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Research Interests

Distributed algorithms

m Distributed shared memory systems

m Distributed computations over wireless networks

m Distributed optimization



Privacy Machine

I

and for Learning /

Security Optimization



Privacy Machine

—

and for Learning /

Security Optimization



QOutline

m Votivation — distributed machine learning

m Research problems

— Privacy-preserving distributed optimization

— Adversarial learning

— Robustness to adversarial samples






Example — Image Classification
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Deep Neural Networks
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network
How to train your W

® Given a machine structure
m Parameters are the only free variables

= Choose parameters that maximize accuracy

13



How to train your network

® Given a machine structure
m Parameters are the only free variables

=» Choose parameters to maximize accuracy

Optimize a suitably defined
cost function h(w)
to find the right parameter vector w



How to train your network

Optimize a suitably defined
cost function h(w)

parameters to find the right parameter vector w

W



Cost Function h(w)

Consider input x

True classification y(x)

Machine classification a(x,w) using parameters w

Cost for input x = Il y(x)-a(x,w) I

Total cost h(w) =

= 2 1l y(x)-a(x,w) 112

X
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Convex Optimization

Wi35

Wikipedia



Convex Optimization
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Convex Optimization
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Convex Optimization
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Convex Optimization
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So far ...

h(w)
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m Votivation — distributed machine learning

m Research problems

— Privacy-preserving distributed optimization

— Adversarial learning

— Robustness to adversarial samples



Distributed Machine Learning

m Data is distributed
across different
agents

® Mobile users
® Hospitals
® Competing vendors



Distributed Machine Learning
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Distributed Machine Learning

m Data is distributed
across different =» Collaborate to learn
agents



Distributed Machine Learning

m Data is distributed
across different

agents

h,(w) h,(w)
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Distributed Optimization

m 30+ years or work

® Recent interest due to machine learning applications

28



Distributed Optimization
Different architectures

m Peer-to-peer
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Distributed Optimization
Different architectures

m Peer-to-peer

Parameter
m Parameter server server




Distributed Gradient Method
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Distributed Gradient Method
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Distributed Gradient Method
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Distributed Gradient Method
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Works in incomplete networks too !
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Parameter Server Architecture
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server

,,‘

W[1] = W[0] — a > Vhy(W[O])

Vh1(W[O]/

\th(W[O])

F N 1ol |
o] el
Iﬂ !EE EASEmn
IIFHH [Igﬂ




QOutline

m Votivation — distributed machine learning

m Research problems

— Privacy-preserving distributed optimization

— Adversarial learning

— Robustness to adversarial samples



Privacy Challenge

® Peers may learn
each other’s data

m Parameter server Parameter
may learn data server




Privacy-Preserving Optimization
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Can agents collaboratively learn,
and yet protect own data ?

Optimize
cost function
2 hi(w)



Peer-to-Peer Architecture
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Add Inter-Dependent Noise
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Add Inter-Dependent Noise
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Key ldea

® Add correlated noise in information exchanged
between agents

B Noise “cancels” over the network

®m But can prevent coalition of bad agents learning
information about others
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Privacy-Preserving Optimization
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Privacy-Preserving Optimization
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Private Learning on Networks *

Shripad Gade Nitin H. Vaidya

Department of Electrical and Computer Engineering, and
Coordinated Science Laboratory,

University of Illinois at Urbana-Champaign.
Email: {gade3, nhv}@illinois.edu

Technical Report

Abstract

Continual data collection and widespread deployment of machine learning algorithms, par-
ticularly the distributed variants, have raised new privacy challenges. In a distributed machine
learning scenario, the dataset is stored among several machines and they solve a distributed
optimization problem to collectively learn the underlying model. We present a secure multi-
party computation inspired privacy preserving distributed algorithm for optimizing a convex
function consisting of several possibly non-convex functions. Each individual objective function
is privately stored with an agent while the agents communicate model parameters with neighbor
machines connected in a network. We show that our algorithm can correctly optimize the over-
all objective function and learn the underlying model accurately. We further prove that under
a vertex connectivity condition on the topology, our algorithm preserves privacy of individual
objective functions. We establish limits on the what a coalition of adversaries can learn by
nheervinoe the meceacees and <tatee chared over a network
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m Votivation — distributed machine learning

m Research problems

— Privacy-preserving distributed optimization

— Adversarial learning

— Robustness to adversarial samples



Adversarial Agents

®m Adversarial agents
may send bogus information

®m | earned parameters impacted

Parameter
server




Adversarial Agents

Can good agents learn
despite bad agents?

Parameter
server




Adversarial Agents

Can good agents learn
despite bad agents?

x
Yes!

Parameter
server




Key ldea

B Need to filter bad information

m Define “outliers” appropriately
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Non-Bayesian Learning in the Presence
of Byzantine Agents

Lili Su®™ and Nitin H. Vaidya

Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Champaign, USA
{1lilisu3,nhv}@illinois.edu

Abstract. This paper addresses the problem of non-Bayesian learn-
ing over multi-agent networks, where agents repeatedly collect partially
informative observations about an unknown state of the world, and try
to collaboratively learn the true state. We focus on the impact of the
Byzantine agents on the performance of consensus-based non-Bayesian
learning. Our goal is to design an algorithm for the non-faulty agents to
collaboratively learn the true state through local communication.

We propose an update rule wherein each agent updates its local beliefs
as (up to normalization) the product of (1) the likelihood of the cumula-
tive private signals and (2) the weighted geometric average of the beliefs
of its incoming neighbors and itself (using Byzantine consensus). Under
mild assumptions on the underlying network structure and the global
identifiability of the network, we show that all the non-faulty agents
asymptotically agree on the true state almost surely.

Keywords: Distributed learning - Byzantine agreement - Fault-
tolerance - Adversary attacks - Security
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Multi-Agent Optimization in the Presence of Byzantine Adversaries:
Fundamental Limits*

Lili Su and Nitin Vaidya

Abstract— We study multi-agent optimization problem in the
presence of Byzantine adversaries, where each agent ¢ has a
local cost function h;(z), and some unknown subset of agents
suffer Byzantine faults. The goal is to optimize a global objective
that properly aggregates the local cost functions. Ideally, we
would like to optimize Wll > ien hi(z), where N is the set
of non-faulty agents. However, we show that this ideal goal
is unachievable. Therefore, we define a relaxed version of the
problem, named Byzantine multi-agent optimization, for which
the goal is to generate an output that is an optimum of a
global cost function formed as a convex combination of local
cost functions kept by the non-faulty agents. More precisely,
there must exist nonnegative weights «; for i € N such that
> icn @i = 1, and the output is an optimum of ), _ .- a;h;(z).

In this paper, we focus on the impact of Byzantine attacks on
the maximal achievable number of nonzero weights. To charac-
terize the fundamental limits, we assume that the argument of
each local cost function is a (real-valued) scalar, the network is
fully-connected, and there is no restriction on the information
exchange among agents. We show that the number of nonzero
weights (c;’s) that can be guaranteed is at most |[A| — f,
where f is the maximum number of Byzantine faulty agents.
Additionally, we present algorithms that achieve this upper
bound. By exploiting Byzantine broadcast for information
exchange between agents, our proposed algorithms essentially

output r, € argmin

xT

1 n
- ;W;) (1)

Each function h;(x) is assumed to be a convex function.
(Section III will fully describe the properties of the cost
functions.)

Due to its many potential applications, distributed multi-
agent optimization has been a topic of significant research
activity, as noted above. The applications include distributed
machine learning, distributed resource allocation, and dis-
tributed robotics. In distributed machine learning problem
[1], = represents parameters that need to be learned, using
data available to a collection of agents. f;(x) denotes a loss
function for agent 7 that depends on data available to agent 1.
In the resource allocation problem, the argument x represents
allocation of shared resources to the agents, and the local cost
functions depends on the fairness of the resource allocation.
The global objective is to allow the agents to collaboratively

aoree on the most fair reconirce allocation A< a <aamnle
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Adversarial Samples

® Machine learning seems to work well

m [f it seems too good to be true ...
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Adversarial Samples

B Several researchers have shown that
it is easy to fool a machine



mu

Adversarial
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Can we solve the problem?

May be ... or not

B Some interesting ideas that seem promising
In early evaluations

... but not mature enought to report yet
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Summary

®m Achieving privacy/security in learning is non-trivial
B Some promising progress

®m Plenty to keep us busy for a while ...

disc.ece.illinois.edu
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Parameter Server Architecture

m Distributed gradient method

Parameter WI[0]
server




Distributed Optimization
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Distributed Optimization

Parameter
server

vh1(W[0]/ \th(W[O])

WIO]




