
VAST : Visualization of Attack Surfaces

for Targeting

Ke-Thia Yao, kyao@isi.edu

Information Sciences Institute
Viterbi School of Engineering

University of Southern California

10th Annual High Confidence Software and Systems Conference

mailto:kyao@isi.edu

Introduction

• VAST was developed over a year at USC ISI
funded by NSA SNAC

• Aid analysts in exploring and understanding
large unfamiliar C codes

• Interactive Eclipsed-based

• Augmented code browser tools

• New breadcrumb tool to help internalize and
learn code

• VAST/Eclipse technology useful for any code
browser application

Contact: Dr. Ke-Thia Yao, University of Southern California Information Sciences Institute, kyao@isi.edu, 310-448-8297

Problem

• Software vulnerability exploits
continue to plague industry

• Exponential rise in malware attacks

• Need more secure software

• Initially focus on software vulnerability
analysis problem

– Automated source code analyzers generate too
many false positive and false negatives

– Eyes looking at the source code is still the best
way to discover vulnerability

Objectives

• Help human code auditor teams

– Reduce time needed to understand large source
code bases, 1 to 10 million lines

– Reduce total time take for a team of code auditors
to evaluate software

– More thorough, and efficient analysis of software
vulnerabilities

– Increase the number of vulnerabilities uncovered
during code review process

Secure software through better
vulnerability assessment

Code Understanding

• Only human mind can understand code

• Achieving understanding is poorly understood

• High level –learn concepts

• Low level –what does that line of code do

• Usually code browser provides information

• How can browser make the process of

understanding code easier and quicker?

Lost in Code

Why did I bring up this editor?

Which editor did I come here from?

What was I looking at yesterday?

How did I figure this out yesterday?

Code Spelunking

• Exploring cavernous code bases
– Phrase coined by Neville-Neil

• Size of popular software

• Types of Spelunking behavior

– Debugging a program crash

– Debugging an intermittent error

– Looking for security vulnerability

Dimensions for

Tools and Techniques

• Static vs. Dynamic analysis

– Looking at source code
versus looking at the runtime
behavior

• Brute force vs Subtlety

– Using text-based tools (find,
grep) vs. tools that under
stand language semantics
(cscope, cdt)

• Batch vs. Interactive

– Using dumps and printfs vs.
debuggers and code
browsers

Static Dynamic

Brute force

Subtlety
Interactive

Batch

Approach

• Human code auditors need navigational aids to
support exploration of large code bases

– Code assessment oriented user interfaces as cognitive aid in
semantic understanding

Principles/Guidelines

• Consistency of view

• Hiding irrelevant code

• Manage screen real estate

• Assist navigation of control flow

• Allow navigation by graph

• …

Semantic
Understanding

Navigation Visualization

Approach (2)

• Need better ways to focus exploration to likely
vulnerable code locations

– Attack Surfaces: exploits tend to follow patterns
directed at specific areas

– These areas tend to at the intersection of I/O,
network, memory

– Rank importance of attack area

Implementation Criteria

• Open extensible framework

• Develop VAST as an Eclipse plug-in

• Eclipse is free and open source software
development environment

• Advantages
– Leverage existing popular integrated development

environment (IDE)

– Multi-language: Java, C/C++, Python, Fortran

– Plug-in system that allows additional capabilities to be
added in a modular fashion

• But, significant learning curve

Eclipse Plugin Framework

• Lightweight software component framework

• Allows components to be easily customized

• Allows alternative component implementation

Eclipse Standard Tools

• Multi-pane editor

• Menus, toolbars,
tooltips, help, windowing

• Variable & routine trace
– Show declarations/

definitions

– Show uses/calls

• Source code generation

• Source code refactoring

Multicolumn Editor

• Enables call trace oriented code browsing

• Opens editor from left to right

• Each open declaration creates a new column

• Allows the same file to opened multiple times

• Extends Eclipse’s StackedPresentation class

Breadcrumb View

• Helps users remember code exploration path

• Augments user’s mental model, thoughts

• Graph layout aligns with multicolumn editor

• Implements Eclipse View using Draw2D API

Current active editor
is highlighted

Each node is a function
with corresponding
editor in multicolumn

Connect components
represent thoughts

Browse using breadcrumbs

Breadcrumbs (2)

• Higher level features to manage breadcrumb trails

– Open/close code browser associated with thought

– Export thought a picture figure

– Hide/Unhide thought in breadcrumb view

System Attack Surface

• Indicator of system vulnerability

– Large attack surface, then more vulnerability

• Attack surface metric

– Entry/exit points, such as API calls

– Channels, such as sockets and RPC

– Unsecured data, such as user input and files

– Damage potential, such privileged and security calls

• Measures the entire system

– E.g, numeric sum of damage over all points,
channels and unsecured data

Code Surveyor View

• Provides source code overview in context of
software vulnerability assessment
– Where are the attack surfaces

– Which part of the code has been audited

Functions depicted as
rectangle leaves with
variable size and color

Metric values expressed as size & color
• I/O, network, memory
•Visit count

Source code tree depicted
as nested boxes

Code Surveyor (2)

User definable metric score
• Include files
• Function names

Attack surface driven browsing
• Function color-coded by metric value

VAST Architecture

• VastEclipseAdaptor

– Listens to Eclipse system events

– Sends VastEvents to registered
IVastListeners

– Each VastEvent triggers 3 calls
• startEvent, processEvent, endEvent

• EclipseActuator
– Responsible for calling Eclipse

functions

• IVASTEventListener
– All VAST View should implement this

interface to receive VastEvents

– VAST View should NOT have
• To listen to Eclipse system directly

• To call to Eclipse system directly

+startEvent(in VastEvent)

+processEvent(in VastEvent)

+endEvent(in VastEvent)

«interface»

IVASTEventListener

+StarteEvent()

EclipseActuator

+AddPart()

MultiColumnStackPresentation ThumbView

+addListener()

+removeListener()

+receiveEvent(in VastEvent)

VastEclipseAdaptor

Eclipse

-listeners

1

-adapter

*

«send»

«call»

+EDITOR_OPENED

+EDITOR_CLOSED

+NAVIGATION

+EDGE_CREATED

VastEvent

BreadCrumbs

«subtype»

Extending to Other Languages

• Developed for C, but was able to adapt to

VAST to Java quickly

• Next step is FORTRAN

• Photran plugin available for Eclipse

• Potential attacks on Common block and

integer overflow

Parallelization

• Often requires extensive code inspection

• Often requires extensive code modification

• Best done at a high level

• Largely unsolved except by heroic programmer

• Modern parallel hardware wasted without

better mass parallelization tool

Better Toolbox

• Develop sandbox framework/server with
analysis tool ensemble to help organizations
quickly ingest new software

– Need a variety of tools for breadth and depth

– Provide all three spelunking tools dimensions

– Integrate source code and runtime analysis tools

– Environment to run and test new software

Contact: Dr. Ke-Thia Yao, University of Southern California Information Sciences Institute, kyao@isi.edu, 310-448-8297

Deeper Attack Surface

Analysis

• Currently, attack surface metrics are based on
syntactic API-level analysis of source code

• Take advantage of catalog of software exploits
and attack patterns

– Exploiting Software: How to Break Code
by Hoglund & McGraw

– OWASP lists 160 Web-related vulnerabilities

– Error prune constructs, coding standards/styles

• Apply data mining and approximate pattern
matching to find vulnerable regions

Contact: Dr. Ke-Thia Yao, University of Southern California Information Sciences Institute, kyao@isi.edu, 310-448-8297

