
Lori A. Clarke
Department of Computer Science

University of Massachusetts Amherst

In collaboration with
George S. Avrunin and Leon J. Osterweil

1 This material is based upon work supported by the National Science
Foundation under Awards CCF-0820198, CCF-0905530 and IIS-0705772, and
by a gift from the Baystate Medical Center, Rays of Hope Foundation.

}  ~ 100,000 deaths per year due to avoidable errors in
the US [IOM1999]

}  Widely believed to be an underestimate
◦  Perhaps by a factor of two

}  Hundreds of billions of dollars wasted

}  Incalculable amount of human pain and suffering

}  Little improvement since 1999

}  2009 National Research Council Report
�  "persistent problems do not reflect incompetence on the part of health care

professionals - rather, they are a consequence of the inherent intellectual
complexity of health care taken as a whole and a medical care environment that
has not been adequately structured to help clinicians avoid mistakes or to
systematically improve their decision making and practice.”

}  As the use of technology increases,
◦  Some kinds of errors are expected to decrease

 (RFID scanners to verify patient ID)
◦  But others are expected to lead to even more complexity

}  Model processes
}  Evaluate them
◦  Using a wide variety of analysis techniques

}  Propose modifications
}  Deploy them: Process-guided support
}  Reevaluate based on clinical setting

 data and iterate

Shewhart/Deming Cycle

Static
Analysis
Cycle

Dynamic
Analysis
Cycle

}  Process programming to model medical processes
◦  Little-JIL process programming language

}  Requirements engineering to capture properties
◦  PROPEL (property elucidation system)

}  Model checking to detect errors
◦  FLAVERS (Flow Analysis for Verifying Systems) and SPIN

}  Safety analysis to reveal vulnerabilities
◦  Failure Mode and Effects Analysis

◦  Fault tree Analysis

}  Discrete event simulation to improve efficiency

}  Breast Cancer Chemotherapy
◦  Wilson Mertens, Director, Baystate Medical Center (BMC)

Oncology Dept
}  In-Patient Blood Transfusion Process
◦  Beth Henneman, UMass School of Nursing

}  Emergency Department Patient Flow
◦  Phil Henneman, BMC ED physician, former director

}  Patient-controlled Analgesia Infusion Pump
◦  Julian Goldman, Partners Health and Mass General Hospital

}  Coordination of Care
◦  Kate Rankin, Memory and Aging Center, U. CA San Francisco

}  Cardiac Surgery
◦  Marco Zenati, VA and Mass General Hospital

}  Medical processes
◦  Complex, concurrent, and exception-rich
◦  Need to support human choice, flexibility
◦  Each task may involve multi-processors and each processor

is involved in multiple tasks
}  Process language requirements
◦  Capture complexity of medical processes clearly, cleanly
◦  Rich semantics

(e.g. functionality, timing, resource utilization, exceptions)
◦  Precise enough to support static analysis, simulations, and

executions
◦  Understandable to a medical professional

Step Name

Sequencing Badge

Prerequisite Badge Postrequisite Badge

… Substeps
Exception Handlers

Resources and parameters	

}  Visual language for coordinating tasks
}  Uses hierarchical step decomposition
}  Step icon

*Pre: Physician Prescribes ���
 Blood Transfusion	

 In Patient Blood Transfusion Process

Single-Unit Transfusion Process

Follow Through Check Check for Type and Screen

*Exception: No Patient Consent	

*Pre: Confirm Patient ���
 Consent	

Carry Out Physician Order for Transfusion

Prepare Document for Blood Pick-up

Pick up Blood from Blood Bank

*

Single-Unit Transfusion Process

BedsideChecks Prepare for Infusion

VerifyPatient ID ProductVerification

Assess Patient

Post Transfusion Work

Begin Transfusion Record Infusion Info

Suspected Transfusion Reaction

Discard Transfusion Materials

z	

AdministerUnit Blood Product

3. Order Test(s)
 3.1 order test(s) on computer

 3.1.1 log into computer
 3.2.1 select patient record

 3.2.1.1 look for patient name on the
alphabetical list

 3.2.1.2 match additional info as
needed (age, gender, complaint,
location...)

•  …

3. Order Test(s)(part of perform Blood Specimen Labeling process)!
 To perform this step the Provider must have the patient-name.!
 The Provider should first order test(s) on computer, !

!and then order test(s) on patient chart.!
 During any of these steps, if the required resources are not available, order

test(s) is considered to have failed.!
 Upon successful completion of this step, !

!continue to perform Blood Specimen Labeling process by proceeding to
the next step in the sequence.!

!
3.1 Order Test(s) on Computer (part of order test(s))!
 To perform this step the Provider must have the patient-name and the CIS

system. !
 To order test(s) on computer the Provider should perform, in order, each of

the following:!
!log into computer!

 !select patient record in DB!
 !verify the selected patient exactly matches desired patient!
 !select test to order at least once!

!digitally sign the order(s)!
During any of these steps, if the required resources are not available, order

test(s) on computer is considered to have failed.!
Upon successful completion of this step, continue order test(s) by

proceeding to the order test(s) on patient chart step.!

}  Processes are not well-understood
◦  Individuals know their process, but misunderstand how it relates to

others
e.g., Artifacts created but not used

}  Even “simple” processes may be very complex
◦  E.g., Verify Patient ID
◦  Need abstraction and hierarchical decomposition

}  Clinicians are not computer scientists
◦  Think in terms of scenarios, not in terms of the general process
◦  Initially are scared by the language but many end up discussing the

lowest-level details “comfortably”
◦  Like the natural language representation (and so do the computer

scientists)

}  Aspects of the language helped guide the elicitation
◦  E.g., What exceptions can arise and how are they treated?

}  Important to tie down terminology
◦  Use the same term in different ways

e.g., “transfuse blood”
◦  Use different terms to mean the same thing

e.g., verify, check, confirm, match

}  Takes many iterations to model a process
◦  Must determine upper and lower bounds of the scope
◦  Must determine granularity of tasks
◦  2 elicitors - help keep discussion on track; listen for requirements;

record all sessions

}  There is no best process modeling representation
◦  Large graphical or textual representations are hard to comprehend

}  Want a representation that will
◦  Be the basis for answering questions about the model
◦  Support the creation of other representations

�  E.g., dependency matrix, data flow diagrams, role-based descriptions,
textual descriptions, scenarios…

z	

z	

Order Test(s)(part
of perform Blood
Specimen
Labeling process)"

Process
definition

Properties Model Checker
(FLAVERS)

Discrete event
simulator

Failure mode
and effects

analyzer

Fault tree
generator

Hazards

Failure
modes

Scenario
specifications

Satisfied properties,
violated properties +

counterexamples

Fault trees, minimal
cut sets

Effects of failure
modes

Discrete event
simulation runs

Little-JIL
narrator

Property elicitor
(PROPEL)

Process editor
(Little-JIL editor)

Textual
representation of
process definition

Requirements
Derivation

Derived
Requirements Device model

Process definition +
requirements

Static Analysis

}  How do we know if the model is consistent
with the real process?
◦  Review textual/graphical descriptions
◦  Examine scenarios (could be automatically generated)
◦  Shadow process performers (e.g., with eye trackers)
◦  Not the focus of this presentation

}  Does this process (as captured by the model)

allow errors or vulnerabilities to occur?
◦  Want to leverage the investment in creating the model

Process
definition

Properties Model Checker
(FLAVERS)

Discrete event
simulator

Failure mode
and effects

analyzer

Fault tree
generator

Hazards

Failure
modes

Scenario
specifications

Satisfied properties,
violated properties +

counterexamples

Fault trees, minimal
cut sets

Effects of failure
modes

Discrete event
simulation runs

Little-JIL
narrator

Property elicitor
(PROPEL)

Process editor
(Little-JIL editor)

Textual
representation of
process definition

Requirements
Derivation

Derived
Requirements Device model

Process definition +
requirements

Static Analysis

Process
model

Properties Finite-state
verifier

Satisfied
properties,

violated

properties +
counterexamples

Property
elicitor

(PROPEL)

• Are there any traces through the process model that will violate a
property?

• e.g., is it possible for a required sequence of events to ever be
missed or done out of order?
• If so, provide counterexample traces

Process editor
(Little-JIL

editor)

}  Capture and elaborate stated goals
◦  Often inconsistent, incomplete, ambiguous,…
◦  Helps in understanding the problem, risks, constraints, …

}  Refine into definitive, natural language statements
◦  Develop structural organization of the collection

�  And/Or relationships
�  Generalization, specialization, and refinement
�  Refine glossary

}  Refine into mathematically precise properties that
can be used as the basis for verification
◦  Bridge between the abstract goals and the process model
◦  Create bindings between the events stated in the requirements and

the steps in the process model
�  Often 1-1, but not always

}  Provides templates that explicitly indicate the options
associated with each Property Pattern (Dwyer, Avrunin, and Corbett)

}  Three coordinated representations
◦  Question Tree

�  Helps select the appropriate pattern
�  Guides in the selection of options

◦  Disciplined Natural Language (DNL)
�  Specifier selects from given optional phrases
�  Fully instantiated template is a sequence of English sentences

◦  Extended Finite-State Automaton
�  Graphical FSA with optional transitions, labels, and accepting states
�  Fully instantiated template is a FSA defining a language of desirable sequences of events;

basis for Model Checking

How many events of primary interest are there?
!  One: event verify-patient-ID

!  Two: events verify-patient-ID and transfuse-blood

!  After verify-patient-ID occurs, transfuse-blood is
required to occur

!  transfuse-blood cannot occur until after verify-patient-
ID has occurred

¬transfuse-blood
 or
¬verify-patient-ID
 or
¬(verify-patient-ID,
 transfuse-blood)
 or

verify-patient-ID

transfuse-blood

¬(verify-patient-ID,
 transfuse-blood)

verify-patient-ID

¬transfuse-blood
 or
¬verify-patient-ID
 or
¬(verify-patient-ID,
 transfuse-blood)

transfuse-blood cannot occur unless verify-patient-ID has already occurred.
It is acceptable for verify-patient-ID to not occur, but if it does not occur then transfuse-blood can
not occur. Even if verify-patient-ID does occur, transfuse-blood is not required to occur.

Before the first verify-patient-ID occurs, the events in this property, other than transfuse-blood,
can occur any number of times.
After verify-patient-ID occurs and before the first subsequent transfuse-blood occurs:

• the events in this property, including verify-patient-ID but not transfuse-blood, can occur any
number of times.

After the first subsequent transfuse-blood occurs:
• the events in this property, other than verify-patient-ID or transfuse-blood, could occur any

number of times;
• neither verify-patient-ID nor transfuse-blood can occur again.

¬(verify-patient-ID,
 transfuse-blood)

transfuse-blood

¬(verify-patient-ID,
 transfuse-blood)

verify-patient-ID

¬transfuse-blood

}  Specifying the properties helped determine the
scope/granularity of the process

}  Need to specify properties in the context of
exceptions
◦  PropA is true unless exception X1 or X2 occurs

}  Difficult for clinicians to understand the difference
between a process model, a property, and a
scenario
◦  Scenario describes a particular situation
◦  Process prescribes what to do for all situations
◦  Property describes what should be true no matter how the process is defined or

implemented

}  Just doing the modeling helped uncover errors in the
processes

}  Initially we mostly found errors in the process models
and the properties

}  After fixing the modeling errors, we found errors in
the real processes
◦  E.g.,
�  Deadlock
�  Stale height and weight

}  Our process models were amenable to model checking
◦  Few infeasible paths and most of our properties were

event based
 => few false positives

◦  Scalability still a concern

}  Fixing the errors often led to other errors

}  If processes are complex enough to be
modeled, the models must be carefully
validated!

}  Model checking assumes that the stated tasks are done
correctly, but tries to determine if the tasks are always done in
the right order with the right values

}  Safety analysis tries to determine what harm might be done if
the tasks are not done correctly
◦  Failure mode and effects analysis

�  What hazards might arise, if there is a failure in the system?
◦  Fault tree analysis

�  What are the ways in which a particular hazard might occur
�  E.g., single points of failure

}  Found several important errors and inefficiencies in the
processes that we modeled
◦  Sequence errors, deadlocks, single points of failure

}  Testimonials
◦  Medical colleagues claim that this approach has changed the

way they view their processes, the terms they use, and how
they teach their disciplines

}  Chemotherapy process saw a 70% reduction in
errors that reach the patient

Model
Checker Properties	

Scenarios	
 Interpreter/
Simulator

Process
Model

Fault Tree
Analyzer Hazards	

FMEA
Constructor Failures	

Error and
Vulnerability

Reports

Model
Checker Properties	

Scenarios	

Interprete

r/
Simulator

Process
Model

Fault Tree
Analyzer Hazards	

FMEA
Construct

or
Failures	

Error, Vulnerability, and Efficiency Reports

Event ���
Interaction	

Manager	

Retrospector

Prospector

Deviation
Detector

Constraint
Evaluator

Real-Time
Analyzers

}  Retrospection, Prospection,
and Current Context based on
accurate monitoring of process
steps

}  Exploit process model info,
such as subprocesses and
iteration

}  Provide alternative views that
highlight what is important to an
agent

}  Support queries about the past

}  Use simulations to predict future
alternatives

}  Approach not restricted to medical processes
◦  Systematic, analysis-based approach to process

improvement
◦  Effective for finding errors and vulnerabilities in complex,

human-intensive processes
}  Future work: monitoring and guidance based on

validated process models
◦  Basis for real-time deviation detection
◦  Framework for accumulating operational data, applying

probabilistic analysis, and proposing evidence-based
process improvements
◦ 

