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Preface

High-dimensional spaces arise naturally as a way of modelling datasets with many
attributes. Such a dataset can be directly represented in a space spanned by the at-
tributes, with each record of the dataset represented as a point in the space whose
position depends on its attribute values. Such spaces are not easy to work with be-
cause of their high dimensionality: our intuition about space is not reliable, and
measures such as distance do not provide as much information as we might expect.

High-dimensional spaces have not received as much attention as their applica-
tions deserve, partly for these reasons. Some areas where there has been substan-
tial research are: images and video, with high-dimensional representations based on
one attribute per pixel; and spaces with highly non-convex clusters. For images and
video, the high dimensionality is an artifact of a direct representation, but the inher-
ent dimensionality is much lower, and easily discoverable. Spaces with a few highly
non-convex clusters do occur, but are not typical of the kind of datasets that arise in
practice.

There are at least three main areas where complex high-dimensionality and large
datasets arise naturally. The first is data collected by online retailers (e.g. Amazon),
preference sites (e.g. Pandora), social media sites (e.g. Facebook), and the customer
relationship data of all large businesses. In these applications, the amount of data
available about any individual is large but also sparse. For example, a site like Pan-
dora has preference information for every song that a user has listened to, but this
is still a tiny fraction of all of the songs that the site cares about. A site like Ama-
zon has information about which items any customer has bought, but this is a small
fraction of what is available.

The second is data derived from text (and speech). The word usage in a set of
documents produces data about the frequency with which each word is used. As
in the first case, all of the words used in a given document are visible, but there
are always many words that are not used at all. So such datasets are once again
large (because easy to construct), wide (because languages contain many words),
and sparse (because any document uses a small fraction of the possible words).

The third is data collected for a security, defence, law enforcement or intelligence
purpose; or collected about computer networks for cybersecurity. Such datasets are
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large and wide because of the need to enable as good solutions as possible by throw-
ing the data collection net wide. This third domain differs from the previous two
because of greater emphasis on the anomalous or outlying parts of the data rather
than the more central and commonplace.

High-dimensional datasets are usually analyzed in two ways: by finding the set
of clusters they contain; or by looking for the outliers – really two sides of the same
coin. However, these simple strategies conceal subtleties that are usually ignored.
A cluster cannot really be understood without seeing its relationships to other clus-
ters “around” it; and outliers cannot be understood without understanding both the
clusters that they are nearest too, and what other outliers are “around” them. The
development of the idea of local outliers has helped with this latter issue, but is still
weak because a local outlier is defined only with respect to its nearest non-outlying
cluster.

In this book we introduce two ideas that are not completely new, but which have
not received as much attention as they should have, and for which the research
results are partial and scattered. In essence, we suggest a new way of thinking about
how to understand high-dimensional spaces using two models: the skeleton which
relates the clusters to one another, and boundaries in empty space which provides
another perspective on outliers, and on outlying regions.

This book should be useful to those who are analyzing high-dimensional spaces
using existing tools, and who feel that they are not getting as much out of the data
as they could; also their managers who are trying to understand the path forward in
terms of what is possible, and how they might get there. The book assumes either
that the reader has a reasonable grasp of mainstream data mining tools and tech-
niques, or does not need to get into the weeds of the technology but needs a sense
of the landscape. The book may also be useful for graduate students and other re-
searchers who are looking for open problems, or new ways to think about and apply
older techniques.
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Chapter 1
Introduction

Many organizations collect large amounts of data: businesses about their customers,
governments about their citizens and visitors, scientists about physical systems, and
economists about financial systems. Collecting such data is the easy part; extracting
useful knowledge from it is often much harder.

Consider, for example, the tax collection branches of governments. Most gov-
ernments create a record for each resident and business each year, describing their
incomes, their outflows that can be used as deductions, their investments, and usu-
ally some demographic information as well. From this information they calculate
the amount of tax that each resident and business should pay.

But what else could they learn from all of this data? It is a very large amount
of data: there is one record per citizen and business (a tax return); and each record
contains a large number of pieces of information, although of course most of these
values are null or zero for most returns.

One kind of knowledge that governments spend a lot of effort to acquire is
whether, who, and by how much individuals and businesses are defrauding the gov-
ernment by providing false information that results in them owing (apparently) less
tax. A strategy for detecting this is to compare people or businesses of the same gen-
eral kind, and see whether there are some that seem qualitatively different, without
any obvious explanation of why. In other words, one way to discover tax fraud is by
exploiting similarity among the income and outflows of individuals, expecting that
similarity of record values should be associated with similarity of tax payable.

This strategy works quite well and is routinely used by tax departments, targeting
one year dentists, say, and another year flight attendants. Of course, this means that
tax cheats in other professions receive less scrutiny (until their turn comes up). It is
attractive for governments to do this kind of assessment globally (for all taxpayers)
every year, but there are several problems: pragmatically, the size of the data makes
the necessary computations alarmingly large; but, more significantly, we do not yet
understand clearly how to represent and analyze the structure of the space implicit
in such a collection of data. If a particular taxpayer looks unusual within the set
of taxpayers of the same general kind, is it because they are paying less tax than
they should, or is it because of some other difference between them and the set to
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2 1 Introduction

which they are being compared. In other words, there are deep issues to do with the
concept of “similarity”, and these issues are complicated by the size and richness of
the datasets that we would like to analyze.

The focus of this book is on ways to think about structure and meaning associated
with such large, complex datasets; algorithms that can help to understand them; and
further analyses that can be applied once a dataset has been modelled that provide
payoffs in many different domains (including tax fraud detection).

The data that we will consider, at least initially, is record data, that is data that
consists of a set of records, each of which contains a number of fields that hold
values. Thus the data naturally forms a table or matrix. Throughout, n will be used
to denote the number of records, and so the number of rows of the table or matrix,
and m will denote the number of values in each record, which are called attributes.
The values that a field can hold are often numeric, but there is no intrinsic reason
why a field cannot hold a piece of text. So, in the taxation example, some fields,
such as income, hold numbers; while other fields, such as occupation, holds strings.
(Of course, in this example, all occupations could be given numeric codes and so
converted from strings to numbers but this is not always feasible.)

The kind of datasets we are interested in have two properties:

• The datasets are wide, that is they have many attributes. Often they will also have
many records as well but, in general, it is the number of attributes that creates the
conceptual difficulties.

• The number of attributes reflect the inherent complexity of the data, and so of
the system being modelled; rather than arising from a particular choice of repre-
sentation of the system. For example, one way to represent images is to regard
them as a record with one attribute for each pixel. While this can sometimes be
useful, the apparent complexity of the representation does not necessarily match
the real underlying complexity of the set of images. In other words, it is possible
to choose representations that create apparent complexity that isn’t really there.

The other critical aspect to the problems we will address is that the expected
structure cannot be straightforwardly inferred from the problem domain. Returning
to the taxation example, we can certainly imagine some ways in which the data
might be manipulated to reduce apparent tax payable. For example, incomes might
be altered to appear smaller than they are, and deductions inflated; this is quite
natural to suspect and so to look for. A more sophisticated inspection tactic is based
on Benford’s Law [27] which describes the expected distribution of digits in certain
kinds of real-world numbers – for example, the first digit in such a number is much
more likely to be a 1 than a 9. When humans make up numbers, for example a
deduction that didn’t really exist, they tend to choose the first digit much more
uniformly. Knowing this, numbers in a tax return can be scored by how unusual
they are with respect to Benford’s Law.

However, there are presumably many more subtle aspects of the content of tax
returns that are even more useful for detecting tax fraud. There is usually no obvious
a priori way to look for them – and, sadly, intuition about suspicious patterns has
sometimes been quite unreliable.
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If we cannot find these kinds of alterations in the data, and the implied structure
and similarity of records by looking for them explicitly using predetermined models
of the underlying mechanisms, how can we find them? What has turned out to be a
powerful approach is to build models of the structure in the data inductively, that is
letting the data reveal its own structure. Once the structure of the data is understood,
subsequent questions about unusual parts of this structure become easier to answer.

This is not to say that there is not sometimes a role for pattern-based understand-
ing of large datasets. For example, humans have been coming up with ways to alter
financial accounts since financial accounts were invented, and so any auditor has a
long list of possible frauds and the associated patterns visible in accounting data; tax
and insurance investigators do too. The credit card industry is the leading example
of this; they have accumulated so many examples of what people do to carry out
credit-card fraud, and they turn popular examples into rules that are used to check
new transactions. Nevertheless, new forms of creative accounting continue to be dis-
covered, so the set of patterns is always growing and never, at any moment in time,
exhaustive. So there is a role for inductive model building and pattern discovery to
make sure that unsuspected structures are noticed. In these example settings, not
all of these induced structures will be suspicious – but all need to be considered as
potentially suspicious until proven otherwise.

1.1 A Natural Representation of Data Similarity

We now turn to the question of how to construct a measure for the similarity of
each pair of records that accurately reflects intuitive ideas of similarity between
the entities that the records describe. Such a measure should be reflexive (so that a
record is similar to itself) and symmetric (so that if A is similar to B then B is also
just as similar to A). It is less clear how similarity should behave transitively: if A
is similar to B and B is similar to C, then how similar is A to C? Mostly a measure
that obeys the triangle inequality is plausible and well-behaved, but this is not an
obligatory requirement.

Any dataset has a natural representation, the space spanned by its attributes. Each
attribute defines one axis of a space, and each record is represented by a point that
is placed at the position corresponding to the values of its attributes. So, for a very
simple dataset recording people’s heights and weights, there would be two axes,
one for height and one for weight, and each person would be represented by a point
whose position is determined by the value of their particular height and weight. This
is illustrated in Figure 1.1. In this representation, a number of properties of human
heights and weights become visible. For example, heights and weights are reason-
ably well correlated; but the relationship between the two is slightly different for
men and women; and the range of heights and weights is different for children and
adults. All of these properties can be discovered inductively from the representation.

Unfortunately, real datasets are not often so well-behaved. Some of the problems
that arise are:
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Weight

Height

Fig. 1.1 Points derived from height and weight values for a population

• The units in which each attribute’s values are expressed make a difference to the
apparent similarity, but there is no natural way to choose them;

• The attributes are often collected for reasons unrelated to modelling, so that im-
portant ones are missed, irrelevant ones are collected, and some subsets of those
collected may be measuring the same underlying property. This also distorts the
apparent similarity.

• Algorithms that collect sets of unusually similar records into clusters have to be
told what clusters look like and (usually) how many clusters there are, but this
is often little better than a guess. Hence the results may depend heavily on the
parameter choices rather than on the data itself.

• Many clustering algorithms silently cluster records that are not actually very sim-
ilar, especially lumping small numbers of records in with a larger set of mutually
similar records to which they are only modestly similar.

We will return to these issues in subsequent chapters.
There are two levels of understanding the structure of a dataset. The first is to

understand where the data is and what it looks like. At its simplest, this could be
just applying some clustering algorithm to the dataset, and evaluating the structure
associated with the resulting clusters:
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• How many clusters are there (but this often requires encoding assumptions about
what a cluster is like and how many there should be into the clustering algorithm,
so can often be a bit circular)?

• What are the clusters like? Do they have characteristic sizes (the number of
records the contain), shapes (in the natural geometry, for example are they spher-
ical or elliptical, or more spider-like), and densities (how similar are the members
of each cluster)?

At a more sophisticated level, it might be useful to know if there are records that
do not fit into any cluster in a plausible way, and how many of these unusual records
there are. Concentrating on such unusual records is called outlier detection.

In general, though, a deeper understanding comes from seeing how the clusters
and these few unusual records (which could be considered clusters of size one)
are related to one another. Figure 1.2 shows two simple clusterings with the same
number and size of clusters – but we would clearly consider the datasets described
by each to be qualitatively different. This global structure, that includes both the
clusters and their relationships to each other we will call the skeleton of the dataset.

Fig. 1.2 Individual clusters are identical but the clustering is different

A part of understanding the skeleton is to understand what each cluster repre-
sents. This is a surprisingly difficult problem. A clustering algorithm or approach
considers some set of the records to be similar to one another, but this does not
immediately tell us what this mutual similarity is capturing – although we can be
confident that, given appropriate attributes and algorithms, it is capturing something
real about the system that the dataset describes. Sometimes it is possible to compute
the centroid of each cluster which becomes a kind of artificial record that resembles
closely all those in the cluster. Examining the values of the attributes of this artificial
record can suggest the cluster’s “meaning” but this is hit-and-miss in practice.

A neglected part of understanding the structure of a dataset, is to consider the
places where data isn’t, that is to consider the empty space in the natural represen-
tation. First of all, understanding the empty spaces is another way of understanding
the relationships in the skeleton. For example, a record in empty space can be of
vastly different significance depending on where in the space it is. A simple exam-
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ple is shown in Figure 1.3. The three labelled points (cross, disk, and square) are all
far from any of the clusters – and yet we are tempted to regard them as represent-
ing records of quite different kinds. Empty space, therefore, is not uniformly bland
but rather has a structure all of its own. Some locations in this structure are more
significant than others.

Fig. 1.3 Individual points with different significance

If the problem is to understand the structure of a single, once-for-all dataset, then
all we need is this view of almost empty space – it provides a way to categorize
isolated points that refines the skeleton structure induced by the clusters.

However, if the problem domain, and so dataset, is one where new data some-
times appears, either via some uncontrolled mechanism or because it is requested,
then the structure of empty space becomes much more important and useful. A new
record that appears in a space close to or inside an existing cluster brings little or no
new information about the real-world system. A new record that appears in empty
space, however, introduces new information and its meaning depends on where in
the empty space it appears. For example, a new record might suggest that two of
the existing clusters are actually parts of the same cluster; or that there is another
previously unsuspected cluster; or that the data has a much greater extent than pre-
viously realized. Furthermore, if new data can be requested, then the structure of
empty space suggests what kinds of new records will be most useful to request.

Overall, we might divide the significance of space into five different categories,
depending on what the arrival of a new record in each of the five kind of regions
indicates. These five categories are illustrated in Figure 1.4, against a background
of a few representative clusters.

The five categories, and their meanings, are:
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Fig. 1.4 Hierarchy of significance of isolated points, and so the regions they are in

• normal records, indicated by circles. These fall within existing clusters and so
represent “more of the same”.

• aberrant records, indicated by crosses. These lie on the outskirts of an existing
cluster (whatever that means for a particular clustering technique) but their posi-
tion is readily explainable by the finiteness of the data used for clustering. They
also represent “more of the same” (or perhaps “more of almost the same”).

• interesting records, indicated by solid circles. These lie in empty space between
the existing clusters. Their presence suggests that the current model or under-
standing of the space is inadequate.

• novel records, indicated by solid squares. These also lie in empty space but on
the “outside” of the entire clustering. They do not have the same implications
about the structure of the model because they are so different from the data from
which the model was built. They imply that the data collection was inadequate,
rather than that the model built from it was inadequate.

• random records, indicated by squares. These lie so far from other data that the
suspicion is that something has gone wrong with the data collection rather than
that there is previously unsuspected data.

These five categories are a helpful way to understand the structure of empty
space. Exactly how the come into play depends on the problem structure, as we
shall see.

We have described them as properties of newly arriving records and how these
records might be interpreted. These categories can also be understood as descrip-
tions of certain regions of space. In other words, a region might meaningfully con-
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sidered an interesting region. This is useful in some situations because these regions
can be used to generate requests for the collection of new data that is expected to be
particulary revealing. In other words, as well as providing a way to interpret partic-
ular kinds of answers, these categories can also define particular kinds of questions.

1.2 Goals

The primary and immediate goal of the kind of analysis we have been talking about
is understanding: understanding what clusters are like and what they represent, un-
derstanding the relationships among clusters; understanding which records do not
really belong to any cluster (or which form a cluster of size 1); and understanding
the spaces in between clusters. Such analysis can be revealing about structures in
the data and their meaning in the real-world system from which the data came.

However, the more important analysis, with even greater payoff, is to leverage
these induced structures to tell us more about the individual records. A space is
constructed by using all of the information in all of the records, and the resulting
space therefore depends on the integration of all of this information. The structure
of the space then becomes background information against which each record can
be understood more deeply than just its own contents allows. This is tremendously
powerful – the inductive approach produces emergent knowledge that is implicit in
the entire dataset but invisible at the level of a single record. This emergent knowl-
edge nevertheless allows deductions about individual records.

One important class of important structures that can be built on understanding
of the dataset are rankings. In other words, the structure enables the records to be
organized in new ways, the simplest of which is a linear ordering of all of the records
based on some property of the structure.

A ranking does not require constructing a space from the dataset. The set of
records could be ordered (sorted) according to the values of one particular attribute.
For example, tax departments might investigate individuals starting with those with
the largest income, using the rationale that discovering fraud in such people brings
in the greatest amount of extra money. This idea can be extended to any function
that combines the attributes; for example, a tax department might compute the sum
of income and deductions for each taxpayer and use this to sort the list of taxpayers.
Those at the top of the sorted list might be plausible targets for investigation because
they make a lot of money; but for two people with the same income the new function
ranks the one with the greater deductions higher.

The problem with constructing such a function is that it embodies a kind of pat-
tern that has to be known in advance; someone has to decide which attributes are
important, whether they are positively or negatively related to the goal property, and
how they should be weighted and combined. These are not easy decisions in most
settings.

The advantages of constructing a space and using it as the basis for ranking is
that the properties of the space emerge from the properties of the data and so do not
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have to be known in advance. In the simplest case, imagine the points corresponding
to the records in some space and sweep a plane across the space from one side to
the other, inserting each record into an ordered list as the plane encounters that
record. If the orientation of the plane is chosen appropriately (a complex issue we
will postpone for now) then the ordering will be derived from the data. In fact the
plane describes a function on the attributes but the way in which they are combined
and weighted has been inferred from the data, rather than constructed beforehand
by an expert.

Another useful kind of ranking is from the “middle” of the data to the “out-
side” (or vice versa) where both “middle” and “outside” are intuitively obvious but
practically rather difficult. Often the “middle” represents data that are common or
“normal” while the “outside” represents data that are anomalous. So in situations
where the anomalies are the records that deserve further attention (the tax exam-
ple, many kinds of fraud, intrusion detection) such rankings focus attention on some
of the records, those at one end of the ranking. On the other hand, if the records
represent documents, the document closest to the “middle” is somehow the most
representative and so might be the place to starting learning about whatever the set
of documents describes.

So global rankings are useful because the records at both ends of the ranking are
special in different ways, and the rankings allow us to find them and perhaps focus
more attention on them.

It is sometimes the case that what is of interest is not a global ranking, but the
ranking in the neighborhood of one particular record. As before, it is possible to
address this without constructing a global space – in the natural space spanned by
all of the attributes, find the closest neighbors of the given point (closest in the
sense of, say, Euclidean distance). This has the same drawbacks as ranking without
constructing a space – any metric that defines “neighbors” treats all of the attribute
differences as of equal importance.

In a constructed space, there are two advantages when trying to find the neighbors
of a given point. First, similarity measures take place in a space where the selection
and weighting of attributes has been made globally; second, the skeleton makes it
computationally easy to choose a smallish set of points that could be neighbors and
compute similarity to them, rather than having to compute similarity to all neighbors
and then discard those who are too far away.

One thorny issue that remains is that of context. Everything so far has assumed
that the same space will do for every purpose; but often the person doing the analysis
has extra domain knowledge or knowledge about the particular dataset that should
be accounted for in the analysis. We have argued above that, in general, not enough
is known about which attributes are most important and by how much, nor about
how these choices depend on the structure in the real world. However, a particular
person analyzing the data may know enough to discount a particular attribute, or
to know that a particular discovered cluster represents a known problem with data
collection, and it would be helpful if there were a way to include this knowledge in
the construction of the space. Furthermore, it is often useful to be able to ask “what
if?” questions about the data.


