Understanding Evidence: Lessons from the GPCA Case Study

Insup Lee, Oleg Sokolsky PRECISE Center University of Pennsylvania

SCC Workshop January 2013

Outline

- GPCA Case Study
 - Prototype implementation
 - Development approach
 - Safety argument
- Lessons
 - Evidence for the safety argument
 - Confidence in the evidence
 - Evidence from formalization

GPCA Case Study

Goals:

- Study generative techniques in assurance-based development
- Reason about the achieved level of assurance

1/8/2013

Engineering

PRECISE

3

Starting Points

- Hazard analysis
 - Basis for safety requirements derivation
- Safety requirements
 - Determines properties in formal verification
- Design specification
 - Input to the code generation process
 - Via a separate formalization step

Model-based GPCA Implementation

Outcomes of the GPCA Case Study

- Set of artifacts
 - Prototype implementation
 - Formal models and formalized properties
- Development process
 - Still under construction
 - Dealing with platform-dependent code
- Safety argument
 - Generalized to a pattern for model-based development

Evaluation of Starting Points

- How good are the safety requirements?
 - Derived from hazard analysis (mitigation strategies)
 - Are there other sources?
 - Completeness and adequacy
 - Evidence of completeness is traceability
 - What is the evidence of adequate mitigation?
 - Level of abstraction
- In progress
 - In collaboration with Mats Heimdahl

Categorization of Properties

- Category 1: Properties that can be formalized and verified
- Category 2: Properties that are at a different level of abstraction than the model
 - Amount remaining shall be recalculated...
- Category 3: Properties that cannot be formalized but can be informally validated
 - Flow rate shall be programmable
- Category 4: Properties that need clarification
 - A clear indication shall be displayed...

Penn Engineering

1/8/2013

Lessons from GPCA case study

From-To Pattern

- Similarities in model-based development processes lead to similarities in safety arguments
 - From-To pattern captures these similarities
- Assurance through
 - Verification of properties in models
 - Preservation of properties through transformation

The PCA Safety Case – Safety Pattern

<u> The PCA Safetv Case – Safetv Pattern</u>

Lesson 1: What Evidence Is Needed?

- Structure of the safety argument determines kinds of evidence needed for assessing safety
 - An argument pattern implies the kinds of evidence needed in argument following this pattern
- Development process determines kinds of evidence that can be obtained

Evidence for From-To Pattern

- Model analysis results
 - Verification
 - Simulation
- Property preservation by the transformation
 - Correctness proofs
 - Tool qualification
- Validation

ngineering

Evaluation of the outcome

- Reasoning about modeling assumptions

PRECISE

13

Confidence in Evidence

- Required kind of evidence may be supplied by different evidence items
 - Different evidence items may vary in conclusiveness
 - E.g., test suites with different code coverage offer the same kind of evidence, but different confidence in the outcome
- Separation of safety argument from confidence argument

Lesson 2: Evidence Via Formalization

- Our approach relies on formal modeling and verification
 - Formalization of requirements is part of the process
- Formalization results may be (negative) evidence
 - Category 2: different levels of abstraction
 - Evidence of problems with the process or choice of formalism
 - Category 4: requirements too vague to formalize
 - Evidence of problems with requirements elicitation

