
Trustworthy kernel
separation through

monads

Peter White: wpd@qwest.net
Jim Hook: hook@cse.ogi.edu

Outline

• Spook and Programatica
• Architecture for high assurance of

separation
• End game: Running COTS

applications on COTS Hardware
• Results

Spook and
Programatica

What is Spook?

• A high assurance POSIX compliant kernel
– POSIX chosen to support COTS applications
– We think a real OS with high assurance is within reach

• Adds domain concept to POSIX
– Strict separation between domains

• Enforcement of a communication policy between
domains

– Special separation domain providing strict separation
between processes

• Enforcement of a communication policy on user
processes

• High assurance of strict separation based mostly
on types, and partly on proof of properties

Spook and programatica
• Programatica adds properties to programs

– Properties are specified along with the program, in the
same text file.

• Programatica is providing a formally specified
Haskell (syntax, semantics, and logic)

• Spook is a large program having a property
(Separation) as its main objective

• Spook properties take advantage of some of the
unique features of Haskell
– Laziness and infinite lists
– Potentially undefined computations
– Monads

• Conclusion: Spook is a good test case for
Programatica

Spook theme
(This presentation in one slide)

• Separation based on the ST monad
• Concurrency based on the IO

monad, and laziness
• Avoid proof, use types!
• Bottom line: high assurance on a

larger OS

Architecture for
Assurance

Final Goal: Strictly separated
POSIX user processes

• Definition of Goguen and
Meseguer [2]:

– “To establish that information
does not flow from object A to
object B, it is sufficient to
establish that A’s behaviour
has no effect on what B can
observe.”

– “B’s view of the system is
independent of A’s behaviour”

– The definition is formalized in
terms of potentially infinite
lists of inputs and outputs for
A and B.

• Historical note: This definition
superseded by Rushby [3]

• Fundamental goal of Spook:
provide high grade separation
between Spook processes and
/ or domains

upA :: IO () upB :: IO ()

up = “User Process”

non interference

upC :: IO ()

interference interference

By policy, some processes are
permitted to communicate, others
are not.

Architectural theme: Avoid proof,
use type inference instead

• Assurance by types alone [4]
– m :: (a -> b) -> m a -> m b
– � m f = map f . r where r

is a rearrangement

• Assurance by proof
– m :: (a -> b) -> ma -> m b
– � as < m f as

• This conclusion cannot be
reached based on types
alone, requires proof
based on the properties of
particular f:

– � as < m (+1) as

A simple example

Architectural theme: Separation
arising from types

• Assurance by types alone
[4]

– st1 :: [m] -> ST s [m]
– st2 :: [m] -> ST s [m]

• st1 and st2 are independent
when encapsulated by runST

– � following code fragment
will return True no matter how
interleave1 and interleave2 do
their interleaving

• Unfortunately, a kernel must do
IO activities, so [m] -> ST s [m] is
not the correct type for the kernel.

• Type of the kernel must be IO ().
• Basic Haskell rule: something of

type IO () can call something of
type [m] -> ST s [m], but
something of type [m] -> ST s [m]
cannot (safely) call something of
type IO ().

• Architectural imperative of Spook:
Put as much as possible into the
type [m] -> ST s [m], and as little
as possible into the type IO ().

let out1 = runST (st1 in1)
 out2 = runST (st2 in2)
 mixed1 = interleave1 out1 out2
 mixed2 = interleave2 out1 out2
 out1a = filter fromst1 mixed1
 out1b = filter fromst1 mixed2
in take n out1a == take n out1b

First step: A portion of the kernel
for each user process

• Each process has
– User half (u/2): portion of the

process running the user’s
application.

– System half (s/2): portion of the
kernel dedicated to the process.

– Posix interface between u/2 and
s/2.

• The goal of non interference
between the user halves should
be supported by non interference
between the system halves

• Interprocess communication goes
through the kernel core (kc), which
enforces the communication policy

u/2 = “User Half”
s/2 = “System Half”
kc = “Kernel core”

system mode

user mode

s/2A :: IO () s/2B :: IO ()

system
calls

system
calls

u/2A :: IO () u/2B :: IO ()non interference

u/2C :: IO ()

interference interference

s/2C :: IO ()

kc :: IO ()

non interference

su
pp

or
ts

Major problem: Getting the non
interference between s/2A and s/2B

• Because they support POSIX,
each system half will be
complex and state intensive

– In typical programming
languages (e.g. C, C++), it is
difficult (or impossible) to
guarantee that there are no
coding errors whereby state
manipulations in one system
half affect the state in another
system half.

u/2 = “User Half”
s/2 = “System Half”

s/2A :: IO () s/2B :: IO ()
system

calls

system
calls

u/2A :: IO () u/2B :: IO ()non interference

non interference

state pollution

Solution: Encapsulation of a state
transformer by runST

• Theorem of Launchbury [1]:
– When the state transformer is

encapsulated by runST, Values
within one state transformer
cannot depend upon references
within another state transformer

– When encapsulated by runST, the
behaviour of the state transformer
is independent of the layout of
data in memory

– runST :: forall a.(forall s.ST s a)-> a
is a pure function

• The IO shell part of the system
half is not covered by this
theorem:

– The IO shell should be thin
– The executive can be thick

u/2 = “User Half”
s/2 = “System Half”
exec = “Executive”
grey box = Kernel thread

system
calls

system
calls

u/2A :: IO () u/2B :: IO ()non interference

non interference

state pollution

state
pollution?

• The statements of state transformer
independence, and non interference
are tantalizingly close.

s/2B :: IO ()

exB:: [m]->ST s2 [m]

s/2A :: IO ()

exA:: [m]->ST s1 [m]

Message Passing and Kernel
Threads

• Each system half is contained
in a kernel thread

• The kernel core is contained in
a kernel thread

• The kernel threads
communicate with messages

• The executive is a state
transformer (encapsulated by
runST) that transforms a
(potentially infinite) list of input
messages into a (potentially
infinite) list of output messages

• The executive is polymorphic
(with class constraint) in the
message type, meaning that
most details of the message
type do not affect reasoning
about the executive

u/2 = “User Half”
s/2 = “System Half”
kc = “Kernel core”

system mode

user mode

s/2A :: IO ()

system
calls

system
calls

u/2A :: IO () u/2B :: IO ()non interference

u/2C :: IO ()

interference interference

exA :: [m]->ST s1 [m]

s/2B :: IO ()

exB:: [m]->ST s2 [m]
non interference

s/2C :: IO ()

exC:: [m]->ST s3 [m]

kc :: IO ()

exkc:: [m]->ST s3 [m]ke
rn

el
 th

re
ad

ke
rn

el
 th

re
ad

for Spook: Model = Program

• Because the state transformer type [m] -> ST s
[m] can handle infinite lists, the statements of
separation and non interference apply directly to
an object in the program.

• Because Programatica provides a logic of
Haskell programs, the separation statement
applies directly to the program.

• Because Programatica places the properties in
the same text as the program, for Spook, the
model and the program are one and the same.

Mediation of message passing

• By design, the state transformers only communicate with
the kernel core. Direct interference of state transformers is
therefore mediated by the kernel core.

• State transformers cannot interfere with each other by
means of internal state manipulations.
– Enforced by type inference

• State transformers do not directly interfere with each other
by means of messages,
– Property of design
– Will try to raise “do not” to “cannot” by better use of message

types.

Overlapping system calls

• Activities on behalf of a process must be overlapped (IO activity
with non-IO system call)

• The asynchronad is a monad developed for Spook, it permits a
system call program to be implemented in steps, where steps
from different programs can be interleaved.

• The executive is responsible for making the interleaving work.

Monad 101
• Bind:

– >>= :: M a -> (a -> M b) -> M b

• Unit:
– return :: a -> M a

• The monad sequences monad actions.
• Operation a1 returns a value, which is plugged into x2,

etc.
• Normally, when the sequence of operations begins, the

computation continues until the return without an explicit
break.

�x1 -> a1 >>= �x2 -> a2 >>= … >>= �xn -> an >>= return an

The first parameter (x1) is a parameter to the entire sequence of monad actions

Asynchronad
Broken operation with partitioned state

• At each bind (>>=) operation, the asynchronad can:
– Take in an input message
– Continue or break

• On break, can produce one or more “uniqified” output messages
• On continue, can accumulate one or more output messages

– Transform the partitioned state (kn -> cn)
– Reduce the partitioned state guard (�n)

• The executive is now a state transformer layer to
coordinate the asynchronad actions

�x1 -> a1

(�1, k1 --> c1) (�2, k2 -> c2)

…>>= return an �x2 -> a2 >>= >>= �xn -> an >>=

(�2, k2 -> c2)
Asynchronad state

Asynchronad

exec::[m]->ST s [m] exec::[m]->ST s [m] exec::[m]->ST s [m]
Executive

Partitioned State

• The state is broken into state components
• Each system call is assigned a guard:

– observe set of state components that it is allowed to
access

– alter set of state components it is allowed to modify
• The local (system half) and global access /

modify sets are used to control the interleaving
of system calls on behalf of a single process

• The global (kernel core) observe / alter sets can
be used for covert channel analysis and
elimination

Overall kernel thread
structure

• Three layers
– IO shell (IO monad) :: IO ()
– Executive State transformer (ST

monad): [m] -> ST s [m]
– Actions (Asynchronad) :: Asynchronad

k c m p a

End Game

Running COTS applications

Running real COTS applications

• COTS applications are rarely strictly
POSIX compliant, they use other
features of Linux or Windows, and
interfere with each other.

• Running them in non interfering
processes will break them.

Running real COTS applications:
one approach

• Run VmWare,
encapsulated in a process
in a separation domain.

• Requires some Linux
extensions to POSIX

• This would support a
NetTop style architecture Process1 Process2

VmWare VmWare

Linux,
Top secret

Windows NT,
Confidential

Spook separation domain

Another approach:
separated domains

(process / domain model)

• Divide spook into separated domains
– Standard domain: Standard POSIX, with

enough Linux hooks added to support
common COTS applications.

– Separated domain: Standard POSIX with
limitations, strictly separated processes

• Provide socket inter-domain
communication, mediated by Spook

Results

ST s [m] encapsulation
(as of 3/5/2002)

• System half encapsulated: 6766 HLOC
• System half IO shell: 166 HLOC (2.4%)
• Kernel core encapsulated: 1859 HLOC
• Kernel core IO shell: 166 HLOC (8.2%)
• Kernel core other (e.g. init): 3715 HLOC
• Total Spook: 14959 HLOC

System calls implemented
(22 so far)

• fork*
– fork interacts with many

features of POSIX. As more
features are introduced, fork
must be revisited.

• exit
• getpid
• getppid
• getpgrp
• getpgid
• setpgid
• setpgrp
• setsid

• alarm
• pause
• sigaction
• sigprocmask
• sigpending
• kill
• sigsuspend
• sleep
• sigemptyset
• sigfillset
• sigaddset
• sigdelset
• sigismember

System calls coming soon

• getlogin
• getuid
• geteuid
• getgid
• getegid
• getgroups

• mq_open
• mq_close
• mq_send
• mq_receive
• mq_notify
• mq_getattr
• mq_setattr
• mq_unlink

References

• John Launchbury and Simon Peyton Jones, Lazy Functional State
Threads. In PLDI’94: Programming Language Design and
Implementation, Orlando, Florida, pages 24-35, June 1994, ACM
Press.

• J. A. Goguen and J. Meseguer, Security Policies and Security Models,
In IEEE Symposium on Security and Privacy, 1982.

• J. Rushby, Noninterference, Transitivity, and Channel-Control Security
Policies, 1992.

• P. Wadler, Theorems for free, Proceedings of the 4th International
Conference on Functional Programming Languages and Computer
Architecture, FPCA 1989, London, UK.

Backup

Spook and Haskell

• Why would you write an operating system
in Haskell?
– Type safety for assurance
– ST monad provides a good basis for

separation
– Haskell has excellent concurrency primitives,

and the full power of a functional language for
combining and composing concurrency
operations.

– Heap allocation, which is a good basis for
some resource allocation problems.

• In other words, many parts of the problem
are already solved!

Further work

Device drivers

• So far, there is only a timer device driver
– Uses only resources allocated by the system

halves (no resource covert channels)
– However, lack of covert channels still

depends on correctness of timer device driver
• File system device driver will be hard

work, this may be part of the kernel core

Haskell on bare metal

�1

�2

�3

Programatica
Contract work

Hardware

Linux

Haskell
run time

Spook

Process
(Haskell)

Hardware

Linux

Haskell
run time

Spook +
Real DDs

Process
(a.out)

Device
simulation

Hardware

Bare metal
Run time

Spook +
Real DDs

Process
(a.out)

Phase 4: Theorem proving
Phase 5: Performance improvements

Future work

Programatica will provide many POSIX.1 and some POSIX.4 interfaces

Covert channel elimination

• There is a potential covert channel when
system calls by different user processes
affect the same component of the kernel
core partitioned state

• Techniques to eliminate the covert
channels:
– Partition resources according to the process /

domain model
– Special case techniques, such as random

generation of process Ids

POSIX.1 compliance
(98 calls)

Access
Alarm
Cfgetispeed
Cfgetospeed
Cfsetispeed
Cfsetospeed
Chdir
Chmod
Chown
Close
Closedir
Creat
Ctermid
Cuserid
Dup
Dup2

Execl
Execle
Execlp
Execv
Execve
Execvp
_exit
Fcntl
Fdopen
Fileno
Fork
Fpathconf
Fstat
Getcwd
Getegid
Getenv

Geteuid
Getgid
Getgrgid
Getgrnam
Getgroups
Getlogin
Getpgid
Getpgrp
Getpid
Getppid
Getpwnam
Getpwuid
Getuid
Kill
Link
Lseek
Mkdir

Mkfifo
Open
Opendir
Pathconf
Pause
Pipe
Read
Readdir
Rename
Rewinddir
Rmdir
Setgid
Setpgid
Setpgrp
Setsid
Setuid
Sigaction
Sigaddset

Sigdelset
Sigemptyset
Sigfillset
Sigismember
Siglongjmp
Sigpending
Sigprocmask
Sigsetjmp
Sigsuspend
Sleep
Stat
Sysconf
Tcdrain
Tcflow
Tcflush
Tcgetattr

Tcgetpgroup
Tcsendbreak
Tcsetattr
Tcsetpgrp
Time
Times
Ttyname
Tzset
Umask
Uname
Unlink
Utime
Wait
Waitpid
Write

Pink = Coming soon
Lavender = Completed

POSIX.4 compliance
(58 calls)

Sigwaitinfo
Sigtimedwait
Sigqueue
Sched_setparam
Sched_getparam
Sched_setcheduler
Sched_getscheduler
Sched_yield
Sched_get_priority_max
Sched_get_priority_min
Sched_rr_get_interval
Clock_settime
Clock_gettime
Clock_getres
Timer_create
Timer_delete

Timer_settime
Timer_gettime
Timer_getoverrun
Nanosleep
Aio_read
Aio_write
Lio_listio
Aio_suspend
Aio_cancel
Aio_error
Aio_return
Aio_fsync
Fdatasync
Msync
Aio_fsync
Fsync

Mmap
Munmap
Ftruncate
Msync
Mlockall
Munlockall
Mlock
Munlock
Mprotect
Mq_open
Mq_close
Mq_unlink
Mq_send
Ma_receive
Mq_notify
Mq_setattr

Mq_getattr
Sem_init
Sem_destroy
Sem_open
Sem_close
Sem_unlink
Sem_wait
Sem_trywait
Sem_post
Sem_getvalue

	Trustworthy kernel separation through monads
	Outline
	Spook and Programatica
	What is Spook?
	Spook and programatica
	Spook theme(This presentation in one slide)
	Architecture for Assurance
	Final Goal: Strictly separated POSIX user processes
	Architectural theme: Avoid proof, use type inference instead
	Architectural theme: Separation arising from types
	First step: A portion of the kernel for each user process
	Major problem: Getting the non interference between s/2A and s/2B
	Solution: Encapsulation of a state transformer by runST
	Message Passing and Kernel Threads
	for Spook: Model = Program
	Mediation of message passing
	Overlapping system calls
	Monad 101
	AsynchronadBroken operation with partitioned state
	Partitioned State
	Overall kernel thread structure
	End Game
	Running real COTS applications
	Running real COTS applications: one approach
	Another approach: separated domains(process / domain model)
	Results
	ST s [m] encapsulation(as of 3/5/2002)
	System calls implemented(22 so far)
	System calls coming soon
	References
	Backup
	Spook and Haskell
	Further work
	Device drivers
	Haskell on bare metal
	Covert channel elimination
	POSIX.1 compliance(98 calls)
	POSIX.4 compliance(58 calls)

