

Automated Synthesis Framework for Network Security and Resilience

Matthew Caesar and Kevin Jin University of Illinois at Urbana-Champaign University of Arkansas <u>caesar@illinois.edu</u>, 847-323-2968

2

We need a science of security

- Practice of doing cyber-security research needs to change
 - Attempts based on reaction to known/imagined threats
 - Too often applied in ad-hoc fashion
- SoS program: move security research beyond ad-hoc reactions
 - Need a principled and rigorous framework
 - Need a <u>scientific</u> approach

What is science?

sci•ence noun \'sī-ən(t)s∖

: the <u>systematic study</u> of the structure and behavior of the natural and physical world through observation and experiment

The scientific method

- 1. Ask a question
- 2. Formulate a hypothesis
- 3. Design and conduct an experiment
- 4. Analyze results

Towards a science of security

- •Can we apply the scientific method to the domain of cybersecurity?
 - Challenges: complex, large scale+dynamic environments, many protocols/mechanisms, demanding requirements for accuracy/precision

4

•Need a new approach

5

Our project

- Building a rigorous methodology for science of security
 - Techniques for performing/integrating security analyses to automatically and rigorously study hypotheses about end to end security of a network
- Address challenges in applying science to security
 - Leveraging <u>automation</u> to scale and cope with complexity
 - Leveraging <u>rigor</u> for accuracy
- Specific outcome: Resilient network architecture
 - Specific focus: network data flow security

Our approach

Leverage network synthesis to automate experiments, apply results

Enables practical uses: deriving patches, automating configuration

Builds upon mathematics (formal logics, formal methods)

Task plan

• Task 1: Network Control Synthesis

- Develop algorithms/systems that perform automated synthesis
- Automatically derive configurations, patches/fixes

• Task 2: Network Software Analysis and Modeling

- Develop frameworks for writing secure network control programs
- Joint network/software analysis, integration with network programming languages

Task 3: Resilient and Self-healing Network Applications

- Self-healing network management
- Applications to cyber-physical energy systems

Progress Highlights

[Give general overview of progress, # publications, outreach efforts, initiatives]

- Built first operational data plane verifier
- Technology transfer
 - Spawned startup company with multiple active pilots in DoD and commercial sector, sold to VMware Sept 2019
 - Ongoing transfers to AT&T, Boeing,

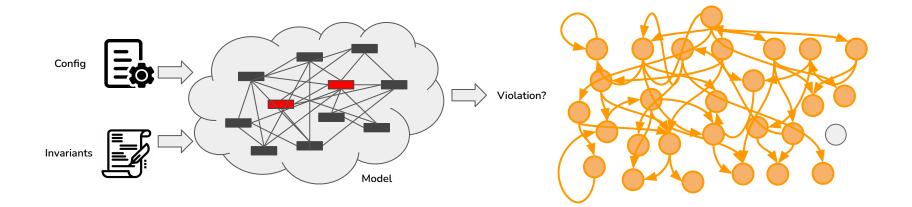
This talk

We will talk about a few particular activities we are doing:

0.00

1. Self-driving Service Provider Infrastructures

2. Resilient Power Systems

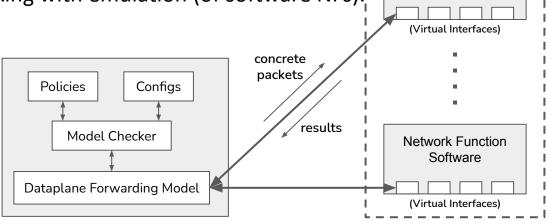

3. Supporting Teaching and Research with Virtualized IoT Systems

Towards Self-Driving Service Provider Infrastructures

One approach: Model-based Verification

- What is verification?
 - Exhaustively check against all possible states, based on a model of the system.

- Limitations
 - Models can be less accurate compared to running the actual code.
 - Models can be more difficult to understand

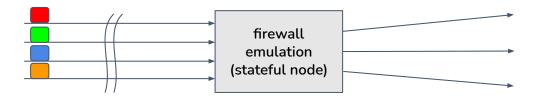

Alternative approach: Emulation testing

- What is emulation testing?
 - Run the actual software in an emulated environment (e.g., VMs).
- Limitation
 - Limited coverage.

Problem & Solution

- Problem
 - Lack of accurate models for complex NFs.
- Solution
 - Incorporate model checking with emulation (of software NFs).
- Challenges
 - How to emulate?
 - Emulation state tracking.
 - Distribute workload.
 - Multi-connection coord.
 - In-band connection initiation.
 - Drop interpretation.

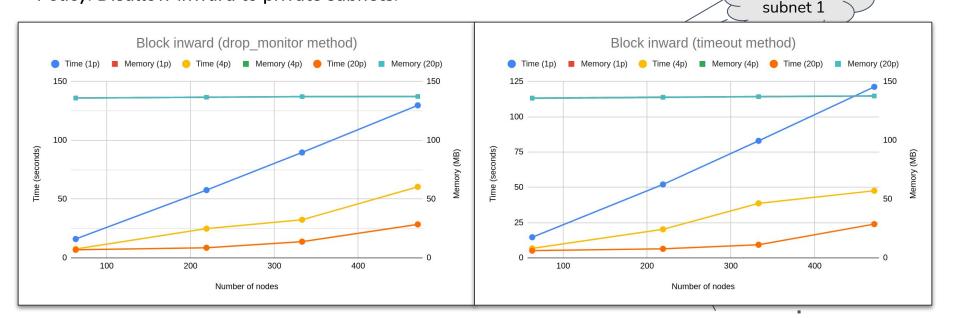
Lightweight Emulation Hypervisor


Network Function Software

Example Challenge: Multi-connection coordination

- Partial-order reduction (POR)
 - If any ordering of events (A, B, C) yields the same result, we only test one of them.

(This preserves completeness.)


- Most of our model is stateless. Apply POR for interleaving connections.
 - Only the orders of packets entering the emulations are relevant.
 - i. For now, "emulation instances" ≡ "stateful nodes".
 - POR heuristic (pick arbitrary connection until everyone is entering emulation instances)

Public

Evaluation: Stateful firewalling (time & memory)

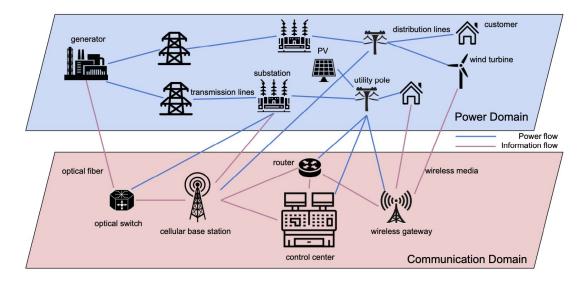
Policy: Disallow inward to private subnets.

- Distributing EC workload helps.
- Timeout performs slightly better than the drop_monitor method.
- Approx. linear CPU time & constant memory usage.

Conclusions

Our proof-of-concept system can accurately generate plans for complex tasks

Model checking with emulation techniques to reduce the need for accurate formal models


Next steps: domain-specific optimizations, modeling of human actions, integration with (mirrored) AT&T service platform

Towards a Resilient Power Grid with Power-Communication Networks Interdependency Study

Cyber Resilience in Energy Systems

Definition of "Resilience" from Wikipedia

- Computer network "ability to maintain service in the face of faults"
- Engineering and construction "ability to respond, absorb, and adapt to, as well as recover in a disruptive event"

Our Approach

- Literature review
 - IET Survey paper 2019
 - Limitations of existing works
 - Only analyzing impact in one direction, i.e., from cyber to power
 - Lacking accurate models of the interdependencies
 - Lacking efforts to address mitigation of and recovery from the failures
- Interdependence modeling and testbed setup
 - DSSNet, combining power simulation and network emulation/hardware
 - ACM SIGSIM-PADS'19, Best Paper Award
- Grid resilience applications
 - Self-healing communication network
 - IEEE SmartGridComm'20, Best Paper Award
 - Distribution grid restoration
 - IEEE Transactions on Smart Grid [2nd round review]
 - MAD attack detection
 - IEEE Transactions on Smart Grid [In preparation]

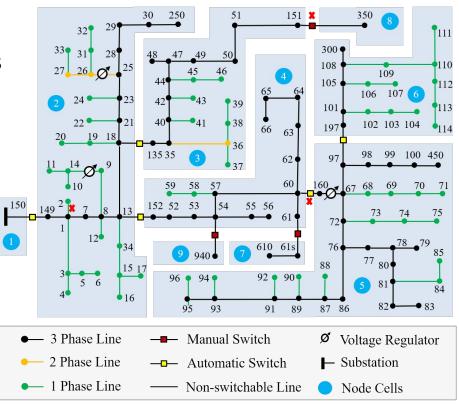
Application: Distribution Grid Restoration

- Current restoration takes days or even weeks
 - Hurricane Sandy restoration times
 - PJM: 31 days
 - NYISO: 12 days
 - ISO-NE: 7 days
- Power restoration process
 - Damage assessment
 - Crew dispatch: operation crew, repair crew, ...
 - Restoration: energize loads by propagating electricity from substation downwards

Related works

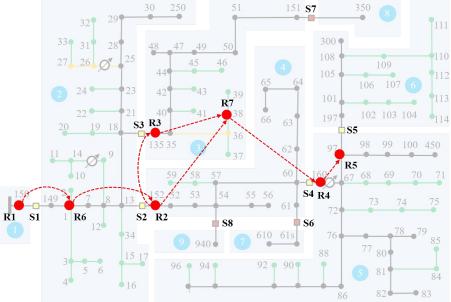
- Distribution system restoration under natural disasters [1][2]
 - Lack of communication interdependency
- Restoration with communication consideration [3][4]
 - Abstract model that cannot be used directly
- Need an "executable" restoration planning tool for utility companies in face of disasters

[1] Meng, Song, and Wei Sun. "Robust Distribution System Load Restoration with Time-Dependent Cold Load Pickup." *IEEE Transactions on Power Systems* (2020).

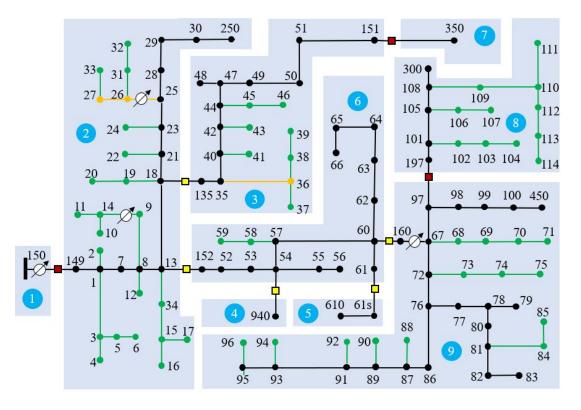

[2] Yang, Li-Jun, You Zhao, Chen Wang, Peng Gao, and Jin-Hui Hao. "Resilience-oriented hierarchical service restoration in distribution system considering microgrids." *IEEE Access* 7 (2019): 152729-152743.

[3] Wäfler, Jonas, and Poul E. Heegaard. "Interdependency in smart grid recovery." In 2015 7th International Workshop on Reliable Networks Design and Modeling (RNDM), pp. 201-207. IEEE, 2015.

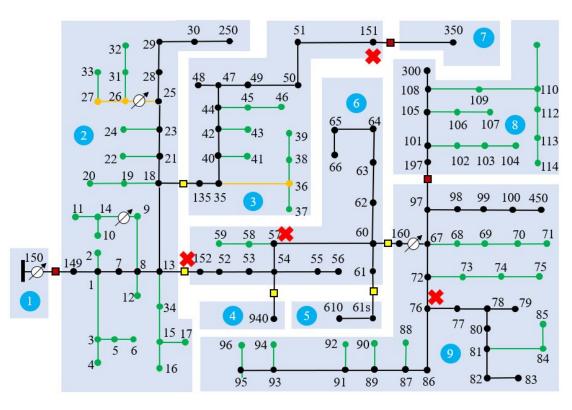
[4] Baidya, Prabin M., and Wei Sun. "Effective restoration strategies of interdependent power system and communication network." *The Journal of Engineering* 2017, no. 13 (2017): 1760-1764.


Step 1. Build a two-layer graph model

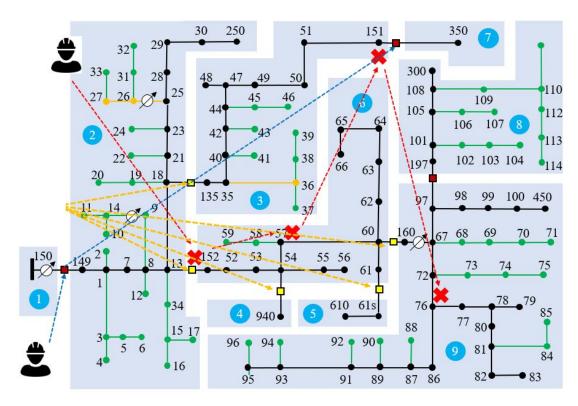
- Power grid model (e.g. IEEE-123 system)
 - Feeders, branches
 - Manual/automatic switches
 - Node cells (blocks) as energization units

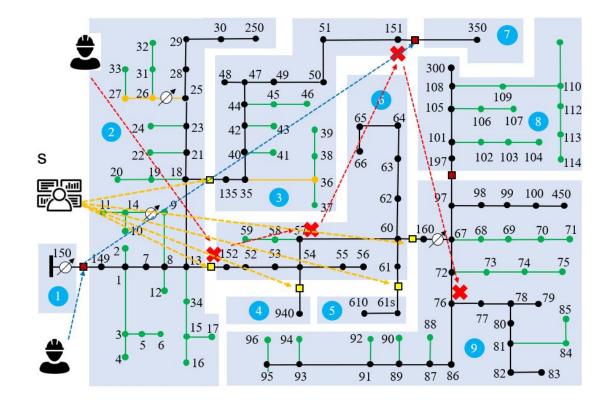

Step 1. Build a two-layer graph model

- Communication overlay (e.g. wireless mesh network)
 - Wireless gateways that control automatic switches
 - Wireless links



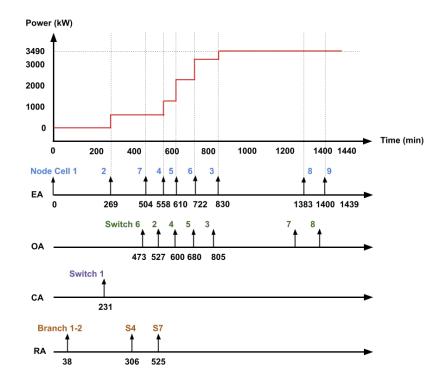
0


 All switches are opened automatically to isolate the power failure, forming node blocks


- All switches are opened automatically to isolate the power failure, forming node blocks
- Identify the damaged components

- All switches are opened automatically to isolate the power failure, forming node blocks
- Identify the damaged components
- Send repair crew to fix the damages
- Send operation crew to operate the switches

- All switches are opened automatically to isolate the power failure, forming node blocks
- Identify the damaged components
- Send repair crew to fix the damages
- Send operation crew to operate the switches
- Control center operate the automatic switches remotely



Step 3. Restoration Optimization

- Operation Agent (OA): operating crews that visit and close all the manual switches so that the electricity can flow from an upstream node block to a downstream node block
 - Repairing Agent (RA): repair crews that visit multiple damaged components (e.g., damaged loads, switches, and network devices)

٠

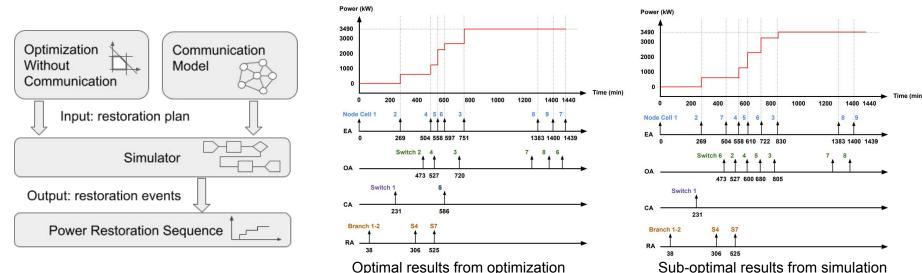
- Energization Agent (EA): electricity energization sequence from upstream to downstream node blocks
- Communication Agent (CA): communication flow sequence from one wireless router to another; an automatic switch can only be closed after its associated router has the communication flow

Total restored energy is restored power × duration ("area" of the ladder plot)

O INFORMATIONTRUST

Step 3. Restoration Optimization

- Problem formulation
 - Construct *routing matrices* for OA, RA, EA and CA, so that the *Total restored energy* is maximized
- Constraints:
 - Routing path constraints, power constraints, interdependency constraints

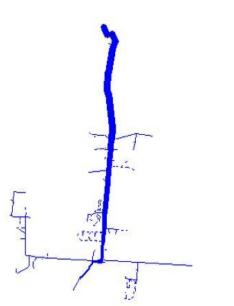

TABLE II: Summary of Interdependent Constraints among Agents

No.	Agents	Constraint
(1)	RA, OA	If a switch is damaged, it needs to be first repaired by RA, then closed by OA.
(2)	RA, EA	If a switch is damaged, node blocks on both ends cannot be energized before it is repaired.
(3)	RA, EA	If a node block contains damaged components, they must be all repaired before energization.
(4)	OA, EA	If EA travels from node block i to j , i is energized either before or after OA closes the switch.
(5)	CA, EA	CA can arrive at a communication node only after EA arrives at the corresponding node block.
(6)	CA, EA	If EA travels through an automatic switch, the switch can be closed only after CA arrives.

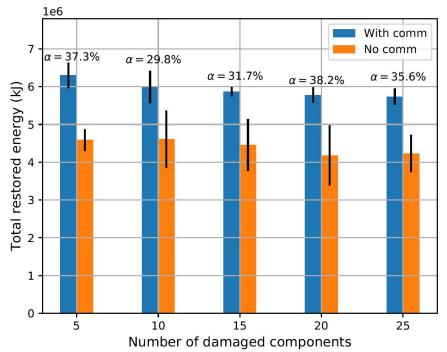
0

Step 4. Evaluation

- Compare restoration planning with/without interdependency
 - If not coordinate carefully, the utility company has to reroute operation crew 0 to manually operate the remote switches, resulting in *sub-optimal* solutions
- Develop a discrete-event simulator to model such situations
 - Capable to produce the sub-optimal results 0



Sub-optimal results from simulation


Step 4. Evaluation

- Ckt7 system for large-scale experiments
 - 2167 buses, 1254 branches, 36 switches

• Total restored energy

- Increasing number of damages
- More than 30% improvement

Towards Virtualization of IoT Devices

Motivation: Teaching during the pandemic

Pre-pandemic teaching: focus on real-world experiences

Sudden need to teach online

Can we leverage our research to improve cybersecurity instruction?

A formal methods based platform for cybersecurity education and research

- Key approach: expose students to models of devices and interactions
 - Leverage our existing research
 - Focus: application to IoT
- Key missing piece: user interfaces
- So we developed:
 - UI for building
 - Allows users to drag and drop, and program components
 - UI for deployment
 - Implements various environments, e.g., African Savanna

Demo

Conclusions

Building an automated synthesis framework for network security and resilience

Enables new functions: self-driving infrastructures, resilient power grids, teaching and research platforms

Combines formal methods with practical implementations to realize advances in automation, resilience, experimentation, and learning

Contact: <u>caesar@illinois.edu</u> <u>dongjin@uark.edu</u> <u>fanxue2@illinois.edu</u>