
Using Lightweight Formal Methods to
Validate a Key-Value Storage Node in
Amazon S3

James Bornholt
Amazon Web Services & The University of Texas at Austin

joint work with Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard Kragl, Seth Markle,
Kyle Sauri, Drew Schleit, Grant Slatton, Serdar Tasiran, Jacob Van Geffen, and Andy Warfield

Object storage on Amazon S3
• Amazon S3 is an object storage service (PUT, GET), also known as a

key-value store

PUT cat.jpg

🐈

Amazon S3

OK

GET cat.jpg

🐈

S3 stores over 200
trillion objects today

Object storage on Amazon S3
• Amazon S3 is an object storage service (PUT, GET), also known as a

key-value store

PUT cat.jpg

🐈

Amazon S3

OK

GET cat.jpg

🐈

🐈

🐈

🐈

Storage nodes are
single-host key-
value stores that
store S3 object data

S3’s new ShardStore storage node

Amazon S3

🐈

🐈

🐈

• Currently deploying ShardStore, a new storage
node written in Rust

• 45k lines of code, ~100s of PBs in 2021

• Implementation is complex:
• a log-structured merge tree…
• …with support for zoned (append-only) storage
• …soft updates for efficient crash consistency
• …a bunch of fancy concurrency
• …

What makes a storage system correct?

How can we validate correctness continuously?

What makes a storage system “correct”?
• Functional correctness — PUT, GET, DELETE, etc all do what we

want them to do

• “GET returns the right data”

What makes a storage system “correct”?
• Functional correctness — PUT, GET, DELETE, etc all do what we

want them to do

• “GET returns the right data”

• Crash consistency — disk is in a valid state after a crash

(K, b3) V

b0 b1 b2 b3 b4 b5 …

write(b0, (K -> b3));
write(b3, V);

Put(K, V):

Crash
???

What makes a storage system “correct”?
• Functional correctness — PUT, GET, DELETE, etc all do what we

want them to do

• “GET returns the right data”

• Crash consistency — disk is in a valid state after a crash

• Correctness under concurrency (aka consistency, but not the same
as crash consistency!)

Client A

Client B

PUT(k, 5)

PUT(k, 6)

GET(k)

Time

What values can
this GET return?

What makes a storage system correct?

How can we validate correctness continuously?

We need lightweight formal methods
• Want to validate deep properties of the implementation

• Whatever we do needs to be maintainable in the long run

• Our goal: future changes to ShardStore require no involvement
from FM experts

• Integrate into a large project: 45k lines of Rust, weekly
deployments, etc.

Lightweight formal methods
1. Executable reference models as specifications

2. Automated tools to check implementations against models

3. Coverage tools to track effectiveness over time

In return for being lightweight and automated, we accept weaker
correctness guarantees than full formal verification

Writing reference model specifications
• Small, executable specifications, written in Rust

• Stored/reviewed/committed alongside the code

L1

L2

L3

L0

LSM tree

{
 k1=v1,
 k2=v2,
 …
}

Hash map

Same interface

Correctness properties
• Decompose correctness into three parts and check each

separately:

• Functional correctness: refinement of the reference model

• Crashes: refinement against a weaker reference model

• Concurrency: linearizability against the reference model

Conformance with property-based testing

{} {a=5} {a=5} {}Reference model:

Implementation:

Put(a, 5) GC Delete(a)Random sequence:

Check for same
key-value
mapping

“Pay-as-you-go”: test
small scale locally, larger
scale before deployment

Conformance with property-based testing

{} {a=5} {a=5} {}Reference model:

Implementation:

Put(a, 5) Delete(a)Random sequence: Crash

Drop volatile caches
and reboot

Conformance with property-based testing
• Randomized testing can miss bugs

• Arrange biases to reduce this risk where we can

• Use coverage data to monitor code we’re missing

• Apply heavyweight tools where it makes sense (serialization,
undefined behavior, …)

Put(key: u64, value: [u8])
Get(key: u64)

~0% chance we generate a
key we already put

Checking concurrent behavior
• We need a lightweight way to validate the behavior of our

concurrent code

• Multiple customer requests, background tasks, disk IO, etc.

• Stateless model checking is a way to test concurrent code by
exploring potential interleavings

• Automated — it’s just a push-button model checker

• Lightweight — in Rust, it just looks like a unit test

• Usable — “feels like cheating”

Checking concurrent behavior
shuttle::check(|| {
 // Set up some initial state
 let index = PersistentIndex::new();
 for (key, value) in &[...] {
 index.put(key, value);
 }

 // Spawn concurrent operations
 let t1 = thread::spawn(|| index.compact());
 let t2 = thread::spawn(|| index.reclaim());
 let t3 = thread::spawn(|| {
 for (key, value) in &[...] {
 assert_eq!(index.get(key), value);
 }
 });
})

Test interleavings of
background tasks with
GETs and check values are
always correct

Shuttle is a stateless model
checker for Rust

Experience with FM in production
• Automated lightweight tools prevent issues from even reaching

code review

• Maintainable in practice:

• 20% of model code by non-FM experts

• 1/3rd of engineers have written their own new models/checks

• In production for > a year

• “Pay-as-you-go” and continuous validation makes FM viable in a
rapid production engineering process

What makes a storage system correct?

How can we validate correctness continuously?

SOSP 2021: “Using Lightweight Formal Methods to Validate a Key-Value
Storage Node in Amazon S3”

