
Understanding
Attestation:

Analyzing Protocols
that use Quotes

Joshua Guttman
John Ramsdell

HCSS
30 April 2019

1 / 23

Protocols vs. System context

I Systems discharge protocol
assumptions

I Protocols connect system parts

How can we analyze them jointly?

2 / 23

Protocols vs. System context

I Systems discharge protocol
assumptions

I Protocols connect system parts

How can we analyze them jointly?

2 / 23

For instance: Building atop Intel SGX
AMD has an alternative

I SGX: security services for enclaves within user processes

confidentiality: code, data encrypted whenever evicted
attestation: other entities can ascertain

I code
I selected data esp. public key

resident in an enclave

I This can be a big deal:

Protect enclave secrets, allowing

Secure channels between components running

Known code, all

Independent of vulnerable lower levels

e.g. operating system unexpected hardware sysadmins

although with limitations. . .

3 / 23

For instance: Building atop Intel SGX
AMD has an alternative

I SGX: security services for enclaves within user processes

confidentiality: code, data encrypted whenever evicted
attestation: other entities can ascertain

I code
I selected data esp. public key

resident in an enclave

I This can be a big deal:

Protect enclave secrets, allowing

Secure channels between components running

Known code, all

Independent of vulnerable lower levels

e.g. operating system unexpected hardware sysadmins

although with limitations. . .

3 / 23

For instance: Building atop Intel SGX
AMD has an alternative

I SGX: security services for enclaves within user processes

confidentiality: code, data encrypted whenever evicted
attestation: other entities can ascertain

I code
I selected data esp. public key

resident in an enclave

I This can be a big deal:

Protect enclave secrets, allowing

Secure channels between components running

Known code, all

Independent of vulnerable lower levels

e.g. operating system unexpected hardware sysadmins

although with limitations. . .
3 / 23

SGX: How it provides attestation

I Enclave Record includes:
I Enclave id
I Hash of controlling code
I Message, in our usage always including public key
I Many supplementary fields

I Processor provides local enclave attestation MAC

I Quoting Enclave converts local quote to remote quote EPID

I Intel: validates EPID remote quotes online
I ensures supply-chain origin

I Application-level enclaves prepare remote quotes via QE

4 / 23

SGX core roles

local-quote epid-quote τ

•

��

τ, eroo •

��
•

τ,er ,MAC(#(pmk,τ), er)

55

•
er , [[rq er]]eek //

attest-client attest-server

er ,m // •

��

{|N,er , [[rq er]]eek |}pk(AS)// •

��

•

��

{|N,er ,m|}pk(AS) //
?

• •Noo

5 / 23

SGX core roles

local-quote epid-quote τ

•

��

τ, eroo •

��
•

τ,er ,MAC(#(pmk,τ), er)

55

•
er , [[rq er]]eek //

attest-client attest-server

er ,m // •

��

{|N,er , [[rq er]]eek |}pk(AS)// •

��

•

��

{|N,er ,m|}pk(AS) //
?

• •Noo

5 / 23

SGX desired execution
If attest-client runs with non-compromised AS

attest-client attest-server epid-quote local-quote

•

��
•

��

•oo

•

��

•qq

•

��

// •

��
• •oo

Facts: EnclCodeKey(eid , ch, k, pmk) ManuMadeEpid(ek)
Non keys: Non(dk(AS)) Non(pmk) Non(ek)

6 / 23

CPSA: Cryptographic Protocol Shapes Analyzer
A tool for just this kind of analysis

I Explores possible executions that enrich a given scenario A0

I Computes: what could have happened
assuming A0 occurred

I Each scenario (“skeleton”) is a model
i.e. structure

I Each step A ·→ B adds information
i.e. is a homomorphism

I Search branches when different Bi are candidates A ·→ Bi

I Enumerates models {Ci}i that support all executions
I If D is any execution such that A0 ·→ D

then ∃i .
A0 ·→ Ci ·→ D

I Often surprisingly few {Ci}i needed

7 / 23

How CPSA works

I A reception n is realized in A iff for every reception n
the adversary can obtain msg(n) from earlier transmissions

I Explores a transition relation A ; B
I ; ⊆ ·→
I Each step A ; B brings some unrealized n “closer” to realized
I A cohort Bi

A

77

''

...

Bj

covers all minimal ways to enrich some n

If J : A ·→ D where D all realized
then J factors through some A ; Bi

8 / 23

CPSA with rules

I A geometric sequent is a formula

∀x . (Φ =⇒
∨
i

∃yi . Ψi)

where Φ,Ψi are conjunctions of atomic formulas

I Each geometric sequent adds persistent information

I Computes the models that are possible executions
plus satisfy all the sequents

9 / 23

SGX desired execution
If attest-client runs with non-compromised AS

attest-client attest-server epid-quote local-quote

•

��
•

��

•oo

•

��

•qq

•

��

// •

��
• •oo

Facts: EnclCodeKey(eid , ch, k, pmk) ManuMadeEpid(ek)
Non keys: Non(dk(AS)) Non(pmk) Non(ek)

10 / 23

SGX core roles

local-quote epid-quote τ

•

��

τ, eroo •

��
•

τ,er ,MAC(#(pmk,τ), er)

55

•
er , [[rq er]]eek //

attest-client attest-server

er ,m // •

��

{|N,er , [[rq er]]eek |}pk(AS)// •

��

•

��

{|N,er ,m|}pk(AS) //
?

• •Noo

11 / 23

Rule governing local quote
Quote guarantees enclave

Rule

∀z : strd, eid , ch, rest : mesg, k : akey, pmk : skey .
LocQt(z , 2) ∧
LocQtER(z , eid :: ch ::k :: rest) ∧
LocQtPr(z , pmk) ∧ Non(pmk)
=⇒

EnclCodeKey(eid , ch, k, pmk).

12 / 23

Three types of rules

Hardware rules summarize processor constraints

Trust rules summarize organizational standards esp. for

I delivering private keys to code
I certifying public keys

Attestation rules summarize
behavioral requirements on known code

13 / 23

Rule governing local quote
Quote guarantees enclave

Rule

∀z : strd, eid , ch, rest : mesg, k : akey, pmk : skey .
LocQt(z , 2) ∧
LocQtER(z , eid :: ch ::k :: rest) ∧
LocQtPr(z , pmk) ∧ Non(pmk)
=⇒

EnclCodeKey(eid , ch, k, pmk).

14 / 23

Non-compromised keys Non(K)

A non-compromised key K has two properties

1. Only the authorized entity/ies possesses K

2. That entity uses K only in accordance with expectations
i.e. only in accord with protocol

(1) induces a protection requirement: hardware and upper levels

I must protect key from disclosure

(2) induces a behavioral requirement: software in control

I sends only properly prepared msgs

I sends them only in expected control flow

15 / 23

Non-compromised keys Non(K)

A non-compromised key K has two properties

1. Only the authorized entity/ies possesses K

2. That entity uses K only in accordance with expectations
i.e. only in accord with protocol

(1) induces a protection requirement: hardware and upper levels

I must protect key from disclosure

(2) induces a behavioral requirement: software in control

I sends only properly prepared msgs

I sends them only in expected control flow

15 / 23

Rule governing attest server
AS says EPID key is manufacturer-made and non-compromised

Rule

∀z : strd, Kepid : akey .
AttServ(z , 2) ∧
ASQtKey(z ,Kepid)
=⇒

ManuMadeEpid(Kepid) ∧ Non(Kepid).

16 / 23

Three types of rules

Hardware rules summarize processor constraints

Trust rules summarize organizational standards esp. for

I delivering private keys to code
I certifying public keys

Attestation rules summarize
behavioral requirements on known code

17 / 23

Attestation rule for application level code

Rule

∀e, ch : mesg, k : akey, pmk : skey .
PeerCode(ch) ∧
EnclCodeKey(e, ch, k , pmk)

=⇒
Non(k−1)

18 / 23

Induces a behavioral requirement

I Code that hashes to ch should:
I Freshly generate a keypair K ,K−1

I Move K enclave record

I Code that hashes to ch should not:
I Disclose K−1

I Disclose computed values providing advantage on K−1

I Code that hashes to ch should:
I Use K−1 only in accordance with the protocol

19 / 23

Example application protocol
Yes-or-No protocol

• Yoo

•

��

-5

)1 • Noo

{|Q,Y ,N|}pk(A)

��
• // Y

•
-5

)1 • // N

Rule

If questioner takes step 1

then attest-client has run with:

I pk(A) in enclave record
I Code hash ch such that PeerCode(ch)

20 / 23

Example application protocol
Yes-or-No protocol

• Yoo

•

��

-5

)1 • Noo

{|Q,Y ,N|}pk(A)

��
• // Y

•
-5

)1 • // N

Rule

If questioner takes step 1

then attest-client has run with:

I pk(A) in enclave record
I Code hash ch such that PeerCode(ch)

20 / 23

21 / 23

Three types of rules

Hardware rules summarize processor constraints

Trust rules summarize organizational standards esp. for

I delivering private keys to code
I certifying public keys

Attestation rules summarize
behavioral requirements on known code

22 / 23

Methodology

I Protocols formalize system use of encrypted msgs

I System context: assumptions expressed as rules
I Feed in to CPSA analysis
I Codify requirements on components

I CPSA identifies possible executions
I Displays runs of protocol under assumptions
I Guides protocol/rule refinement

23 / 23

