
Updatable Security Views

Nate Foster
Benjamin Pierce
Steve Zdancewic

University of Pennsylvania

HCSS ’09

Updatable Security Views

Nate Foster
Benjamin Pierce
Steve Zdancewic

University of Pennsylvania

HCSS ’09

2

2

“Pennsylvania yanks voter site after data leak”

“Passport applicant finds massive privacy breach”

“Privacy issue complicates push to link medical data”

3

Security Views

 S V

Confidential
source

Regraded
view

✔ Robust: impossible to leak hidden data

✔ Flexible: enforce fine-grained confidentiality policies

✗ Not usually updatable

4

Security Views

 S V

Confidential
source

Regraded
view

✔ Robust: impossible to leak hidden data

✔ Flexible: enforce fine-grained confidentiality policies

✗ Not usually updatable

4

Security Views

 S V

Confidential
source

Regraded
view

✔ Robust: impossible to leak hidden data

✔ Flexible: enforce fine-grained confidentiality policies

✗ Not usually updatable

4

Security Views

 S V

Updated
V

Confidential
source

Regraded
view

update

✔ Robust: impossible to leak hidden data

✔ Flexible: enforce fine-grained confidentiality policies

✗ Not usually updatable

4

Security Views

Updated
S

 S V

Updated
V

Confidential
source

Regraded
view

✔ Robust: impossible to leak hidden data

✔ Flexible: enforce fine-grained confidentiality policies

✗ Not usually updatable

4

Contributions

First steps toward a theory of updatable security views.

1. A generic semantic framework.

I Building on previous work on lenses.

I New non-interference laws provide additional guarantees about
integrity.∗

2. A concrete instantiation of these ideas in Boomerang, a
language for writing bidirectional transformations over ad hoc
string data.

I Annotated regular expressions express integrity∗ policies.
I Two enforcement mechanisms

◦ A purely static program analysis

◦ A hybrid static/dynamic analysis that can express a richer
collection of integrity policies

* ...and confidentiality

5

Lenses

Bidirectional Transformations

In recent years, we’ve developed a number of programming
languages for describing well-behaved bidirectional
transformations called lenses.

lens

7

Lenses: Terminology

In recent years, we’ve developed a number of programming
languages for describing well-behaved bidirectional
transformations called lenses.

get

7

Lenses: Terminology

In recent years, we’ve developed a number of programming
languages for describing well-behaved bidirectional
transformations called lenses.

put

7

Lenses, Formally

A lens l mapping between a set S of sources and a set V of
views is a pair of total functions

l .get ∈ S → V

l .put ∈ V → S → S

obeying “round-tripping” laws

l .get (l .put v s) = v (PutGet)

l .put (l .get s) s = s (GetPut)

for every s ∈ S and v ∈ V .

8

Lenses, Formally

A lens l mapping between a set S of sources and a set V of
views is a pair of total functions

l .get ∈ S → V

l .put ∈ V → S → S

obeying “round-tripping” laws

l .get (l .put v s) = v (PutGet)

l .put (l .get s) s = s (GetPut)

for every s ∈ S and v ∈ V .

8

Boomerang

strings

Data model: strings

Computation model: based on finite-state transducers

Types: regular expressions
9

Example: Redacting Calendars (Get)

11

08:30 BUSY

12:15 Lunc

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

Example: Redacting Calendars (Update)

13

08:30 BUSY

12:15 Lunch

15:00 BUSY

16:00 Meeting

08:30 BUSY

12:15 Lunc

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

Example: Redacting Calendars (Put)

15

*08:30 Coffee with Sara (Starbucks)

12:15 Lunch (Magic Carpet)

*15:00 Workout (Gym)

16:00 Meeting (Unknown)

08:30 BUSY

12:15 Lunch

15:00 BUSY

16:00 Meeting

08:30 BUSY

12:15 Lunc

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

Secure Lenses

Requirements

Updated
S

 S V

Updated
V

Confidential
source

Regraded
view

1. Confidentiality: get does not leak secret data

2. Integrity: put does not taint trusted data

17

Example: Redacting Calendars (Get)

19

08:30 BUSY

12:15 Lunc

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

Example: Redacting Calendars (Update II)

21

08:30 Meeting

12:15 Lunch

08:30 BUSY

12:15 Lunc

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

Example: Redacting Calendars (Put II)

Observe that propagating the update to the view back to the
source forces put to modify some of the hidden source data:

• The entire appointment at 3pm.

• The description and location of the appointment at 8:30am.

23

08:30 Meeting (Unknown)

12:15 Lunch (Magic Carpet)

08:30 Meeting

12:15 Lunch

08:30 BUSY

12:15 Lunc

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

Integrity

Question: Should the (possibly untrusted) user of the view be
allowed to modify hidden (possibly trusted) source data?

Answer: Maybe!

There are many alternatives, trading off which information in the
source can be trusted against which information in the view can
be edited.

24

Integrity

Question: Should the (possibly untrusted) user of the view be
allowed to modify hidden (possibly trusted) source data?

Answer: Maybe!

There are many alternatives, trading off which information in the
source can be trusted against which information in the view can
be edited.

24

Some Integrity Policies

Policy: “Nothing is trusted” (whole source is tainted)

Effect: Arbitrary edits to the view are allowed; any hidden data
in the source can be modified by put

26

08:30 BUSY

12:15 Lunch
*08:30 Coffee with Sara (Starbucks)

12:15 Lunch (Magic Carpet)

*15:00 Workout (Gym)

Some Integrity Policies

Policy: “Nothing is trusted” (whole source is tainted)

Effect: Arbitrary edits to the view are allowed; any hidden data
in the source can be modified by put

26

08:30 Group meeting

12:15 BUSY
*08:30 Coffee with Sara (Starbucks)

12:15 Lunch (Magic Carpet)

*15:00 Workout (Gym)

Some Integrity Policies

Policy: “Nothing is trusted” (whole source is tainted)

Effect: Arbitrary edits to the view are allowed; any hidden data
in the source can be modified by put

26

08:30 Group meeting

12:15 BUSY
08:30 Group meeting (Unknown)

*12:15 ? (Unknown)

Some Integrity Policies

Policy: “Private appointments are trusted; public appointments
are tainted”

Effect: OK to edit descriptions and add or delete public
appointments, but not to add or delete private appointments or
change between public and private

28

08:30 BUSY

12:15 Lunc

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

Some Integrity Policies

Policy: “Private appointments are trusted; public appointments
are tainted”

Effect: OK to edit descriptions and add or delete public
appointments, but not to add or delete private appointments or
change between public and private

28

08:30 BUSY

12:15 Lunch

15:00 BUSY

17:00 TGIF

*08:30 Coffee with Sara (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

Some Integrity Policies

Policy: “Private appointments are trusted; public appointments
are tainted”

Effect: OK to edit descriptions and add or delete public
appointments, but not to add or delete private appointments or
change between public and private

28

08:30 BUSY

12:15 Lunch

15:00 BUSY

17:00 TGIF

*08:30 Coffee with Sara (Starbucks)

12:15 Lunch (Magic Carpet)

*15:00 Workout (Gym)

17:00 TGIF (Unknown)

Another Integrity Policy

Policy: “Everything is trusted”

Effect: No edits are allowed

30

08:30 BUSY

12:15 Lunch

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 Lunch (Magic Carpet)

*15:00 Workout (Gym)

Non-interference

All these policies can be formulated in terms of non-interference.

Low

High

Low

High

A transformation is non-interfering if the “low” parts of the
output do not depend on the “high” parts of the input.

31

Non-interference — Confidentiality

All these policies can be formulated in terms of non-interference.

Low

High

Low

High

A transformation is non-interfering if the “low” parts of the
output do not depend on the “high” parts of the input.

E.g., if the data contains both “secret” and “public” portions

Public

Secret Secret

Public

then the secret parts of the input do not affect the public parts
of the output.

31

Non-interference — Integrity

All these policies can be formulated in terms of non-interference.

Low

High

Low

High

A transformation is non-interfering if the “low” parts of the
output do not depend on the “high” parts of the input.

E.g., if the data contains “tainted” and “trusted” portions

Trusted

Tainted Tainted

Trusted

then the tainted parts of the input do not affect the trusted parts
of the output.

31

Secure Lenses

Public

Secret

Public

Trusted

Tainted

Trusted

Tainted

Secret

32

Static Enforcement

Labels

Fix a lattice of integrity labels, e.g.

Trusted

Tainted

≤

(again, eliding confidentiality...)

35

Annotated Regular Expressions

Mark up the source schema (a regular expression) to indicate
which data is Tainted and which is Trusted.

R ::= ∅ | u | R·R | R|R | R∗ | R :k

For example:

((SPACE · TIME · DESC · LOCATION · NEWLINE):Tainted
| (ASTERISK · TIME · DESC · LOCATION · NEWLINE):Trusted)∗

where

TIME = NUMBER{2} . COLON . NUMBER{2} . SPACE

DESC = [^\n()]* - (ANY . BUSY . ANY)

LOCATION = (SPACE . LPAREN . [^()]* . RPAREN)?

37

Annotated Regular Expressions

Mark up the source schema (a regular expression) to indicate
which data is Tainted and which is Trusted.

R ::= ∅ | u | R·R | R|R | R∗ | R :k

For example:

((SPACE · TIME · DESC · LOCATION · NEWLINE):Tainted
| (ASTERISK · TIME · DESC · LOCATION · NEWLINE):Trusted)∗

where

TIME = NUMBER{2} . COLON . NUMBER{2} . SPACE

DESC = [^\n()]* - (ANY . BUSY . ANY)

LOCATION = (SPACE . LPAREN . [^()]* . RPAREN)?

37

Equivalences

From the annotated source schema, read off an equivalence
relation ≈k , for each k in the lattice of integrity labels.

s ≈k s ′ is read “s and s ′ differ only on data that a user at level k
has the authority to edit”

• ≈Tainted — “s and s ′ agree on trusted data”

*08:30 Coffee (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

≈Tainted

*08:30 Coffee (Starbucks)

12:15 Lunch (Magic Carpet)

*15:00 Workout (Gym)

• ≈Trusted — “s and s ′ agree on both trusted and tainted data”
(i.e., they are identical)

*08:30 Coffee (Starbucks)

12:15 Lunch (Magic Carpet)

*15:00 Workout (Gym)

≈Trusted

*08:30 Coffee (Starbucks)

12:15 Lunch (Magic Carpet)

*15:00 Workout (Gym)

39

Example

*08:30 Coffee (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

*08:30 Coffee (Starbucks)

12:15 Lunch (Magic Carpet)

*15:00 Workout (Gym)

6:00 Dinner (Home)

*08:30 Coffee (Starbucks)

##########################

*15:00 Workout (Gym)

*08:30 Coffee (Starbucks)

###########################

*15:00 Workout (Gym)

###################

mark mark

*08:30 Coffee (Starbucks)

*15:00 Workout (Gym)

*08:30 Coffee (Starbucks)

*15:00 Workout (Gym)

erase erase

41

Example

*08:30 Coffee (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

*08:30 Coffee (Starbucks)

12:15 Lunch (Magic Carpet)

*15:00 Workout (Gym)

6:00 Dinner (Home)

*08:30 Coffee (Starbucks)

##########################

*15:00 Workout (Gym)

*08:30 Coffee (Starbucks)

###########################

*15:00 Workout (Gym)

###################

mark mark

*08:30 Coffee (Starbucks)

*15:00 Workout (Gym)

*08:30 Coffee (Starbucks)

*15:00 Workout (Gym)

erase erase

41

Example

*08:30 Coffee (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

*08:30 Coffee (Starbucks)

12:15 Lunch (Magic Carpet)

*15:00 Workout (Gym)

6:00 Dinner (Home)

*08:30 Coffee (Starbucks)

##########################

*15:00 Workout (Gym)

*08:30 Coffee (Starbucks)

###########################

*15:00 Workout (Gym)

###################

mark mark

*08:30 Coffee (Starbucks)

*15:00 Workout (Gym)

*08:30 Coffee (Starbucks)

*15:00 Workout (Gym)

erase erase

41

Example

*08:30 Coffee (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

*08:30 Coffee (Starbucks)

12:15 Lunch (Magic Carpet)

*15:00 Workout (Gym)

6:00 Dinner (Home)

*08:30 Coffee (Starbucks)

##########################

*15:00 Workout (Gym)

*08:30 Coffee (Starbucks)

###########################

*15:00 Workout (Gym)

###################

mark mark

*08:30 Coffee (Starbucks)

*15:00 Workout (Gym)

*08:30 Coffee (Starbucks)

*15:00 Workout (Gym)

erase erase

=

41

Example

*08:30 Coffee (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

*08:30 Coffee (Starbucks)

12:15 Lunch (Magic Carpet)

*15:00 Workout (Gym)

6:00 Dinner (Home)

*08:30 Coffee (Starbucks)

##########################

*15:00 Workout (Gym)

*08:30 Coffee (Starbucks)

###########################

*15:00 Workout (Gym)

###################

mark mark

*08:30 Coffee (Starbucks)

*15:00 Workout (Gym)

*08:30 Coffee (Starbucks)

*15:00 Workout (Gym)

erase erase

=

≈Tainted

41

Static Analysis

Use a simple static analysis to push the annotated source schema
through the lens program to obtain an annotated view schema.

((SPACE . TIME . DESC . LOCATION . NEWLINE) : Tainted
| (ASTERISK . TIME . DESC . LOCATION . NEWLINE) : Trusted)*

let public : lens =
del (SPACE) .
copy (TIME . DESC) .
del (LOCATION) .
copy (NEWLINE)

let private : lens =
del ASTERISK .
copy (TIME) .
((DESC . LOCATION) <-> "BUSY") .
copy NEWLINE

let redact : lens =
public* . (private . public*)*

((TIME . DESC . NEWLINE) : Tainted
| (TIME . BUSY . NEWLINE) : Trusted)*

43

Static Analysis

((SPACE . TIME . DESC . LOCATION . NEWLINE) : Tainted
| (ASTERISK . TIME . DESC . LOCATION . NEWLINE) : Trusted)*

let public : lens =
del (SPACE) .
copy (TIME . DESC) .
del (LOCATION) .
copy (NEWLINE)

let private : lens =
del ASTERISK .
copy (TIME) .
((DESC . LOCATION) <-> "BUSY") .
copy NEWLINE

let redact : lens =
public* . (private . public*)*

((TIME . DESC . NEWLINE) : Tainted
| (TIME . BUSY . NEWLINE) : Trusted)*

43

Static Analysis

Use a simple static analysis to push the annotated source schema
through the lens program to obtain an annotated view schema.

From the annotated view schema, read off an equivalence on
views.

((SPACE . TIME . DESC . LOCATION . NEWLINE) : Tainted
| (ASTERISK . TIME . DESC . LOCATION . NEWLINE) : Trusted)*

let public : lens =
del (SPACE) .
copy (TIME . DESC) .
del (LOCATION) .
copy (NEWLINE)

let private : lens =
del ASTERISK .
copy (TIME) .
((DESC . LOCATION) <-> "BUSY") .
copy NEWLINE

let redact : lens =
public* . (private . public*)*

((TIME . DESC . NEWLINE) : Tainted
| (TIME . BUSY . NEWLINE) : Trusted)*

43

Example

08:30 BUSY

12:15 Lunc

15:00 BUSY

08:30 BUSY

12:15 Lunch

15:00 BUSY

17:00 TGIF

08:30 BUSY

##########

15:00 BUSY

08:30 BUSY

###########

15:00 BUSY

##########

mark mark

08:30 BUSY

15:00 BUSY

08:30 BUSY

15:00 BUSY

erase erase

45

Example

08:30 BUSY

12:15 Lunc

15:00 BUSY

08:30 BUSY

12:15 Lunch

15:00 BUSY

17:00 TGIF

08:30 BUSY

##########

15:00 BUSY

08:30 BUSY

###########

15:00 BUSY

##########

mark mark

08:30 BUSY

15:00 BUSY

08:30 BUSY

15:00 BUSY

erase erase

45

Example

08:30 BUSY

12:15 Lunc

15:00 BUSY

08:30 BUSY

12:15 Lunch

15:00 BUSY

17:00 TGIF

08:30 BUSY

##########

15:00 BUSY

08:30 BUSY

###########

15:00 BUSY

##########

mark mark

08:30 BUSY

15:00 BUSY

08:30 BUSY

15:00 BUSY

erase erase

45

Example

08:30 BUSY

12:15 Lunc

15:00 BUSY

08:30 BUSY

12:15 Lunch

15:00 BUSY

17:00 TGIF

08:30 BUSY

##########

15:00 BUSY

08:30 BUSY

###########

15:00 BUSY

##########

mark mark

08:30 BUSY

15:00 BUSY

08:30 BUSY

15:00 BUSY

erase erase

=

45

Example

08:30 BUSY

12:15 Lunc

15:00 BUSY

08:30 BUSY

12:15 Lunch

15:00 BUSY

17:00 TGIF

08:30 BUSY

##########

15:00 BUSY

08:30 BUSY

###########

15:00 BUSY

##########

mark mark

08:30 BUSY

15:00 BUSY

08:30 BUSY

15:00 BUSY

erase erase

=

≈Tainted

45

Secure Lenses, Formally

The expectation that “Tainted inputs to put should not affect
Trusted outputs” can now be expressed by generalizing the
GetPut law...

l .put (l .get s) s = s (GetPut)

... like this:

v ≈k (l .get s)

l .put v s ≈k s
(GetPutSecure)

We prove in the paper that our static analysis guarantees this
new law.

(We also keep the original PutGet law and add a similar law for confidentiality.)

46

Usage Scenario

We can now maintain integrity of the source data after updates
as follows:

1. Start with source s

2. Alice (the Owner of the source) uses get to create a view v

3. Alice gives v to Eve (an untrusted user)

4. Eve edits v to produce v ′ and gives v ′ back to Alice

5. Alice checks that v and v ′ agree on trusted data (i.e.,
v ≈Tainted v ′)
I If so, Alice replaces s with put s v ′

I If not, Alice refuses the update

6. Safety theorem for the static analysis guarantees s≈Tainteds ′ —
i.e., s and s ′ agree on trusted data.

:-)

47

The PutPut Law, Redux

The following law can be derived:

v ′ ≈k v ≈k (l .get s)

l .put v ′ (l .put v s) ≈k l .put v ′ s

This law says that the put function must have no “side-effects”
on trusted source data.

It generalizes the “constant complement” condition, the gold
standard for correct view update in databases.

48

Dynamic Enforcement

Static Analyses Are Conservative

There are useful integrity policies for which the static
enforcement method is too conservative, disallowing too many
edits.

For example...

50

Another Possible Integrity Policy

Policy: “Event locations are trusted”

Desired effect: Edits to the view are allowed as long as they do
not change its length or change public events to private or vice
versa.

Problem: No way to achieve this effect by marking regions of
the view as Trusted / Tainted.

52

08:30 BUSY

12:15 Lunch

15:00 BUSY

*08:30 Coffee with Sara (Starbucks)

12:15 Lunc (Magic Carpet)

*15:00 Workout (Gym)

Dynamic Approach

1. Extend secure lenses with dynamic tests that check if the put
function can safely handle a given source and view:

l .safe ∈ Q → V → S → B

2. Replace GetPutSecure with the following law:

l .safe q v s

l .put v s ≈q s
(GetPutDyn)

3. Change usage scenario...

(see the paper for the confidentiality side of the story)

53

Usage Scenario (dynamic version)

We can now maintain integrity of the source data after updates
as follows:

1. Start with source s

2. Alice (the Owner of the source) uses get to create a view v

3. Alice gives v to Eve (an untrusted user)

4. Eve edits v to produce v ′ and gives v ′ back to Alice

5. Alice checks l.safe Tainted v’ s
I If true, Alice replaces s with put s v ′

I If false, Alice refuses the update

6. Safety theorem for the static analysis guarantees s≈Tainteds ′ —
i.e., s and s ′ agree on trusted data.

:-)

54

Finishing up...

Examples Under Construction

• A multi-level wiki, inspired by Intellipedia and by the Galois
Tearline Wiki project

• Tool for sharing / synchronizing calendars, bibliographic
databases, etc. with partial visibility

• ... Suggestions welcome!

56

Other Ongoing Work

• Implementation (of type system)

• Security implications of rich alignment strategies

• Richer lattices (decentralized label model)

• Provenance / auditing

57

Thank You!

Want to play? Boomerang is available for download.

• Source code (LGPL)

• Precompiled binaries

• Research papers

• Tutorial and demos

http://www.seas.upenn.edu/∼harmony/

58

http://www.seas.upenn.edu/~harmony/

