to 

the basic FSW, malicious commands are successfully executed when the authentication 

counter is reached during the forgery attack.  This scenario, when presented to FSW-B is 

identified and processing of the malicious commands is prevented.  These results serve to 
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validate the initial hypothesis that trust management principals can be applied to satellite 

systems to detect and prevent malicious activity. 

 

4.7.1   System Performance. 

This section discusses the I-Trust mechanism's performance for detecting the forgety 

attack abuse case.  For satellite commanding operations, signals are transmitted from a 

ground station through open space to the satellite orbiting above.  This transmission path 

has characteristics which affect transmitted messages.  The primary factor to be 

considered in this research for the command link is the Bit Error Rate (BER). 

The command link BER directly affects the number of command messages that are 

improperly transmitted to the receiver aboard the satellite.  This phenomenon affects both 

malicious and legitimate ground stations resulting in legitimate ground stations 

occasionally transmitting a command with an invalid command authentication count.  

Each satellite system in operation has different satellite commanding procedures and 

command link parameters.  Both of these factors contribute to the number of commands 

received at the satellite with an invalid authentication count. 

Due to the nature of satellite commanding in which legitimate commands are lost in 

transmission, a simple counter for the number of invalid commands received is not 

directly suitable for security monitoring.  The I-Trust mechanism utilized in the CTMS 

calculates a trust value for entities interacting with the satellite.  This value is based upon 

the quality of interactions relative to an I-Trust marker.  The marker for these interactions 

demonstrated in this work is the command authentication count.  As previously 
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discussed, legitimate and malicious ground stations will present commands with invalid 

authentication counts. 

The I-Trust mechanism adjusts the trust value for anonymous entities based the 

command authentication count field in messages received.  An encounter with a 

malicious entity is flagged when the I-Trust value falls below a specified threshold value.  

This threshold value, along with the parameters that determine the I-Trust mechanisms 

operation, must be set according to the specific system in which it is implemented.  These 

settings are determined based upon the number of commands typically lost during a 

commanding session with a legitimate ground station.  Appendix A presents a method 

and results of optimizing the simple I-Trust algorithm parameters for the command 

authentication count marker.  The performance characteristics for optimal I-Trust 

parameters are also discussed in Appendix A. 

4.7.2   System Characteristics. 

The primary goal of demonstrating CTMS architecture in an emulated satellite system 

environment was to determine the feasibility of implementation in flight ready satellite 

systems.  The characteristics which contribute to the implementations feasibility are 

Software Compile Size, RAM Utilization, and Function Execution Speed.  These 

characteristics are significant to the implementation of new features into satellite flight 

software due to a satellites limited hardware resources.  A summary of Compile Size and 

RAM utilization for the Basic FSW and FSW-B builds is shown in Table 11.  

Additionally, the performance of specific functions which implement the CTMS 

architecture is shown in terms of execution time in Table 12. 
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Table 11 FSW Build Characteristics 
FSW Build Constant Data Code RAM 

FSW-B 
 2111 Bytes 61443 Bytes 50725 Bytes 

Basic FSW 
 1687 Bytes 51547 Bytes 48600 Bytes 

Difference 424 Bytes 9896 Bytes 2125 Bytes 
 

Table 12 CTMS Function Performance 
CTMS Function Execution Time 
Simple Interaction 2.4 ms 
Policy Evaluation 0.76 ms 
Credential Evaluation (AES Decrypt) 21 ms 

 

The compiled characteristics for the FSW builds illustrate the increase in memory 

usage for an example implementation of the CTMS architecture.  Additionally, the 

function performance shows the added computational time required to process 

interactions, policies, and credentials with the CTMS implementation.  The performance 

measure taken for the credential evaluation function incorporates the initialization of the 

AES cryptography function and decryption of the single block of data in the credential. 

Each satellite system has unique requirements for hardware and software 

configurations.  Engineers must balance these requirements by making decisions as to 

which features to implement in the system.  Based upon the data presented above, an 

initial estimate for the system impacts of adding a TMS to a CubeSat mission is realized. 
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V. Conclusions and Future Work 

 
5.1   Chapter Overview 

This chapter presents the conclusions and implications of this thesis.  Conclusions 

for this research focus on the primary thesis question.  Additionally, ancillary findings 

derived from experimentation are discussed.  Finally, recommendations for future 

research are made. 

This work developed a multi mechanism Trust Management System (TMS) to 

address cyber threats to satellite systems.  Additionally, methods for threat assessment 

and vulnerability analysis were presented for use in satellite system development and 

testing.  Chapter I introduced the research problem and focus.  Chapter II presented an 

introduction to the satellite system domain along with computer security and trust 

management principles.  Chapter III covered my approach to the problem and introduced 

the proposed TMS architecture for satellite telecommanding.  Chapter III also covered 

system security policy, telecommanding abuse case, and satellite Flight Software (FSW) 

test environment development methodology.  Chapter IV presented the test setup used for 

experimentation and integration of the Consolidated Trust Management System (CTMS) 

with satellite FSW.  Additionally, Chapter IV illustrated the specific forgery attack 

satellite telecommanding abuse case, and policy used for testing the CTMS 

implementation.  Experiment design, results, and system performance were also 

presented in Chapter IV. 
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5.2   Conclusions of Research 

This thesis demonstrates the development and use of a TMS to detect the presence 

of a telecommand forgery attack on satellite FSW.  Once detected, the satellite FSW can 

log or prevent the attack activity.  The advantage of using trust management concepts for 

security in satellite systems is their ability to manage data quality, whereas traditional 

security mechanisms such as cryptography and access control schemes cannot. 

The primary research question of this thesis was to study the application of trust 

management concepts from the distributed information systems domain to satellite 

telecommanding.  This cross application of research was hypothesized to enhance 

security in satellite system telecommanding by allowing the detection and denial of 

adversaries exploiting the command link.  This primary research question was broken 

down into smaller tasks or incremental research questions to fully address the complex 

nature of the problem. 

The first incremental research question was to assess the vulnerability of the basic 

FSW used as a model in this work.  This was accomplished by implementing the basic 

FSW in the emulated satellite system test environment and applying the forgery attack 

abuse case.  Once the basic FSW was shown to be vulnerable to the forgery attack the 

effectiveness of the trust management approach could be measured. 

The trust management approach addresses the second incremental research 

question of whether a TMS can be used to detect the forgery attack.  This question was 

addressed by implementing the CTMS architecture in the basic FSW and applying the 

forgery attack abuse case.  Characterization of the FSW with CTMS demonstrated that 

the system could detect the forgery attack event with a high reliability.  The performance 
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of the CMTS architecture can be tuned based upon the environment in which it is 

operating.  A method of selecting tuning parameters for the CTMS architecture was 

developed and presented in Appendix A for application of the architecture to any specific 

satellite system.  This flexible performance selection feature of the CTMS makes it a 

robust option for threat detection in satellite FSW. 

The third incremental research question in support of this thesis addressed the 

ability to implement multiple system security policies with the CTMS architecture. The 

security policies tested addressed the detection and prevention of the telecommanding 

forgery attack.  The policies implemented exercised all components of the CTMS 

architecture including the Interaction Trust (I-Trust) and credential mechanisms.  With 

the FSW, CTMS implementation, and system security policies configured, the system 

was tested with the telecommand forgery attack.  These tests demonstrated that the 

CTMS architecture implementation can successfully detect the forgery attack and prevent 

the execution of malicious commands transmitted by an attacker.  As the basic FSW has 

no inherent user authentication, these malicious commands were prevented by denying all 

anonymous commands.  Notification of the malicious activity and normal system 

operation was subsequently recovered through the use of a secure command which 

utilizes the credential trust mechanism for authentication. 

The tests performed in this work demonstrates how the CTMS architecture can be 

used in a satellite system.  Through this testing it was shown that the CTMS architecture 

can be used to consolidate and provide security functions to FSW applications.  

Additionally, the CTMS architecture has demonstrated potential to be used in conjunction 

with existing safety and security features found in current satellite systems.  An example 
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of these findings is to either merge existing cryptographic authentication with the CTMS 

architecture as a new trust mechanism, or to simply apply the CTMS architecture in 

parallel with a dedicated authentication protocol.  For the case of a parallel 

implementation, the authentication protocol would be used to associate entities with trust 

evidence within the CTMS and also be used for policy evaluation. 

Results from the incremental research questions prove the hypothesis that trust 

management principles may be applied to satellite system telecommanding to enhance 

security.  The work completed in this thesis is the demonstration of a powerful new 

satellite security methodology and tool. This approach can not only be used to protect 

satellites from the specific forgery attack case presented here, however may be applied as 

a method to protect satellites from a wide range of threats. 

 

5.3   Recommendations for Future Research 

This work consisted of an effort to bring trust management practices from the 

distributed information systems and computer security domain to satellite system FSW.  

The concepts presented in this thesis can be extended in several ways. 

First, further identification and characterization of satellite system abuse cases 

will benefit work towards securing these systems.  New abuse cases can then be applied 

to satellite systems to identify vulnerabilities, which can then be addressed with trust 

management architectures such as CTMS.  Second, further characterization of the I-Trust 

calculation methods can be performed to better understand how to apply the algorithms to 

solve security problems in satellite systems.  Finally, a more detailed implementation of 
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CTMS could be applied to a FSW with authentication and encryption to further 

demonstrate the TMS capabilities in supporting these traditional security mechanisms. 
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Appendix A. Simple I-Trust Algorithm Optimization 

The command authentication count used in a satellite telecommanding 

architecture is primarily a safety feature.  The function of the command authentication 

count is to identify commands which are received out of sequence.  The typical response 

to receiving a command with an invalid authentication count is to discard the message.  

This response inadvertently addresses commands sent with malicious intent.  A third 

party whom is unaware of the current command authentication count in the satellite will 

be unable to transmit valid commands to be processed by the satellite.  This indicates a 

potential security benefit of the command authentication count feature. 

In order to evaluate the command authentication count for use as a security 

mechanism, an analysis of the feature's properties is performed.  The first issue addressed 

is the probability an attacker will accurately guess the authentication count.  Second is 

how to detect an attacker attempting to access the system by guessing the authentication 

count.  Lastly, an analysis of the Interaction Trust (I-Trust) mechanism and optimization 

of the I-Trust configuration parameters is presented. 

The probability an attacker will guess the authentication count is directly related 

to the range of values for the authentication count field.  The authentication count used as 

a demonstration implementation in this work is a 16-bit variable.  This results in 162  

possible values with a maximum of 65,535 and a minimum of 0.  An adversary 

attempting to guess this value has a one in 65,536 chance to succeed on the first try.  

Using the forgery attack scenario an attacker will choose a value only once and the 

probability of correctly selecting the authentication count is computed with Equation 1.  
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The number of attempts to guess the authentication count is n and the probability of 

success will increase with each attempt.  At this rate the attacker  must try 656 times to 

have approximately 1% chance of guessing the authentication count. 
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Equation 1 Probability  
 

An attacker attempting to access a system utilizing an authentication counter must 

first acquire the current authentication count.  One attack scenario presented in this work 

involves the attacker sending multiple commands with an incrementally different 

authentication count for each.  This method of starting from an initial value for the 

authentication count and making a series of attempts with sequential authentication count 

values allows the attacker to cover all values of the authentication counter and access the 

satellite. 

Abuse of the command authentication with this activity leaves evidence in the 

satellite system.  This evidence is the pattern and history of commands received by the 

system with an invalid authentication count.  The evidence will appear differently 

depending on whether this attempt is made independent of a legitimate ground station's 

telecommanding session or during a legitimate telecommanding session. 

Failure to present the proper authentication count can indicate either indicate lost 

legitimate commands or the presence of an attacker attempting illegitimate commands.  

In order to differentiate between legitimate ground station and attacker in a commanding 

encounter, these authentication failures are aggregated with the use of an I-Trust 

algorithm.  This algorithm computes a value which is an indicator of the reliability or 
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trustworthiness of a remote system.  The algorithm computes the trust value based upon 

an interaction's modification of a specific marker in the system.  If the marker indicates 

cooperation by the remote system then the interaction trust value is increased.  

Conversely, if the marker indicates defection by the remote system the interaction trust 

value is reduced.  This system of computing a trust value which incorporates the outcome 

of interactions is used to detect the presence of an attacker in the system. 

The particular algorithm used to perform this trust value calculation is adapted 

from the agent rating process presented by Yu and Sing. This algorithm utilizes two 

parameters to define how much the trust value should increase or decrease following an 

interaction.  The environment in which this algorithm is being used will have an effect on 

how these parameters should be set.  The remainder of this Appendix documents the 

characterization of the satellite system telecommanding environment relevant to the 

command authentication counter.  Additionally, a procedure for optimizing the algorithm 

parameters used to detect attack behavior in the command system is presented. 

The optimization and characterization of the simple I-Trust algorithm is presented 

in the context of malicious activity detection in satellite system telecommanding.  The 

algorithm parameter optimization is presented in steps to configure the I-Trust algorithm 

for a particular satellite system.  This procedure was developed after the analysis and 

optimization of the algorithm's parameters Į and ȕ for a specific satellite system. 

The first step to configure the I-Trust algorithm is to establish a desired false 

negative threshold. This threshold is based upon the users tolerance for potential false 

negatives in the system.  For this example, a value of 0.001 is chosen.  This indicates that 

the user will accept at the very most a one in one thousand chance an attacker will 
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succeed unnoticed.  This value is used to compute the approximate maximum number of 

command attempts which are made during an attack on the system before being detected. 

The calculation is performed by multiplying the probability of success by the 

number of possible values in the command authentication counter.  For my test system, 

the command authentication counter is 16 bits, which results in 65,536 possible values. 

See Figure 8 Attempt Approximation Formula for the approximation formula and 

example computation.  Alternatively, the user may pick the number of attempts an 

attacker may make on the system and compute the false negative probability. 
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Figure 8 Attempt Approximation Formula 
 

The second step in configuring optimal parameters for the I-Trust algorithm is to 

establish a system security policy, which sets a threshold on the I-Trust value.  This 

policy limit value is also related to the security posture of the system.  A high value (less 

negative) will result in a sensitive system, which is in turn more susceptible to false 

positives.  A low value will result in a system which requires higher penalties to reach the 

policy limit.  This is due to the requirement to identify malicious behavior within the 

number of defection interactions calculated in step one. 

The value of -0.8 was chosen and is used here as it falls just below the 

approximately linear portion of the trust curve for a series of defection interactions.  This 
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is best illustrated by the attack curve in Figure 17.  A policy limit at the end of this 

approximately linear portion of the curve allows the system to accommodate both a high 

security posture and low false positive rate. 

With the chosen security policy limit on the I-Trust value, the third step to 

configure the I-Trust mechanism is to establish a bound for the value ȕ.  This is done by 

computing the final trust value after  65 defections with consecutively decreasing values 

of ȕ.  The iteration that results in a final trust value less than or equal to the policy limit 

value, e.g., -0.8 is the upper bound on the ȕ parameter.  No Į value is required to compute 

this bound for ȕ as all of the interactions used in the calculation are defection.  This 

method is also described by the pseudo code in Figure 9. 

for(Beta = -.0001; Beta >= -.5; Beta = Beta - .0001){ 
T = 0; // I-Trust Variable 

 for(count = 1; count <= MAX_ATTEMPTS; count++){ 
Simple_Interaction(Defection); // Computes I-Trust with 
Beta 

 } 
 if (T <= POLICY_LIMIT){ 

 return Beta; 
 }  
} 

Figure 9 Beta Bound Pseudo Code 

The fourth step is to determine additional bounds for Į and ȕ.  These bounds are 

used to reduce the search space required to establish the optimal I-Trust parameters for a 

specific system.  With the upper bound for ȕ computed previously, the lower bound for ȕ 

along with bounds for Į are established. 

The lower bound on ȕ is based upon the nature of the modeled behavior and the 

design of the I-Trust algorithm.  This lower bound for ȕ is set at -0.5 for this system 

optimization, as higher values would be unrealistic for this.  As the parameter beta 

approaches -0.5, the parameter Į must also increase in magnitude to avoid false positives 
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in the system.  Values for ȕ above -0.5 do not provide effective results when modeling 

trust based on the command authentication count.  This is due to instability associated 

with large ȕ values and the associated large Į values required to maintain low false 

positive rates.  The bounds for ȕ as discussed are shown on a number line representing 

the search space for optimal Į and ȕ values, see Figure 10. 

With both bounds for ȕ established, the bounds for optimal Į are addressed.  The 

upper bound for Į is limited by the absolute value of ȕ.  Additionally, the Į parameter has 

a lower bound of zero.  The zero Į lower bound is a result of the positive nature of the Į 

parameter discussed in Section 3.3.3.1.  These relationships are also captured in Figure 3, 

which highlights the bounds and exclusion areas for Į and ȕ.  The exclusion areas are 

marked by hashed boxes, which indicate values not included in the parameter search.  

Horizontal arrows on the number line indicate the direction of the parameter search. 
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Figure 10 Number Line for Optimizing Į and ȕ Parameters 
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The final step in configuring the I-Trust mechanism is to search the possible 

values of Į and ȕ that provides the fewest false positives, and meets the desired security 

posture.  Searching the available values of Į and ȕ requires additional information 

regarding the system being configured.  The critical factors based upon system design 

necessary to perform Į, ȕ optimization are the expected failure (defection) rate for a 

legitimate user and the number of interactions per encounter.  Additionally, the 

configurable search parameters are: the step size for incrementing Į and ȕ, the number of 

times to sample each random encounter, the desired maximum false positive rate for the 

system, and bounds for average trust value.  The average trust value relates directly to the 

desired system security posture by keeping I-Trust values balanced which enables 

reliable detection of an attack during a command encounter. 

The search method used to identify the optimal Į and ȕ values begins with a loop 

over the ȕ value starting at the previously established upper bound.  This ȕ loop will run a 

second loop which will search Į from zero to the absolute value of the current ȕ.  These 

nested loops will cover the bounded values for both I-Trust algorithm parameters, see 

Figure 11.  

for(Beta = Beta_Bound; Beta >= -.5; Beta = Beta - BETA_INCREMENT){ 
 for(Alpha = 0; Alpha <= absval(Beta); Alpha = Alpha + 
ALPHA_INCREMENT){ 
  Series_Of_Encounters(); 

} 
} 

Figure 11 Į and ȕ Loop Pseudo Code 

Within the Į loop, a series of encounters are executed base upon the number 

established by the search parameter.  This series of encounters is a loop over the number 

of encounters which computes each series of interactions.  The number of encounters 
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computed should be large enough to significantly indicate the average number of false 

positives the system will generate per encounter.  The average interaction trust value for 

each encounter is computed, along with the average of all encounters for a given set of 

parameters (Į, ȕ).  Additionally, the number of false positives experienced during the 

series of encounters is calculated.  Pseudo code for the series of encounters loop is shown 

in Figure 12. 

 

Series_Of_Encounters(){ 
 for(Encounter = 0; Encounter < RANDOM_ENCOUNTERS; Encounter++){ 
  Interaction_Series(); 
  if (ISeries_False_Positive > 1){ 
   Encounter_False_Positive++; 
  } 
  ISeries_Avg_Sum = ISeries_Avg_Sum + ISeries_Avg; 
 }  
 Encounter_Trust_Avg = ISeries_Avg_Sum / RANDOM_ENCOUNTERS; 
} 

Figure 12 Series of Encounters Pseudo Code 
 

The series of encounters loop contains a loop to execute a series of interactions in 

an encounter.  This interaction series loop processes the number of interactions specified 

for each encounter, while calculating statistics necessary for the series of encounters.  

Each interaction is determined to be either cooperation or defection based upon the 

system being modeled.  In this case each legitimate interaction has a one in ten chance of 

being defection.  If at any time in the interaction series the trust value falls below the 

policy limit, a false positive is counted.  A pseudo code example of this loop is shown in 

Figure 13. 
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Interaction_Series(){ 
//All variables are initialized to zero 

 for (Interaction = 1; Interaction <= NUM_INTERACTIONS; 
Interaction++){ 
  if ((rand() % 10 + 1) == 1) IR=0; 
  else IR=1; 
  // Run the random interaciton through the Simple Trust 
Algorithm 
  // Alpha and Beta are set by their loops 

// An interaction of 0 is defection; 1 is cooperation 
  Simple_Interaction(IR); 
  // Check for false positive in interaction set 
  if(T <= POLICY_LIMIT){ 
   ISeries_False_Pos ++ ; 
  } 
  //Accumulate a sum to average the Interaction Trust Values 
  ITrust_Sum = ITrust_Sum + T; 
 } 
 // Calculate the average interaction trust value 
 ISeries_Avg = ITrust_Sum / NUM_INTERACTIONS; 
} 

Figure 13 Interaction Series Pseudo Code 

The search for optimal I-Trust parameters is complete when user conditions are 

met with regards to false positives and average trust value.  These parameters are checked 

at the end of each series of encounters and are reported as the result of the optimization 

for Į and ȕ.  The initial values returned from the search are optimized based upon the 

input parameters.  The results of this process is illustrated with a complete example; see 

Table 13.  A sample screen shot from the optimization tool which calculated the optimal 

I-Trust parameters is shown in Figure 14. 

Table 13 Optimization Example 1 
 
 
 
 

 

 

 

Optimization Example Setup Optimization Example Results 
False Negative Rate .001 Attempts 65 
Policy Limit -.8 ȕ Bound  -.0245 
Step Size .0005 Į Result .0025 
False Positive Rate 0 ȕ Result -.0245 
Average Trust Value ±.06 Result Avg Trust -.04 
Expected Failure Rate 1/10 False Positives 0 
Interactions Per 
Encounter 

200  

Encounter Samples 1,000 
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Figure 14 I-Trust Parameter Optimization Tool 

 

With an input of 0.001 for an acceptable false negative rate the resulting number 

of attempts is 65.  The policy limit of -0.8 establishes an initial bound for ȕ of (-0.0245).  

The initial result is Į = 0.0025, ȕ = -0.0245, which meets the requirements for false 

positives and average trust rating.  A graph displaying this result for Example 1 is shown 

in Figure 15.  From the graph of the interaction trust value versus interaction number we 

see the trust value drops below the policy limit exactly at the required 65 interactions for 

the initial abuse case (where the red line crosses -0.8).  Additionally, the legitimate user 

will maintain an average trust rating of 0.04. 

A second abuse case is also shown where the attacker transmits commands to be 

processed during the legitimate ground station's command session.  This activity begins 

at interaction 50 and continues through the end of the simulation.  The I-Trust value for 

this case drops below the policy limit before the end of the encounter, however it requires 
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more defection interactions to reach this limit.  This is due to the occasional cooperation 

interactions supplied by the legitimate ground station. 

 
Figure 15 Example 1: Initial I-Trust Optimization 

 

While the Į and ȕ values in the Example 1 result are optimal for the input 

requirements, they can be enhanced for faster response to the malicious events while 

maintaining a low false positive rate.  This is achieved by continuing the search process 

through Į, ȕ and selecting a set of parameters which results in zero false positives after an 

increment in ȕ which results in extensive false positives.  This selection of I-Trust 

parameters is made without consideration for the trust average.  The resulting parameters 

are taken at the point where the minimum Į is given for the current ȕ, while maintaining 
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a user acceptable false positive rate.  By selecting this solution we get increased security 

potential with minimal false positives.  An example which illustrates this solution is 

shown in Figure 16, with optimization settings in Table 14. 

 
Figure 16 Optimization Example 2: No Average Constraint, Min Alpha for Beta 

 
Table 14 Optimization Example 2 
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I-Trust 
Value

Interaction

Optimization Example Setup Optimization Example Results 
False Negative Rate .00015 Attempts 9 
Policy Limit -.8 ȕ Bound  N/A 
Step Size .0005 Į Result .0295 
False Positive Rate 0 ȕ Result -.1638 
Average Trust Value N/A Result Avg Trust .675 
Expected Failure Rate 1/10 False Positives 0 
Interactions Per 
Encounter 

200  

Encounter Samples 1,000 
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Example 2 shows increased performance for identifying the initial attack pattern, 

with 9 attempts bringing the trust value down to the policy limit.  Additionally, the 

number of false positives for the series of encounters is zero, which is the same as in 

Example 1.  This modified method of selecting Į and ȕ results in a higher overall trust 

average of 0.675, which may not be suitable when identifying attacks during extended 

encounters.  An example of where this optimization would not fit a mission requirement 

is where emphasis is placed on the threat of an attacker intruding on an ongoing 

command session.  With reference to Figure 16, if an attacker were to begin the forgery 

attack after legitimate interaction 150 instead of 50 as shown, the system would require 

additional defection interactions to identify the attack.  This results in a final method for 

selecting optimal Į and ȕ parameters. 

Both methods for optimizing selecting I-Trust configuration parameters are 

combined, which will result in: minimum Į for the current ȕ, an overall average trust 

rating within a specified range, and false positives within a user defined range.  Results 

from this selection method can identify an attack independent of an active legitimate 

commanding session in fewer interactions than the initial method.  Additionally, this 

selection method provides an active defense posture during a legitimate commanding 

session not seen with the first two selection methods.  An example of optimization results 

utilizing this selection method are shown in Table 15 and Figure 17. 

 

 

 

 



 

96 
 

Table 15 Optimization Example 3 
 
 
 
 
 
 
 

 

 

 
Figure 17 Optimization Example 3: Average Constraint, Minimum Alpha for Beta 

 

Example 3 shows the result of the optimization incorporating the minimum Į for 

ȕ, constrained average trust rating, and constrained false positives.  The key benefit of 

this method is a compromise between initial security and extended defense posture.  The 
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low absolute value of average trust rating provides relatively constant threat response 

throughout a command encounter.  False positives are also managed with this method 

with zero false positives reported in 1,000 command encounter samples. 

The optimization results with constrained average, false positives , and minimum 

Į can only exist within a small band of possible parameter values.  These represent the 

globally optimum results and are acquired by searching the parameter space starting from 

high values of ȕ.  Figure 18 illustrates pseudo code implementing the three methods of 

selecting and reporting results from the parameter optimization. 

if (Encounter_Trust_Avg > -1 * AVG_TRUST && Encounter_Trust_Avg < 
AVG_TRUST){ 

//Extract Result "Initial Optimization - Average in range" 
{ 
 
if((false_pos_sum < false_pos_prev)&&(false_pos_sum <= 
FALSE_POS_RATE)){ 
 if ((Encounter_Trust_Avg > -1 * AVG_TRUST) && 
(Encounter_Trust_Avg < AVG_TRUST)){ 
          //Extract Result "Average in range, Minimum Alpha for Current 
Beta" 

{ 
 else{ 

    //Extract Result "Minimum Alpha for Current Beta" 
 } 
} 
false_pos_prev = false_pos_sum; 
 

Figure 18 Optimization Result Selection 
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Appendix B. Illustrated CTMS Test Sequence 

Utilizing the test environment described in Section 4.2, three Flight Software 

(FSW) builds were tested with the forgery attack sequence presented in Section 4.4.  The 

FSW build used in the following illustrations is FSW-B, which consisted of basic 

CubeSat FSW with the Consolidated Trust Management System (CTMS) architecture 

implementation.  The FSW was also modified to utilize the CTMS implementation by 

inserting CTMS Application Programming Interface (API) calls into the command 

handler application to monitor command interactions and enforce policy actions.  

Furthermore, a CTMS specific telecommand (secure unlock) was added to the basic 

flight software which utilizes the credential trust mechanism to authenticate ground 

stations.  The CTMS secure unlock command was used in this test scenario to 

acknowledge the detection of an attack sequence and to restore commanding 

functionality for anonymous ground stations.  This is necessary as anonymous 

commanding can be disabled by system security Policy 3 described in Section 4.5. 

The first step in this example CTMS test sequence corresponds to a normal 

satellite telecommanding scenario.  The legitimate ground station in this step transmits a 

sequence of commands without user authentication to the satellite.  This activity 

increments the satellite's onboard command authentication counter and increases the 

Interaction Trust (I-Trust) value for the anonymous CTMS user. 

The satellite diagnostic port is monitored during the legitimate command 

sequence.  The diagnostic port displays the following information: the byte pattern for 
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each command received, command specific details, a policy evaluation result, and the 

current CTMS I-Trust data.  Figure 19 is the last message displayed on the satellite 

diagnostic port after the legitimate command sequence is completed. 

The first line in the diagnostic output shown in Figure 19 is the byte sequence for 

the last telecommand received.  The second line is a header indicating the following five 

lines are details regarding the processing of the last command received.  These details 

indicate what type of message was received (MessageID), the result of a policy check 

(Trust OK...), and the action following the policy check (CMD... will be processed).  The 

remaining information is the current CTMS I-Trust data.  This data indicates that the 

entity tracked in the TMS with MemberID 0 has two associated simple I-Trust metrics.  

MemberID 0 represents interactions from unauthenticated users.  The I-Trust metrics 

correspond to trust values computed based upon the command authentication count 

marker using the simple I-Trust algorithm.  The reason for computing multiple trust 

values for the same marker is to demonstrate the configurable nature of the CTMS 

architecture to match a target systems specific performance profile.  The topic of 

performance is addressed further in Section 4.7.1 and Appendix A. 

 
Figure 19 Step 1, Satellite Diagnostic Port Output 
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The I-Trust values displayed for Metric 0 and Metric 1 are positive values, which 

indicate the series of legitimate commands received during the normal command 

sequence.  These values were both initialized to zero and have different values in  

Figure 19 due to each metric being associated with individual I-Trust parameters as 

shown.  MetricID 0 is used in the policy evaluation for this experiment, and as the trust 

value for this metric is above the policy limit of -0.5 the command was processed. 

The second step in the CTMS test is the execution of a forgery attack on the 

satellite.  This attack is an instance of the abuse case described in Section 4.4.  Once the 

legitimate command session has completed and the satellite has moved into the attackers 

field of view, the malicious sequence of commands are transmitted. 

The malicious commands in this experiment are transmitted by a custom 

commanding tool.  These commands are similar to those which were sent by CGA in 

Step 1, however the proper command authentication count is unknown to the attacker.  

Figure 20 shows the custom commanding tool setup for this step of the experiment. 

The command selected for transmission is a simple no operation command.  This 

commands only function is to test the command transmission and execution path.  Below 

the command selection in Figure 20 are the command header fields, which are setup for 

the no operation command.  There are no arguments for this command so the command 

data field is blank.  The Command Authentication Count (Auth Count) field is shaded to 

indicate that for the forgery attack this field will be incremented after transmission for the 

number of attempts indicated. 
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Figure 20 Step 2, Custom Commanding Tool Setup 

 

 
Figure 21 Step 2, Invalid Command Authentication Count Error 

 

During the attack, telecommands are received by the satellite with an invalid 

command authentication count value.  The error generated by this activity can be seen on 

the diagnostic port, see Figure 21.  Portions of the diagnostic output from the last 

legitimate command processed remains on the screen while the attackers command and 

error information are below.  Each command received with an invalid command 
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authentication count is considered a defection by an anonymous ground station and the  

I-Trust value for the CTMS member ID is decreased. 

Once the attack sequence reaches the current satellite command authentication 

count, the attackers command is evaluated based upon system security policy.  The trust 

value shown in the diagnostic output for this event is now -0.9996, which is well below 

the policy limit of -0.5, see Figure 22.  The output also shows the policy evaluation, 

which resulted in the command being rejected. 

 
Figure 22 Step 2, Trust Policy Check During Attack 

 

As the interaction trust values for anonymous entities is now below the policy 

limit it can only be restored through the secure unlock command.  This command is 

generated and transmitted to the satellite using the custom commanding tool, see  

Figure 23.  The secure unlock command contains a unique authentication credential as an 

argument in the command data field.  Upon processing this command, the satellite will 

restore the I-Trust values to zero which will re-enable anonymous commanding. 
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Figure 23 Secure Unlock Command Transmission 

 

The third CTMS test step is execution of the secure unlock command.  The 

unlock command is processed to evaluate the authentication credential, which is a more 

authoritative form of trust than the interaction trust value.  The diagnostic output for the 

credential evaluation follows the verification procedure outlined in Section 4.3.2.  This 

unlock command follows the last invalid command sent by the malicious user, which is 

indicated by the error at the top of the diagnostic display, see Figure 24.  The decrypted 

authentication credential is displayed on the diagnostic port followed by the checks 

necessary to validate the credential.  All of the checks are successful in this test which 

results in the I-Trust trust values for the anonymous MemberID being set to zero along 

with the command authentication counter. 
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Figure 24 Step 3, Secure Unlock Command Processing 

 

The final step in this example CTMS test is to transmit legitimate anonymous 

commands to the satellite for processing.  Since the secure unlock command was 

executed, the I-Trust value for anonymous commanding is set to zero.  Since the I-Trust 

value is now greater than the policy limit of -0.5, anonymous commands will be 

processed.  Additionally, the command authentication counter was reset to zero, which 

will allow the legitimate ground station to begin commanding with that count.  The first 

successful legitimate command after the unlock is verified with the diagnostic port output 

shown in Figure 25. 
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Figure 25 Step 4, Legitimate Commanding Following Unlock 
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