
Privacy & Security
in Machine Learning / Optimization

Nitin Vaidya
University of Illinois at Urbana-Champaign

disc.ece.illinois.edu

Research Interests

Distributed algorithms

g Distributed shared memory systems

g Distributed computations over wireless networks

g Distributed optimization

2

Privacy

and

Security

Machine

Learning /

Optimization

for

Privacy

and

Security

Machine

Learning /

Optimization

for

Outline

g Motivation – distributed machine learning

g Research problems

– Privacy-preserving distributed optimization

– Adversarial learning

– Robustness to adversarial samples

CIFAR-10
dataset

Example – Image Classification

Deep
Neural Networks

1

3

2

x1

x3

x2

layer 1

W132

a1

a2

a3

a4

W111

neuron

1

3

2

x1

x3

x2

layer 1

W132

0.8
dog

0.1
cat

0.09
ship

0.01
car

input output

W111

parameters

Deep Neural Networks

1

3

2

x1

x3

x2

layer 1

W132

a1

a2

a3

a4

3x3

x2

W132

W131

s(X2W131+X3W132+b13)

3x3

x2

W132

W131

s(X2W131+X3W132+b13)

s(z)

z

Rectifier
Linear
Unit

z

How to train your dragon

g Given a machine structure

g Parameters are the only free variables

è Choose parameters that maximize accuracy

13

network

How to train your network

g Given a machine structure

g Parameters are the only free variables

è Choose parameters to maximize accuracy

Optimize a suitably defined
cost function h(w)

to find the right parameter vector w

How to train your network

1

3

2

x1

x3

x2

W132

a1

a2

a3

a4

Optimize a suitably defined
cost function h(w)

to find the right parameter vector wparameters
w

Cost Function h(w)

g Consider input x

g True classification y(x)

g Machine classification a(x,w) using parameters w

g Cost for input x = || y(x)-a(x,w) ||2

g Total cost h(w) = Σ || y(x)-a(x,w) ||2

x
16

Convex Optimization

Wikipedia

h(W)

w131

w132

W = (w131,w132,…)

Convex Optimization

W = (w131,w132,…)

W[0] = (4,3,...)

W[0]

Convex Optimization

W = (w131,w132,…)

W[0] = (4,3,...)
W[1] = (3,2,…)

W[0]

W[1]

Convex Optimization

W = (w131,w132,…)

W[0]

W[1]

W[2]

Convex Optimization

W = (w131,w132,…)

W[0]

W[1]

W[2]

W[3]

22

Training
è

Optimize
cost function

h(w)

Machine
parameters

w

So far …

h(w)

Outline

g Motivation – distributed machine learning

g Research problems

– Privacy-preserving distributed optimization

– Adversarial learning

– Robustness to adversarial samples

Distributed Machine Learning

g Data is distributed
across different
agents

iMobile users
iHospitals
iCompeting vendors

Distributed Machine Learning

g Data is distributed
across different
agents

iMobile users
iHospitals
iCompeting vendors

Agent 1 Agent 2

Agent 3 Agent 4

Distributed Machine Learning

g Data is distributed
across different è Collaborate to learn
agents

Distributed Machine Learning

g Data is distributed
across different è Collaborate to learn
agents

Training
è

Optimize
cost function
Σ hi(w)
i

h1(w) h2(w)

h4(w)h3(w)

Machine
parameters

w

Distributed Optimization

g 30+ years or work

g Recent interest due to machine learning applications

28

Distributed Optimization

Different architectures

g Peer-to-peer

29

h1(w)

h3(w)

h2(w)

Distributed Optimization

Different architectures

g Peer-to-peer

g Parameter server

h1(w)

h3(w)

h2(w)

h1(w) h3(w) h2(w)

Parameter
server

Distributed Gradient Method

h1(w)

h3(w)

h2(w)W1[0] W2[0]

W3[0]

Distributed Gradient Method

h1(w)

h3(w)

h2(w)W1[0] W2[0]

W3[0]

W1[0]

W1[0]

W2[0]

W3[0]

Distributed Gradient Method

h1(w)

h3(w)

h2(w)W1[0] W2[0]

W3[0]

W1[0]

W1[0]

W2[0]

W3[0]

T = ½W3[0] + ¼W1[0]+ ¼W2[0]

Distributed Gradient Method

h1(w)

h3(w)

h2(w)W1[0] W2[0]

W3[0]

W1[0]

W1[0]

W2[0]

W3[0]

W3[0] = W3[0] - 𝛂 ∇h3(T)

T = ½W3[0] + ¼W1[0]+ ¼W2[0]

Works in incomplete networks too !!

h1(w)

h3(w)

h2(w)W1[0] W2[0]

W3[0]

W1[0]

W1[0]

W2[0]

W3[0]

W3[0] = W3[0] - 𝛂 ∇h3(T)

T = ½W3[0] + ¼W1[0]+ ¼W2[0]

Parameter Server Architecture

h1(w) h3(w) h2(w)

Parameter
server

W[1] = W[0] – 𝛂 ∑∇hi(W[0])

W[0]
∇h2(W[0])∇h1(W[0])

Outline

g Motivation – distributed machine learning

g Research problems

– Privacy-preserving distributed optimization

– Adversarial learning

– Robustness to adversarial samples

Privacy Challenge

g Peers may learn
each other’s data

g Parameter server
may learn data

h1(w)

h3(w)

h2(w)

h1(w) h3(w) h2(w)

Parameter
server

Privacy-Preserving Optimization

Optimize
cost function
Σ hi(w)
i

Can agents collaboratively learn,
and yet protect own data ?

Peer-to-Peer Architecture

h1(w)

h3(w)

h2(w)W1[0] W2[0]

W3[0]

W1[0]

W1[0]

W2[0]

W3[0]

Add Inter-Dependent Noise

h1(w)

h3(w)

h2(w)W1[0] W2[0]

W3[0]

W1[0]+n1

W1[0]+n1

W2[0]+n2

W3[0]+n3

Add Inter-Dependent Noise

h1(w)

h3(w)

h2(w)W1[0] W2[0]

W3[0]

W1[0]+n1

W1[0]+n1

W2[0]+n2

W3[0]+n3
n1 + n2 + n3 = 0

Key Idea

g Add correlated noise in information exchanged
between agents

g Noise “cancels” over the network

g But can prevent coalition of bad agents learning
information about others

43

Privacy-Preserving Optimization

Optimize
cost function
Σ hi(w)
i

Can agents collaboratively learn,
and yet protect own data ?

Yes!*
* conditions

apply

Privacy-Preserving Optimization

Optimize
cost function
Σ hi(w)
i

Can agents collaboratively learn,
and yet protect own data ?

Yes!*
* conditions

apply

Private Learning on Networks

⇤

Shripad Gade Nitin H. Vaidya

Department of Electrical and Computer Engineering, and
Coordinated Science Laboratory,

University of Illinois at Urbana-Champaign.
Email: {gade3, nhv}@illinois.edu

Technical Report

Abstract

Continual data collection and widespread deployment of machine learning algorithms, par-
ticularly the distributed variants, have raised new privacy challenges. In a distributed machine
learning scenario, the dataset is stored among several machines and they solve a distributed
optimization problem to collectively learn the underlying model. We present a secure multi-
party computation inspired privacy preserving distributed algorithm for optimizing a convex
function consisting of several possibly non-convex functions. Each individual objective function
is privately stored with an agent while the agents communicate model parameters with neighbor
machines connected in a network. We show that our algorithm can correctly optimize the over-
all objective function and learn the underlying model accurately. We further prove that under
a vertex connectivity condition on the topology, our algorithm preserves privacy of individual
objective functions. We establish limits on the what a coalition of adversaries can learn by
observing the messages and states shared over a network.

Keywords – Distributed optimization, privacy preservation, distributed learning, networks.

1 Introduction

Advances in fast machine learning algorithms have resulted in widespread deployment of machine
learning algorithms [1]. Distributed learning and inference have become popular due to their inher-
ent e�ciency, scalability, robustness and geo-distributed nature of datasets [2–8]. Distributed learn-
ing reduces communication requirements of learning, since machines communicate/share updates
(gradients or states) that are much smaller in size than datasets. Several distributed optimization
algorithms have appeared in literature over the past decade [8–20]. Solutions to distributed opti-
mization of convex functions have been proposed for myriad scenarios involving directed graphs [15],
link failures and losses [21], asynchronous communication models [14, 16, 22], stochastic objective
functions [11, 23,24], fault tolerance [25] and di↵erential privacy [17].

Privacy has emerged to be one of the most critical challenges in machine learning [1, 26–29].
For instance, in the healthcare industry, hospitals/insurance providers use medical records to learn

⇤
This research is supported in part by National Science Foundation awards 1421918 and 1610543, and Toyota

InfoTechnology Center. Any opinions, findings, and conclusions or recommendations expressed here are those of the

authors and do not necessarily reflect the views of the funding agencies or the U.S. government.

1

ar
X

iv
:1

61
2.

05
23

6v
1

 [c
s.D

C]
 1

5
D

ec
 2

01
6

Outline

g Motivation – distributed machine learning

g Research problems

– Privacy-preserving distributed optimization

– Adversarial learning

– Robustness to adversarial samples

Adversarial Agents

g Adversarial agents
may send bogus information

g Learned parameters impacted

48

h1(w)

h3(w)

h2(w)

h1(w) h3(w) h2(w)

Parameter
server

Adversarial Agents

49

h1(w)

h3(w)

h2(w)

h1(w) h3(w) h2(w)

Parameter
server

Can good agents learn
despite bad agents?

Adversarial Agents

50

h1(w)

h3(w)

h2(w)

h1(w) h3(w) h2(w)

Parameter
server

Can good agents learn
despite bad agents?

Yes!*

Key Idea

g Need to filter bad information

g Define “outliers” appropriately

51

Non-Bayesian Learning in the Presence
of Byzantine Agents

Lili Su(B) and Nitin H. Vaidya

Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Champaign, USA

{lilisu3,nhv}@illinois.edu

Abstract. This paper addresses the problem of non-Bayesian learn-
ing over multi-agent networks, where agents repeatedly collect partially
informative observations about an unknown state of the world, and try
to collaboratively learn the true state. We focus on the impact of the
Byzantine agents on the performance of consensus-based non-Bayesian
learning. Our goal is to design an algorithm for the non-faulty agents to
collaboratively learn the true state through local communication.

We propose an update rule wherein each agent updates its local beliefs
as (up to normalization) the product of (1) the likelihood of the cumula-
tive private signals and (2) the weighted geometric average of the beliefs
of its incoming neighbors and itself (using Byzantine consensus). Under
mild assumptions on the underlying network structure and the global
identifiability of the network, we show that all the non-faulty agents
asymptotically agree on the true state almost surely.

Keywords: Distributed learning · Byzantine agreement · Fault-
tolerance · Adversary attacks · Security

1 Introduction

Learning is closely related to decentralized hypothesis testing, which has received
a significant amount of attention [3,6,8,24,28]. The traditional decentralized
detection framework consists of a collection of spatially distributed sensors and
a fusion center [24,28]. The sensors independently collect noisy observations of
the environment state, and send only summary of the private observations to
the fusion center, where a final decision is made.

Distributed hypothesis testing in the absence of fusion center is considered in
[1,2,6,10]. In particular, Gale and Kariv [6] studied the problem in the context
of social learning, where a fully Bayesian belief update rule is studied.

To avoid the complexity of Bayesian learning, a non-Bayesian learning frame-
work that combines local Bayesian learning with consensus was proposed by

This research is supported in part by National Science Foundation awards NSF
1329681 and 1421918. Any opinions, findings, and conclusions or recommendations
expressed here are those of the authors and do not necessarily reflect the views of
the funding agencies or the U.S. government.

c⃝ Springer-Verlag Berlin Heidelberg 2016
C. Gavoille and D. Ilcinkas (Eds.): DISC 2016, LNCS 9888, pp. 414–427, 2016.
DOI: 10.1007/978-3-662-53426-7 30

Multi-Agent Optimization in the Presence of Byzantine Adversaries:
Fundamental Limits*

Lili Su and Nitin Vaidya

Abstract— We study multi-agent optimization problem in the
presence of Byzantine adversaries, where each agent i has a
local cost function hi(x), and some unknown subset of agents
suffer Byzantine faults. The goal is to optimize a global objective
that properly aggregates the local cost functions. Ideally, we
would like to optimize 1

|N|
P

i2N hi(x), where N is the set
of non-faulty agents. However, we show that this ideal goal
is unachievable. Therefore, we define a relaxed version of the
problem, named Byzantine multi-agent optimization, for which
the goal is to generate an output that is an optimum of a
global cost function formed as a convex combination of local
cost functions kept by the non-faulty agents. More precisely,
there must exist nonnegative weights ↵i for i 2 N such thatP

i2N ↵i = 1, and the output is an optimum of
P

i2N ↵ihi(x).
In this paper, we focus on the impact of Byzantine attacks on

the maximal achievable number of nonzero weights. To charac-
terize the fundamental limits, we assume that the argument of
each local cost function is a (real-valued) scalar, the network is
fully-connected, and there is no restriction on the information
exchange among agents. We show that the number of nonzero
weights (↵i’s) that can be guaranteed is at most |N | � f ,
where f is the maximum number of Byzantine faulty agents.
Additionally, we present algorithms that achieve this upper
bound. By exploiting Byzantine broadcast for information
exchange between agents, our proposed algorithms essentially
solve a centralized problem where there are n functions among
which up to f functions are injected by the system adversary.

I. INTRODUCTION

Networked multi-agent systems consist of a group of
agents that collectively perform collaborative tasks. The fo-
cus of this paper is on fault-tolerant multi-agent optimization
problem. The failure-free version of the multi-agent opti-
mization problem has received significant attention in recent
years [7], [16], [23], [5], [9], [11]. In this problem, each
agent has its own local cost function, and in the failure-free
case, the objective is to (distributedly) minimize a global cost
function obtained as the average of the local cost functions
of the agents. In particular, if agent i’s local cost function
is denoted as h

i

(x), with x being the argument, then the
goal of (failure-free) multi-agent optimization is to produce
output x

o

that satisfies the requirement below, where n is
the total number of agents.

*This research is supported in part by National Science Foundation
awards NSF 1329681 and 1421918. Any opinions, findings, and conclusions
or recommendations expressed here are those of the authors and do not
necessarily reflect the views of the funding agencies or the U.S. government.

Lili Su and Nitin Vaidya are with the Coordinated Science Laboratory and
the Department of Electrical and Computer Engineering at the University of
Illinois at Urbana-Champaign (UIUC), 1308 W. Main St., Urbana, Illinois
61801, USA {ilisu3, nhv}@illinois.edu

output x
o

2 argmin

x

1

n

nX

i=1

h
i

(x) (1)

Each function h
i

(x) is assumed to be a convex function.
(Section III will fully describe the properties of the cost
functions.)

Due to its many potential applications, distributed multi-
agent optimization has been a topic of significant research
activity, as noted above. The applications include distributed
machine learning, distributed resource allocation, and dis-
tributed robotics. In distributed machine learning problem
[1], x represents parameters that need to be learned, using
data available to a collection of agents. f

i

(x) denotes a loss
function for agent i that depends on data available to agent i.
In the resource allocation problem, the argument x represents
allocation of shared resources to the agents, and the local cost
functions depends on the fairness of the resource allocation.
The global objective is to allow the agents to collaboratively
agree on the most fair resource allocation. As a simple
example in distributed robotics, x represents a location where
the robots may meet, with f

i

(x) representing the cost for
robot i to go to location x.

While the failure-free version of the above problem is
well-understood by now, we explore the case where some
of the agents may be Byzantine faulty [12]. Byzantine
faulty agents can behave arbitrarily. Unless fault-tolerance
mechanisms are incorporated, the output of an optimization
algorithm can be significantly biased by the faulty agents, for
instance, by choosing arbitrary local cost functions. There-
fore, when agents may suffer Byzantine faults, the global cost
function defined in (1) above is not appropriate. If we denote
by N the set of non-faulty agents in a given execution, then,
ideally, the agents should optimize the average of the local
cost functions of just the agents in N , as stated below.

output x
o

2 argmin

x

1

|N |
X

i2N
h
i

(x) (2)

The global objective optimized in (2) can be viewed as a
weighted average

P
i2N ↵

i

h
i

(x) with weight ↵
i

equals 1
|N |

for all i 2 N . Unfortunately, since the non-faulty agents do
not necessarily know the identity of Byzantine faulty agents,
the goal in (2) is unachievable (Theorem 1 in Section IV).

We relax the goal of fault-tolerant multi-agent optimization
as follows, where ↵ is viewed as a vector with its i-th

2016 American Control Conference (ACC)
Boston Marriott Copley Place
July 6-8, 2016. Boston, MA, USA

978-1-4673-8682-1/$31.00 ©2016 AACC 7183

Outline

g Motivation – distributed machine learning

g Research problems

– Privacy-preserving distributed optimization

– Adversarial learning

– Robustness to adversarial samples

Adversarial Samples

g Machine learning seems to work well

g If it seems too good to be true …

55

Adversarial Samples

g Several researchers have shown that
it is easy to fool a machine

57

original adversarial
sample sample

Can we solve the problem?

May be … or not

g Some interesting ideas that seem promising
in early evaluations

… but not mature enought to report yet

59

Summary

g Achieving privacy/security in learning is non-trivial

g Some promising progress

g Plenty to keep us busy for a while …

disc.ece.illinois.edu

Collaborators

g Lili Su (Ph.D. candidate)
g Shripad Gade (Ph.D. candidate)
g Nishad Phadke (BS thesis)
g Brian Wang (BS thesis)
g Professor Jungmin So (on sabbatical)

Collaborators

g Lili Su (Ph.D. candidate)
g Shripad Gade (Ph.D. candidate)
g Nishad Phadke (BS thesis)
g Brian Wang (BS thesis)
g Professor Jungmin So (on sabbatical)

Other related effort -- fault-tolerant control

g Professor Aranya Chakarabortty (on sabbatical)

Summary

g Achieving privacy/security in learning is non-trivial

g Some promising progress

g Plenty to keep us busy for a while …

disc.ece.illinois.edu

64

65

66

67

Parameter Server Architecture

g Distributed gradient method

h1(w) h3(w) h2(w)

Parameter
server

W[0]

Distributed Optimization

h1(w) h3(w) h2(w)

Parameter
server

W[0]

W[0]

Distributed Optimization

h1(w) h3(w) h2(w)

Parameter
server

W[0]

W[0]
∇h1(W[0]) ∇h2(W[0])

